- Always try to give algorithm with best possible running time. The points that you obtain will depend on the running time of your algorithm. For example, a student who gives an O(n) algorithm will receive more points than a student who gives an $O(n^2)$ algorithm.
- You are required to give proofs of correctness whenever needed. For example, if you give a greedy algorithm for some problem, then you should also give a proof why this algorithm outputs optimal solution.
- Use of unfair means will be severely penalized.

There are 3 questions for a total of 40 points.

(15) 1. If we split a given undirected graph G at all critical vertices, then we get a decomposition of the graph $G_1, ..., G_l$ such that $\forall i \neq j$, G_i and G_j do not share any edges even though they may share a vertex (note that this is a critical vertex in G). The figure below shows an example. Design an algorithm that takes as input a graph (assume adjacency list representation) and outputs such a decomposition of the graph.

Figure 1: The figure in the left shows the original graph and the figure on the right shows the decomposition.

- (13) 2. Given a directed graph G = (V, E) and a vertex u, design an algorithm that outputs all vertices $S \subseteq V$ such that for all $v \in S$, there is an even length path from u to v in G.
- (12) 3. There are *n* men with heights $m_1, ..., m_n$ and *n* women with heights $w_1, ..., w_n$. You have to match men to women for a dance such that the average difference in height of each pair, is minimized. Design an algorithm to solve this problem.