CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Graphs

Graphs: Introduction

- A way to represent a set of objects with pair-wise relationships among them.
- The objects are represented as vertices and the relationships are represented as edges.

$$
\begin{gathered}
G=(V, E) \\
V=\left\{v_{1}, \ldots, v_{8}\right\} \\
E=\left\{\left(v_{1}, v_{8}\right), \ldots\right\}
\end{gathered}
$$

Graphs: Introduction

- Examples:
- Social networks
- Communication networks
- Transportation networks
- Dependency networks

Graphs: Introduction

- Weighted Graphs: There are weights associated with each edge quantifying the relationship. For example, delay in communication network.

Graphs: Introduction

- Directed graphs: Asymmetric relationships between the objects. For example, one way streets.

Graphs: Introduction

- Path: A sequence of vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that for any consecutive pair of vertices $v_{i}, v_{i+1},\left(v_{i}, v_{i+1}\right)$ is an edge in the graph. It is called a path from v_{1} to v_{k}. A cycle is a path where $v_{1}=v_{k}$ and v_{1}, \ldots, v_{k-1} are distinct vertices.

Graphs: Introduction

- Strongly connected: A graph is called strongly connected if for any pair of vertices u, v, there is a path from u to v and a path from v to u.

Graphs: Introduction

- Tree: A strongly connected, undirected graph is called a tree if it has no cycles.
- How many edged does a tree have?

Graph

Data Structures for representing graphs

Graph: Data structures

- Adjacency matrix:

\boldsymbol{v}_{1}	\boldsymbol{v}_{2}		\boldsymbol{v}_{3}	\boldsymbol{v}_{4}	\boldsymbol{v}_{5}
	v_{1}	0	1	1	1
v_{2}	1	0	1	0	0
	v_{3}	1	1	0	1
v_{4}	1	0	1	0	0
	v_{5}	0	0	0	0

- Space: $O\left(n^{2}\right)$

Graph: Data structures

- Adjacency list: For each vertex store its neighbors

- Space: $O(n+m)$

Graph

Graph algorithms

Graph Algorithms: s-t connectivity

- Problem: Given an (undirected) graph $G=(V, E)$ and two vertices S, t, check if there is a path between S and t.

Graph Algorithms: s-t connectivity

- Problem: Given an (undirected) graph $G=(V, E)$ and two vertices S, t, check if there is a path between S and t.
- There is a path between S and t iff S and t are in the same connected component.

Graph Algorithms: s-t connectivity

- Problem: Given an (undirected) graph $G=(V, E)$ and two vertices S, t, check if there is a path between S and t.
- There is a path between S and t iff S and t are in the same connected component.
- Alternate problem: What are the vertices which are reachable from s. Is t among these reachable vertices.
- Graph exploration: Explore all the vertices reachable from S.

Graph Algorithms: BFS

- Breadth First Search (BFS):

```
BFS}(G,s)
    - Layer(0) = {s}
    - i=1
    - while(true){
        - visit all new nodes that have an edge to a vertex in Layer(i-1)
        - put these nodes in the set Layer(i)
        - if Layer(i) is empty then end
        -i=i+1
    }
}
```


Graph Algorithms: BFS

- Breadth First Search (BFS):

```
BFS}(G,s)
    - Layer(0)={S}
    -i = 1
    - while(true) {
        - visit all new nodes that have an
        edge to a vertex in Layer(i-1)
        - put these nodes in the set Layer(i)
        - if Layer(i) is empty then end
        -i=i+1
    }
}
```


Graph Algorithms: BFS

- Breadth First Search (BFS):

```
BFS}(G,s)
    - Layer(0)={S}
    -i = 1
    - while(true) {
- visit all new nodes that have an edge to a vertex in \(\operatorname{Layer}(i-1)\)
- put these nodes in the set Layer \((i)\)
- if \(\operatorname{Layer}(i)\) is empty then end
\(-i=i+1\)
    }
}
```


Graph Algorithms: BFS

- Breadth First Search (BFS):

```
BFS}(G,s)
    - Layer(0)={s}
    -i = 1
    - while(true) {
- visit all new nodes that have an edge to a vertex in \(\operatorname{Layer}(i-1)\)
- put these nodes in the set Layer \((i)\)
- if \(\operatorname{Layer}(i)\) is empty then end
\(-i=i+1\)
    }
}
```


Graph Algorithms: BFS

- Breadth First Search (BFS):

```
BFS}(G,s)
    - Layer(0)={s}
    -i = 1
    - while(true) {
- visit all new nodes that have an edge to a vertex in \(\operatorname{Layer}(i-1)\)
- put these nodes in the set Layer \((i)\)
- if \(\operatorname{Layer}(i)\) is empty then end
\(-i=i+1\)
    }
}
```


Graph Algorithms: BFS

- Breadth First Search (BFS):

```
BFS}(G,s)
    - Layer(0)={S}
    -i = 1
    - while(true) {
        - visit all new nodes that have an
        edge to a vertex in Layer(i-1)
        - put these nodes in the set Layer(i)
        - if Layer(i) is empty then end
        -i=i+1
    }
}
```


Show: The shortest path from s to any vertex in $L(i)$ is equal to i.

Graph Algorithms: BFS

- Breadth First Search (BFS):

```
BFS}(G,s)
    - Layer(0)={s}
    -i = 1
    - while(true) {
        - visit all new nodes that have an
        edge to a vertex in Layer(i-1)
        - put these nodes in the set Layer(i)
        - if Layer(i) is empty then end
        -i=i+1
    }
}
```


Running time: $O(n+m)$

Graph Algorithms: BFS

- Breadth First Search (BFS):

```
\(\operatorname{BFS}(G, s)\{\)
    \(-\operatorname{Layer}(0)=\{s\}\)
    \(-i=1\)
    - while(true) \{
        - visit all new nodes that have an
        edge to a vertex in \(\operatorname{Layer}(i-1)\)
        - put these nodes in the set Layer \((i)\)
        - if \(\operatorname{Layer}(i)\) is empty then end
        \(-i=i+1\)
        \}
\}
```

- The BFS algorithm defines the following "BFS Tree" rooted at S :
- Vertex u is the parent of vertex v if u caused the immediate discovery of v.

Graph Algorithms: BFS

- Breadth First Search (BFS):
- The BFS algorithm defines the following "BFSTree" rooted at S :
- Vertex u is the parent of vertex v if u caused the immediate discovery of v.

Graph Algorithms: BFS

- Problem: Given a graph $G=(V, E)$ check if the graph is bipartite.

- A graph is bipartite if the vertices can be partitioned into two sets such that there is no edge between any pair of vertices in the same set.

Graph Algorithms: BFS

- Problem: Given a graph $G=(V, E)$ check if the graph is bipartite.

```
BFS}(G,s)
    - Layer(0)={S}
    -i = 1
    - while(true) {
        - visit all new nodes that have an
        edge to a vertex in Layer(i-1)
        - put these nodes in the set Layer(i)
        - if Layer(i) is empty then end
        -i=i+1
        }
}
```

- Consider BFS:
- Is it possible that there is an edge between vertices which belong to sets $L(i)$ and $L(j)$ such that $(j-i)>1$?

Graph Algorithms: BFS

- Problem: Given a graph $G=(V, E)$ check if the graph is bipartite.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite?

Graph Algorithms: BFS

- Problem: Given a graph $G=(V, E)$ check if the graph is bipartite.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite?
- Can you now use BFS to check if the graph is bipartite?

Graph Algorithms: BFS

- Problem: Given a graph $G=(V, E)$ check if the graph is bipartite.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite?
- Can you now use BFS to check if the graph is bipartite?
- What is the running time of your algorithm?

Graph Algorithms: BFS

- Problem: Given a graph $G=(V, E)$ check if the graph is bipartite.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite?
- Can you now use BFS to check if the graph is bipartite?
- What is the running time of your algorithm?
- Suppose a graph does not have an odd cycle. Does that mean that the graph is bipartite?

End

Problems to think about:

1. The BFS algorithm gives the shortest path from s to any vertex. Suppose we are given a weighted graph where the weights are numbers between 1 and 10. Can you use the BFS algorithm to find the shortest length path from s to any vertex in the graph. The length of a path is the sum of weights of edges in the path.
