
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of 

Algorithms



Graphs



Graphs: Introduction
 A way to represent a set of objects with pair-wise 

relationships among them.

 The objects are represented as vertices and the relationships 

are represented as edges.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣8

𝑣7

𝑣6
𝑣5

vertices

edges

𝐺 = (𝑉, 𝐸)
𝑉 = {𝑣1, … , 𝑣8}
𝐸 = {(𝑣1, 𝑣8), … }



Graphs: Introduction
 Examples:

 Social networks

 Communication networks

 Transportation networks

 Dependency networks

𝑣1

𝑣2

𝑣3

𝑣4

𝑣8

𝑣7

𝑣6

𝑣5

𝑣8 and 𝑣7 are friends



Graphs: Introduction
 Weighted Graphs: There are weights associated with each 

edge quantifying the relationship. For example, delay in 

communication network.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣8

𝑣7

𝑣6

𝑣5

5

7
15

2

4

15
3

4

5

25

50

10



Graphs: Introduction
 Directed graphs: Asymmetric relationships between the 

objects. For example, one way streets.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣8

𝑣7

𝑣6

𝑣5

5

7
15

2

4

15
3

4

5

25

50

10



Graphs: Introduction
 Path: A sequence of vertices 𝑣1, 𝑣2, … , 𝑣𝑘 such that for any 

consecutive pair of vertices 𝑣𝑖 , 𝑣𝑖+1, (𝑣𝑖 , 𝑣𝑖+1) is an edge in the 
graph. It is called a path from 𝑣1 to 𝑣𝑘. A cycle is a path where 
𝑣1 = 𝑣𝑘 and 𝑣1, … , 𝑣𝑘−1 are distinct vertices.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣8

𝑣7

𝑣6

𝑣5

5

7
15

2

4

15
3

4

5

25

50

10



Graphs: Introduction
 Strongly connected: A graph is called strongly connected if 

for any pair of vertices 𝑢, 𝑣, there is a path from 𝑢 to 𝑣 and 

a path from 𝑣 to 𝑢.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣8

𝑣7

𝑣6

𝑣5

5

7
15

2

4

15
3

4

5

25

50

10

𝑣1

𝑣2

𝑣3

𝑣4

𝑣8

𝑣7

𝑣6

𝑣5



Graphs: Introduction
 Tree: A strongly connected, undirected graph is called a tree 

if it has no cycles.

 How many edged does a tree have?



Graph

Data Structures for representing graphs



Graph: Data structures

 Adjacency matrix: 

𝑣1 𝑣2

𝑣4 𝑣3

𝑣5

0 1 1 1 0

1 0 1 0 0

1 1 0 1 0

1 0 1 0 0

0 0 0 0 0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

 Space:𝑂(𝑛2)



Graph: Data structures

 Adjacency list: For each 

vertex store its neighbors

𝑣1 𝑣2

𝑣4 𝑣3

𝑣5

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣2 𝑣3 𝑣4

𝑣1 𝑣3

𝑣1 𝑣2 𝑣4

𝑣1 𝑣3

 Space:𝑂(𝑛 + 𝑚)



Graph

Graph algorithms



Graph Algorithms: s-t connectivity

 Problem: Given an (undirected) graph 𝐺 = (𝑉, 𝐸) and two 

vertices 𝑠, 𝑡, check if there is a path between 𝑠 and 𝑡.



Graph Algorithms: s-t connectivity

 There is a path between 𝑠 and 𝑡 iff 𝑠 and 𝑡 are in the same 

connected component.

 Problem: Given an (undirected) graph 𝐺 = (𝑉, 𝐸) and two 

vertices 𝑠, 𝑡, check if there is a path between 𝑠 and 𝑡.



Graph Algorithms: s-t connectivity

 There is a path between 𝑠 and 𝑡 iff 𝑠 and 𝑡 are in the same 

connected component.

 Alternate problem: What are the vertices which are reachable 

from 𝑠. Is 𝑡 among these reachable vertices.

 Graph exploration: Explore all the vertices reachable from 𝑠.

 Problem: Given an (undirected) graph 𝐺 = (𝑉, 𝐸) and two 

vertices 𝑠, 𝑡, check if there is a path between 𝑠 and 𝑡.



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1

- while(true){

- visit all new nodes that have an edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}

s = v1

v2

v3

v4

v8

v7

v6

v5



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}

s = v1

v2

v3

v4

v8

v7

v6

v5



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}

s = v1

v2

v3

v4

v8

v7

v6

v5



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}

s = v1

v2

v3

v4

v8

v7

v6

v5



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}

s = v1

v2

v3

v4

v8

v7

v6

v5

Show: The shortest path from 𝑠 to any vertex in 𝐿(𝑖) is equal to 𝑖. 



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}

s = v1

v2

v3

v4

v8

v7

v6

v5

Running time: 𝑂(𝑛 + 𝑚)



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}

 The BFS algorithm defines the following “BFS Tree” rooted at 𝑠:

 Vertex 𝑢 is the parent of vertex 𝑣 if 𝑢 caused the immediate 

discovery of 𝑣.



Graph Algorithms: BFS

 Breadth First Search (BFS):

 The BFS algorithm defines the following “BFS Tree” rooted at 𝑠:

 Vertex 𝑢 is the parent of vertex 𝑣 if 𝑢 caused the immediate 

discovery of 𝑣.

s = v1

v2

v3

v4

v8

v7

v6

v5



Graph Algorithms: BFS

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

 A graph is bipartite if the vertices can be partitioned into two 
sets such that there is no edge between any pair of vertices in 
the same set.



Graph Algorithms: BFS

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

 Consider BFS:

 Is it possible that there is an edge 

between vertices which belong to 

sets 𝐿(𝑖) and 𝐿(𝑗) such that 

(𝑗 − 𝑖) > 1?

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}



Graph Algorithms: BFS

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

 Suppose the given graph contains a cycle of odd length. Can 

this graph be bipartite?



Graph Algorithms: BFS

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

 Suppose the given graph contains a cycle of odd length. Can 

this graph be bipartite?

 Can you now use BFS to check if the graph is bipartite?



Graph Algorithms: BFS

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

 Suppose the given graph contains a cycle of odd length. Can 

this graph be bipartite?

 Can you now use BFS to check if the graph is bipartite?

 What is the running time of your algorithm?



Graph Algorithms: BFS

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

 Suppose the given graph contains a cycle of odd length. Can 
this graph be bipartite?

 Can you now use BFS to check if the graph is bipartite?

 What is the running time of your algorithm?

 Suppose a graph does not have an odd cycle. Does that mean 
that the graph is bipartite?



End

Problems to think about:

1. The BFS algorithm gives the shortest path from s to any vertex. 

Suppose we are given a weighted graph where the weights are 

numbers between 1 and 10. Can you use the BFS algorithm to 

find the shortest length path from s to any vertex in the graph. 

The length of a path is the sum of weights of edges in the path.


