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Graphs



Graphs: Introduction
 A way to represent a set of objects with pair-wise 

relationships among them.

 The objects are represented as vertices and the relationships 

are represented as edges.
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Graphs: Introduction
 Examples:

 Social networks

 Communication networks

 Transportation networks

 Dependency networks
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Graphs: Introduction
 Weighted Graphs: There are weights associated with each 

edge quantifying the relationship. For example, delay in 

communication network.
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Graphs: Introduction
 Directed graphs: Asymmetric relationships between the 

objects. For example, one way streets.
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Graphs: Introduction
 Path: A sequence of vertices 𝑣1, 𝑣2, … , 𝑣𝑘 such that for any 

consecutive pair of vertices 𝑣𝑖 , 𝑣𝑖+1, (𝑣𝑖 , 𝑣𝑖+1) is an edge in the 
graph. It is called a path from 𝑣1 to 𝑣𝑘. A cycle is a path where 
𝑣1 = 𝑣𝑘 and 𝑣1, … , 𝑣𝑘−1 are distinct vertices.
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Graphs: Introduction
 Strongly connected: A graph is called strongly connected if 

for any pair of vertices 𝑢, 𝑣, there is a path from 𝑢 to 𝑣 and 

a path from 𝑣 to 𝑢.
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Graphs: Introduction
 Tree: A strongly connected, undirected graph is called a tree 

if it has no cycles.

 How many edged does a tree have?



Graph

Data Structures for representing graphs



Graph: Data structures

 Adjacency matrix: 

𝑣1 𝑣2

𝑣4 𝑣3

𝑣5

0 1 1 1 0

1 0 1 0 0

1 1 0 1 0

1 0 1 0 0

0 0 0 0 0
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𝑣3

𝑣4

𝑣5

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

 Space:𝑂(𝑛2)



Graph: Data structures

 Adjacency list: For each 

vertex store its neighbors
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Graph

Graph algorithms



Graph Algorithms: s-t connectivity

 Problem: Given an (undirected) graph 𝐺 = (𝑉, 𝐸) and two 

vertices 𝑠, 𝑡, check if there is a path between 𝑠 and 𝑡.



Graph Algorithms: s-t connectivity

 There is a path between 𝑠 and 𝑡 iff 𝑠 and 𝑡 are in the same 

connected component.

 Problem: Given an (undirected) graph 𝐺 = (𝑉, 𝐸) and two 

vertices 𝑠, 𝑡, check if there is a path between 𝑠 and 𝑡.



Graph Algorithms: s-t connectivity

 There is a path between 𝑠 and 𝑡 iff 𝑠 and 𝑡 are in the same 

connected component.

 Alternate problem: What are the vertices which are reachable 

from 𝑠. Is 𝑡 among these reachable vertices.

 Graph exploration: Explore all the vertices reachable from 𝑠.

 Problem: Given an (undirected) graph 𝐺 = (𝑉, 𝐸) and two 

vertices 𝑠, 𝑡, check if there is a path between 𝑠 and 𝑡.



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1

- while(true){

- visit all new nodes that have an edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}
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Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}
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Show: The shortest path from 𝑠 to any vertex in 𝐿(𝑖) is equal to 𝑖. 



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)
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Running time: 𝑂(𝑛 + 𝑚)



Graph Algorithms: BFS

 Breadth First Search (BFS):

BFS(𝐺, 𝑠){

- Layer(0) = {𝑠}

- 𝑖 = 1
- while(true){

- visit all new nodes that have an 

edge to a vertex in Layer(𝑖 − 1)

- put these nodes in the set Layer(𝑖)
- if Layer(𝑖) is empty then end

- 𝑖 = 𝑖 + 1
}

}

 The BFS algorithm defines the following “BFS Tree” rooted at 𝑠:

 Vertex 𝑢 is the parent of vertex 𝑣 if 𝑢 caused the immediate 

discovery of 𝑣.



Graph Algorithms: BFS

 Breadth First Search (BFS):

 The BFS algorithm defines the following “BFS Tree” rooted at 𝑠:

 Vertex 𝑢 is the parent of vertex 𝑣 if 𝑢 caused the immediate 

discovery of 𝑣.
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Graph Algorithms: BFS

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

 A graph is bipartite if the vertices can be partitioned into two 
sets such that there is no edge between any pair of vertices in 
the same set.



Graph Algorithms: BFS

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

 Consider BFS:

 Is it possible that there is an edge 

between vertices which belong to 

sets 𝐿(𝑖) and 𝐿(𝑗) such that 

(𝑗 − 𝑖) > 1?
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- while(true){

- visit all new nodes that have an 
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- 𝑖 = 𝑖 + 1
}
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Graph Algorithms: BFS

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

 Suppose the given graph contains a cycle of odd length. Can 

this graph be bipartite?
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Graph Algorithms: BFS

 Problem: Given a graph 𝐺 = (𝑉, 𝐸) check if the graph is 

bipartite.

 Suppose the given graph contains a cycle of odd length. Can 
this graph be bipartite?

 Can you now use BFS to check if the graph is bipartite?

 What is the running time of your algorithm?

 Suppose a graph does not have an odd cycle. Does that mean 
that the graph is bipartite?



End

Problems to think about:

1. The BFS algorithm gives the shortest path from s to any vertex. 

Suppose we are given a weighted graph where the weights are 

numbers between 1 and 10. Can you use the BFS algorithm to 

find the shortest length path from s to any vertex in the graph. 

The length of a path is the sum of weights of edges in the path.


