CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Graph algorithms: BFS

- Problem: Given a graph $G=(V, E)$ check if the graph is bipartite.

isBipartite (G)

- Run $\operatorname{BFS}(G)$ and check if two vertices in the same layer has an edge between them. If yes then output("no") else output("yes")
- Running time: $O(n+m)$
- Question: Given a strongly connected bipartite graph, does it have a unique bipartition?

Graph Algorithms: DFS

- Depth First Search (DFS):

DFS(S)

- Mark S as "explored"
- For each unexplored neighbor v of S
- Recursively call DFS (\mathcal{V})

Graph Algorithms: DFS

- Depth First Search (DFS):
$\operatorname{DFS}(s)$
- Mark S as "explored"
- For each unexplored neighbor v of S
- Recursively call DFS (v)

Graph Algorithms: DFS

- Depth First Search (DFS):

DFS(\boldsymbol{S})

- Mark S as "explored"
- For each unexplored neighbor v of S
- Recursively call DFS (v)

Graph Algorithms: DFS

- Depth First Search (DFS):

DFS(\boldsymbol{S})

- Mark S as "explored"
- For each unexplored neighbor v of S
- Recursively call DFS (v)

Graph Algorithms: DFS

- Depth First Search (DFS):

DFS(\boldsymbol{S})

- Mark S as "explored"
- For each unexplored neighbor v of S
- Recursively call DFS (v)

Graph Algorithms: DFS

- Depth First Search (DFS):

DFS(\boldsymbol{S})

- Mark S as "explored"
- For each unexplored neighbor v of S
- Recursively call DFS (v)

Graph Algorithms: DFS

- Depth First Search (DFS):

DFS(\boldsymbol{S})

- Mark S as "explored"
- For each unexplored neighbor v of S
- Recursively call DFS (v)

Graph Algorithms: DFS

- Depth First Search (DFS):

DFS(\boldsymbol{S})

- Mark S as "explored"
- For each unexplored neighbor v of S
- Recursively call DFS (v)

Graph Algorithms: DFS

- Depth First Search (DFS):

DFS(\boldsymbol{S})

- Mark S as "explored"
- For each unexplored neighbor v of S
- Recursively call DFS (v)

Graph Algorithms: DFS

- Depth First Search (DFS):

DFS(\boldsymbol{S})

- Mark S as "explored"
- For each unexplored neighbor v of S
- Recursively call DFS (v)

Graph Algorithms: DFS

- Depth First Search (DFS):

```
DFS(S)
    - Mark S as "explored"
- For each unexplored neighbor \(v\) of \(S\) - Recursively call DFS \((v)\)
```


- Running time: $O(n+m)$

Graph Algorithms: DFS

- Depth First Search (DFS):

```
DFS(S)
    - Mark S as "explored"
    - For each unexplored neighbor v of }
    - Recursively call DFS(v)
```

- The DFS algorithm defines the following "DFS tree" rooted at S :
- Vertex u is the parent of vertex v if u caused the immediate discovery of v.

Graph Algorithms: DFS

- Depth First Search (DFS):
- The DFS algorithm defines the following "DFS tree" rooted at S :
- Vertex u is the parent of vertex v if u caused the immediate discovery of v.

Graph Algorithms: DFS/BFS

- DFS tree versus BFS tree

Graph algorithms: Connectivity

- A graph may not always be "connected".
- A connected component in an undirected graph is a maximal subgraph (maximal subset of vertices along with respective edges) such that there is a path between any pair of vertices in the subset.

Graph algorithms: Connectivity

- In a directed graph, a strongly connected component is a maximal subgraph such that for each pair of vertices (u, v) in the subset, there is a path from u to v and there is a path from v to u.

Graph algorithms: Connectivity

- Question: Given a directed graph, can a vertex be in two strongly connected components?
- Problem: Given a directed graph and a vertex S. Give an algorithm to find the vertices in the strongly connected component containing S. What is the running time?

Graph algorithms: Cycles

- A "directed acyclic graph" (DAG) is a directed graph such that there are no cycles in the graph.
- Topological ordering: An ordering of the vertices of a directed graph such that there is no directed edge from a vertex that lies later in the order to another vertex that lies earlier in the order.

Graph algorithms: Cycles

- Question: How many topological ordering of the following graph is possible

Graph algorithms: Cycles

- Question: Given a directed graph that contains a cycle. Is topological ordering possible?
- Question: Given a DAG. Is topological ordering possible? If so give an algorithm that outputs one such order. What is the running time?

End

Problems to think about:

1. A Graph is called semi-connected if for any pair of vertices (u, v) in the graph either there is a path from u to v OR there is a path from v to u.
Problem: Given a DAG check if it is semi-connected. What is the running time of your algorithm?
