
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of 

Algorithms



Graph algorithms: BFS

 Question: Given a strongly connected bipartite graph, 

does it have a unique bipartition?

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

isBipartite (𝐺)

- Run BFS(𝐺) and check if two vertices in the same layer has an edge between them.

If yes then output(“no”) else output(“yes”)

 Running time: 𝑂(𝑛 + 𝑚)



Graph Algorithms: DFS

 Depth First Search (DFS):

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)



Graph Algorithms: DFS

 Depth First Search (DFS):

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)

s = v1

v2

v3

v4

v8

v7

v6

v5

v9



Graph Algorithms: DFS

 Depth First Search (DFS):

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)

s = v1

v2

v3

v4

v8

v7

v6

v5

v9



Graph Algorithms: DFS

 Depth First Search (DFS):

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)

s = v1

v2

v3

v4

v8

v7

v6

v5

v9



Graph Algorithms: DFS

 Depth First Search (DFS):

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)

s = v1

v2

v3

v4

v8

v7

v6

v5

v9



Graph Algorithms: DFS

 Depth First Search (DFS):

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)

s = v1

v2

v3

v4

v8

v7

v6

v5

v9



Graph Algorithms: DFS

 Depth First Search (DFS):

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)

s = v1

v2

v3

v4

v8

v7

v6

v5

v9



Graph Algorithms: DFS

 Depth First Search (DFS):

s = v1

v2

v3

v4

v8

v7

v6

v5

v9

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)



Graph Algorithms: DFS

 Depth First Search (DFS):

s = v1

v2

v3

v4

v8

v7

v6

v5

v9

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)



Graph Algorithms: DFS

 Depth First Search (DFS):

s = v1

v2

v3

v4

v8

v7

v6

v5

v9

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)



Graph Algorithms: DFS

 Depth First Search (DFS):

s = v1

v2

v3

v4

v8

v7

v6

v5

v9

 Running time:𝑂(𝑛 +𝑚)

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)



Graph Algorithms: DFS

 Depth First Search (DFS):

DFS(𝑠)

- Mark 𝑠 as “explored”

- For each unexplored neighbor 𝑣 of 𝑠
- Recursively call DFS(𝑣)

 The DFS algorithm defines the following “DFS tree” rooted at 𝑠:

 Vertex 𝑢 is the parent of vertex 𝑣 if 𝑢 caused the immediate 

discovery of 𝑣.



Graph Algorithms: DFS

 Depth First Search (DFS):

 The DFS algorithm defines the following “DFS tree” rooted at 𝑠:

 Vertex 𝑢 is the parent of vertex 𝑣 if 𝑢 caused the immediate 
discovery of 𝑣.

s = v1

v2

v3

v4

v8

v7

v6

v5



Graph Algorithms: DFS/BFS

 DFS tree versus BFS tree

s = v1

v2

v3

v4

v8

v7

v6

v5

s = v1

v2

v3

v4

v8

v7

v6

v5

v9 v9



Graph algorithms: Connectivity

 A graph may not always be “connected”.

 A connected component in an undirected graph is a maximal 

subgraph (maximal subset of vertices along with respective 

edges) such that there is a path between any pair of vertices 

in the subset.



Graph algorithms: Connectivity

 In a directed graph, a strongly connected component is a 

maximal subgraph such that for each pair of vertices (𝑢, 𝑣)
in the subset, there is a path from 𝑢 to 𝑣 and there is a path 

from 𝑣 to 𝑢.



Graph algorithms: Connectivity

 Question: Given a directed graph, can a vertex be in two 
strongly connected components?

 Problem: Given a directed graph and a vertex 𝑠. Give an 
algorithm to find the vertices in the strongly connected 
component containing 𝑠. What is the running time?

𝑠



Graph algorithms: Cycles

 A “directed acyclic graph” (DAG) is a directed graph such 
that there are no cycles in the graph.

 Topological ordering: An ordering of the vertices of a 
directed graph such that there is no directed edge from a 
vertex that lies later in the order to another vertex that lies 
earlier in the order. 

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓
𝑔



Graph algorithms: Cycles

 Question: How many topological ordering of the following 

graph is possible



Graph algorithms: Cycles

 Question: Given a directed graph that contains a cycle. Is 

topological ordering possible?

 Question: Given a DAG. Is topological ordering possible? If 

so give an algorithm that outputs one such order. What is the 

running time?

𝑠

𝑎

𝑏

𝑐

𝑑
𝑒

𝑓
𝑔



End

Problems to think about:

1. A Graph is called semi-connected if for any pair of vertices (𝑢, 𝑣)
in the graph either there is a path from 𝑢 to 𝑣 OR there is a path 

from 𝑣 to 𝑢.

Problem: Given a DAG check if it is semi-connected. What is the 

running time of your algorithm?


