
DIGITAL SIGNATURES

1 / 74

Signing by hand

Pay Bob $100

AliceCosmo

COSMO ALICE

Alice

ALICE

· · ·

· · ·

=?

yes

pay Bob

no

Don’t

Bank

2 / 74

Signing electronically

ALICE
Pay Bob $100InternetBank

101 · · · 1

AlicescanSIGFILE
︸ ︷︷ ︸

3 / 74

Signing electronically

ALICE
Pay Bob $100InternetBank

101 · · · 1

AlicescanSIGFILE
︸ ︷︷ ︸

Problem: signature is easily copied

Inference: signature must be a function of the message that only Alice
can compute

3 / 74

What about a MAC?

Let Bank and Alice share a key K

ALICE
Pay Bob $100 MAC K

T

Internet

Bank

A digital signature will have additional attributes:

• Even the bank cannot forge

• Verifier does not need to share a key with signer or, indeed, have
any secrets

4 / 74

Digital signatures

A digital signature scheme DS = (K,S,V) is a triple of algorithms
where

AV
M

σ′

M ′

σ

0/1

S

pk

sk

K

Correctness: V(pk,M,S(sk,M)) = 1 with probability one for all M.

5 / 74

Usage

Step 1: key generation
Alice lets (pk, sk)

$
←K and stores sk (securely).

Step 2: pk dissemination
Alice enables any potential verifier to get pk.

Step 3: sign
Alice can generate a signature σ of a document M using sk.

Step 4: verify
Anyone holding pk can verify that σ is Alice’s signature on M.

6 / 74

Dissemination of public keys

The public key does not have to be kept secret but a verifier needs to
know it is authentic, meaning really Alice’s public key and not someone
else’s.

Could put (Alice,pk) on a trusted, public server (cryptographic DNS.)

Common method of dissemination is via certificates as discussed later.

7 / 74

Signatures versus MA schemes

In a MA scheme:

• Verifier needs to share a secret with sender

• Verifier can “impersonate” sender!

In a digital signature scheme:

• Verifier needs no secret

• Verifier cannot “impersonate” sender

8 / 74

Security of a DS scheme

Possible adversary goals

• find sk

• Forge

Possible adversary abilities

• can get pk

• known message attack

• chosen message attack

9 / 74

uf-cma adversaries

A

pk

σ

M

S

V

sk

pk

d

M1

σ1

Mq

σq

...

A wins if

• d = 1

• M /∈ {M1, . . . Mq}
10 / 74

Security of a DS scheme

Interpretation: adversary cannot get a verifier to accept σ as Alice’s
signature of M unless Alice has really previously signed M, even if
adversary can obtain Alice’s signatures on messages of the adversary’s
choice.

As with MA schemes, the definition does not require security against
replay. That is handled on top, via counters or time stamps.

11 / 74

Formalization: UF-CMA

Let DS = (K,S,V) be a signature scheme and A an adversary.

Game UF-CMADS

procedure Initialize
(pk, sk)

$←K; S ← ∅
return pk

procedure Finalize(M, σ)
d ← V(pk,M, σ)
return (d = 1 ∧M /∈ S)

procedure Sign(M):

σ
$←S(sk,M)

S ← S ∪ {M}
return σ

The uf-cma advantage of A is

Advuf-cma

DS (A) = Pr
[
UF-CMAA

DS ⇒ true
]

12 / 74

A difference with MACs

The UF-CMA game for MA schemes gave the adversary a verification
oracle which is not given in the DS case.

Why?

13 / 74

A difference with MACs

The UF-CMA game for MA schemes gave the adversary a verification
oracle which is not given in the DS case.

Why? Verification in a MA scheme relies on the secret key but in a DS
scheme, the adversary can verify on its own anyway with the public key,
so the oracle would not provide an extra capability.

13 / 74

RSA signatures

Fix an RSA generator Krsa and let the key generation algorithm be

Alg K
(N, p, q, e, d)

$←Krsa

pk ← (N, e); sk ← (N, d)
return pk, sk

We will use these keys in all our RSA-based schemes and only describe
signing and verifying.

14 / 74

Plain RSA signatures: Idea

Signer pk = (N, e) and sk = (N, d)

Let f , f −1: Z
∗
N → Z

∗
N be the RSA function (encryption) and inverse

(decryption) defined by

f (x) = xe mod N and f −1(y) = yd mod N .

Sign by “decrypting” the message y :

x = SN,d(y) = f −1(y) = yd mod N

Verify by “encrypting” signature x :

VN,e(x) = 1 iff f (x) = y iff xe ≡ y mod N .

15 / 74

Plain RSA signature scheme

Signer pk = (N, e) and sk = (N, d)

Alg SN,d(y):

x ← yd mod N

return x

Alg VN,e(y , x):

if xe ≡ y (mod N) then return 1
return 0

Here y ∈ Z
∗

N is the message and x ∈ Z
∗

N is the signature.

16 / 74

Security of plain RSA signatures

To forge signature of a message y , the adversary, given N, e but not d ,
must compute yd mod N, meaning invert the RSA function f at y .

But RSA is 1-way so this task should be hard and the scheme should be
secure.

Correct?

17 / 74

Security of plain RSA signatures

To forge signature of a message y , the adversary, given N, e but not d ,
must compute yd mod N, meaning invert the RSA function f at y .

But RSA is 1-way so this task should be hard and the scheme should be
secure.

Correct?

Of course not...

17 / 74

Attacks on plain RSA

Existential forgery under no-message attack: Given pk = (N, e)
adversary outputs

• message y = 1 and signature x = 1

• message y = xe mod N and signature x for any x ∈ Z
∗

N of its
choice

Adversary wins because in both cases we have

xe ≡ y (mod N)

18 / 74

Homomorphic properties of RSA

Let pk = (N, e) and sk = (N, d) be RSA keys. Then ∀x1, x2 ∈ Z
∗
N and

∀y1, y2 ∈ Z
∗
N

• (x1x2)
e ≡ xe

1 · x
e
2 mod N

• (y1y2)
d ≡ yd

1 · y
d
2 mod N

That is

• f (x1x2) ≡ f (x1) · f (x2) mod N

• f −1(y1y2) ≡ f −1(y1) · f
−1(y2) mod N

where
f (x) = xe mod N and f −1(y) = yd mod N

are the RSA function and its inverse respectively.

19 / 74

Another attack on plain RSA

For all messages y1, y2 ∈ Z
∗

N we have

SN,d(y1y2) = SN,d(y1)
︸ ︷︷ ︸

x1

· SN,d(y2)
︸ ︷︷ ︸

x2

So given x1, x2 one can forge signature of message y1y2 mod N

Adversary A(N, e):

Pick some distinct y1, y2 ∈ Z
∗
N − {1}

x1 ← Sign(y1); x2 ← Sign(y2)
return (y1y2 mod N, x1x2 mod N)

20 / 74

DH signatures

When Diffie and Hellman introduced public-key cryptography they
suggested the DS scheme

S(sk,M) = D(sk,M)

V(pk,M, σ) = 1 iff E (pk, σ) = M

where (E ,D) is a public-key encryption scheme.

But

• This views public-key encryption as deterministic; they really mean
trapdoor permutations in our language

• Plain RSA is an example

• It doesn’t work!

Nonetheless, many textbooks still view digital signatures this way.

21 / 74

Other issues

In plain RSA, the message is an element of Z
∗

N . We really want to be
able to sign strings of arbitrary length.

22 / 74

Throwing in a hash function

Let H: {0, 1}∗ → Z
∗

N be a public hash function and let pk = (N, e) and
sk = (N, d) be the signer’s keys. The hash-then-decrypt scheme is

Alg SN,d(M):
y ← H(M)
x ← yd mod N

return x

Alg VN,e(M, x):
y ← H(M)
if xe ≡ y (mod N) then return 1
return 0

Succinctly,
SN,d(M) = H(M)d mod N

Different choices of H give rise to different schemes.

23 / 74

What we need from H

Suppose an adversary can find a collision for H, meaning distinct
M1,M2 with H(M1) = H(M2).

Then
H(M1)

d ≡ H(M2)
d (mod N)

meaning M1,M2 have the same signature.

So forgery is easy:

• Obtain from signing oracle the signature x1 = H(M1)
d mod N of

M1

• Output M2 and its signature x1

Conclusion: H needs to be collision-resistant

24 / 74

Preventing previous attacks

For plain RSA

• 1 is a signature of 1

• SN,d(y1y2) = SN,d(y1) · SN,d(y2)

But with hash-then-decrypt RSA

• H(1)d 6≡ 1 so 1 is not a signature of 1

• SN,d(M1M2) = H(M1M2)
d 6≡ H(M1)

d · H(M2)
d (mod N)

A “good” choice of H prevents known attacks.

25 / 74

RSA PKCS#1 signatures

Signer has pk = (N, e) and sk = (N, d) where |N| = 1024. Let
h: {0, 1}∗ → {0, 1}160 be a hash function (like SHA-1) and let
n = |N|8 = 1024/8 = 128.

Then
HPKCS(M) = 00||01||FF || . . . ||FF

︸ ︷︷ ︸

n−22

|| h(M)
︸ ︷︷ ︸

20

And
SN,d(M) = HPKCS(M)d mod N

Then

• HPKCS is CR as long as h is CR

• HPKCS(1) 6≡ 1 (mod N)

• HPKCS(y1y2) 6≡ HPKCS (y1) · HPKCS (y2) (mod N)

• etc
26 / 74

Does 1-wayness prevent forgery?

Forger’s goal

A

N, e

yd mod N

A

M

H y

y here need not be random

Inverter’s goal

y

yd mod NA
N, e

y here is random

Problem: 1-wayness of RSA does not imply hardness of computing
yd mod N if y is not random

27 / 74

HPKCS revisited

Recall
HPKCS (M) = 00||01||FF || . . . ||FF ||h(M)

But first n − 20 = 108 bytes out of n are fixed so HPKCS (M) does not
look “random” even if h is a RO or perfect.

We cannot hope to show RSA PKCS#1 signatures are secure assuming
(only) that RSA is 1-way.

28 / 74

Choice of H

A “better” choice of H might be something like

H(M) = first n bytes of

SHA1(1 ||M) || SHA1(2 ||M) || · · · || SHA1(11 ||M)

29 / 74

ElGamal Signatures

Let G = Z∗
p = 〈g〉 where p is prime.

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

Algorithm Sx(m)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

nnnnn

Algorithm VX (m, (r , s))
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

Correctness check: If (r , s)
$←Sx(m) then

X r ·r s = gxrgks = gxr+ks = gxr+k(m−xr)k−1 mod (p−1) = gxr+m−xr = gm

so VX (m, (r , s)) = 1.

30 / 74

Security of ElGamal Signatures

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

Algorithm Sx(m)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

Algorithm VX (m, (r , s))
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

Suppose given X = gx and m the adversary wants to compute r , s so
that X r · r s ≡ gm mod p. It could:

• Pick r and try to solve for s = DLogZ∗

p ,r (g
mX−r)

• Pick s and try to solve for r ...?

31 / 74

Forgery of ElGamal Signatures

Adversary has better luck if it picks m itself:

Adversary A(X)
r ← gX mod p; s ← (−r) mod (p − 1); m← s

return (m, (r , s))

Then:

X r · r s = X gX (gX)−gX = X gXg−gXX−gX = g−gX

=g−r = gm

so (r , s) is a valid forgery on m.

32 / 74

ElGamal with hashing

Let G = Z∗
p = 〈g〉 where p is a prime.

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

H : {0, 1}∗ → Zp−1 a hash function.

Algorithm Sx(M)
m← H(M)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

Algorithm VX (M, (r , s))
m← H(M)
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

33 / 74

ElGamal with hashing

Let G = Z∗
p = 〈g〉 where p is a prime.

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

H : {0, 1}∗ → Zp−1 a hash function.

Algorithm Sx(M)
m← H(M)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

Algorithm VX (M, (r , s))
m← H(M)
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

Requirements on H:

• Collision-resistant

• One-way to prevent previous attack

33 / 74

DSA

Let p be a 1024-bit prime. For DSA, let q be a 160-bit prime dividing
p − 1.

Scheme signing cost verification cost signature size

ElGamal 1 1024-bit exp 1 1024-bit exp 2048 bits

DSA 1 160-bit exp 1 160-bit exp 320 bits

By a “e-bit exp” we mean an operation a, n 7→ an mod p where a ∈ Z∗
p

and n is an e-bit integer. A 1024-bit exponentiation is more costly than
a 160-bit exponentiation by a factor of 1024/160 ≈ 6.4.

DSA is in FIPS 186.

34 / 74

DSA

• Fix primes p, q such that q divides p − 1

• Let G = Z∗
p = 〈h〉 and g = h(p−1)/q so that g ∈ G has order q

• H: {0, 1}∗ → Zq a hash function

• Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zq

Algorithm Sx(M)
m← H(M)

k
$
← Z∗

q

r ← (gk mod p) mod q

s ← (m + xr) · k−1 mod q

return (r , s)

Algorithm VX (M, (r , s))
m← H(M)
w ← s−1 mod q

u1 ← mw mod q

u2 ← rw mod q

v ← (gu1X u2 mod p) mod q

if (v = r) then return 1
else return 0

Details: Signature is regenerated if s = 0.
35 / 74

Discussion

DSA as shown works only over the group of integers modulo a prime,
but there is also a version ECDSA of it for elliptic curve groups.

In ElGamal and DSA/ECDSA, the expensive part of signing, namely the
exponentiation, can be done off-line.

No proof that ElGamal or DSA is UF-CMA under a standard
assumption (DL, CDH, ...) is known. Proofs are known for variants.

36 / 74

Schnorr Signatures

The Schnorr scheme works in an arbitrary (prime-order) group. When
implemented in a 160-bit elliptic curve group, it is as efficient as
ECDSA. It can be proven UF-CMA in the random oracle model under
the discrete log assumption [PS,AABN]. The security reduction,
however, is quite loose.

37 / 74

Schnorr Signatures

• Let G = 〈g〉 be a cyclic group of prime order p

• H: {0, 1}∗ → Zp a hash function

• Signer keys: pk = X = gx ∈ G and sk = x
$← Zp

Algorithm Sx(M)

r
$← Zp

R ← g r

c ← H(R‖M)
a← xc + r mod p

return (R , a)

Algorithm VX (M, (R , a))
if R 6∈ G then return 0
c ← H(R‖M)
if ga = RX c then return 1
else return 0

38 / 74

Randomization in signatures

We have seen many randomized signature schemes: PSS, ElGamal,
DSA/ECDSA, Schnorr, ...

Re-using coins across different signatures is not secure, but there are
(other) ways to make these schemes deterministic without loss of
security.

39 / 74

