
ASYMMETRIC ENCRYPTION
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Recommended Book

Steven Levy. Crypto. Penguin books. 2001.

A non-technical account of the history of public-key cryptography and
the colorful characters involved.
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Recall Symmetric Cryptography

• Before Alice and Bob can communicate securely, they need to have
a common secret key KAB .

• If Alice wishes to also communicate with Charlie then she and
Charlie must also have another common secret key KAC .

• If Alice generates KAB , KAC , they must be communicated to her
partners over private and authenticated channels.
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Public Key Encryption

• Alice has a secret key that is shared with nobody, and an
associated public key that is known to everybody.

• Anyone (Bob, Charlie, . . .) can use Alice’s public key to send her an
encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a
database

• Senders don’t need secrets

• There are no shared secrets
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Syntax of PKE

A public-key (or asymmetric) encryption scheme AE = (K, E ,D)
consists of three algorithms, where

EM D M or ⊥

sk

K

C C

pk

A
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How it Works

Step 1: Key generation
Alice locally computers (pk, sk)

$←K and stores sk .

Step 2: Alice enables any prospective sender to get pk.

Step 3: The sender encrypts under pk and Alice decrypts under sk.

We don’t require privacy of pk but we do require authenticity: the
sender should be assured pk is really Alice’s key and not someone else’s.
One could

• Put public keys in a trusted but public “phone book”, say a
cryptographic DNS.

• Use certificates as we will see later.

6 / 135



Security of PKE Schemes: Issues

The issues are the same as for symmetric encryption:

• Want general purpose schemes

• Security should not rely on assumptions about usage setting

• Want to prevent leakage of partial information about plaintexts
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Security requirements

Suppose sender computes

C1
$←Epk(M1) ; · · · ; Cq

$←Epk(Mq)

Adversary A has C1, . . . ,Cq

What if A

Retrieves sk Bad!
Retrieves M1 Bad!

But also ...
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Security requirements

We want to hide all partial information about the data stream.

Examples of partial information:

• Does M1 = M2?

• What is first bit of M1?

• What is XOR of first bits of M1, M2?

Something we won’t hide: the length of the message

9 / 135



Security requirements

We want to hide all partial information about the data stream.

Examples of partial information:

• Does M1 = M2?

• What is first bit of M1?

• What is XOR of first bits of M1, M2?

Something we won’t hide: the length of the message

9 / 135



New Issue

The adversary needs to be given the public key.
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Intuition for definition of IND

Consider encrypting one of two possible message streams, either

M1
0 , ...,Mq

0

or
M1

1 , ...,Mq
1

Adversary, given ciphertexts and both data streams, has to figure out
which of the two streams was encrypted.
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ind-cpa-adversaries

Let AE = (K, E ,D) be an public-key encryption scheme

An ind-cpa adversary A has input pk and an oracle LR

• It can make a query M0, M1 consisting of any two equal-length
messages

• It can do this many times

• Each time it gets back a ciphertext

• It eventually outputs a bit

pk −→

d ←−

A

M1
0 , M1

1-

C1�
...

Mq
0 , Mq

1-

Cq�

LR
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ind-cpa-adversaries

Let AE = (K, E ,D) be a public-key encryption scheme

Left world

pk → A M0, M1-
C�

LR
C

$←Epk(M0)

Right world

pk → A M0, M1-
C�

LR
C

$←Epk(M1)

Intended meaning:
A’s output d I think I am in the

1 Right world

0 Left world

The harder it is for A to guess world it is in, the more “secure” AE is as
an encryption scheme.
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The games

Let AE = (K, E ,D) be a public-key encryption scheme

Game LeftAE
procedure Initialize
(pk, sk)

$←K ; return pk

procedure LR(M0, M1)

Return C
$←Epk(M0)

Game RightAE
procedure Initialize
(pk, sk)

$←K ; return pk

procedure LR(M0, M1)

Return C
$←Epk(M1)

Associated to AE , A are the probabilities

Pr
[
LeftAAE⇒1

]
Pr
[
RightAAE⇒1

]
that A outputs 1 in each world. The ind-cpa advantage of A is

Advind-cpa
AE (A) = Pr

[
RightAAE⇒1

]
− Pr

[
LeftAAE⇒1

]
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Alternative formulation

Let AE = (K, E ,D) be a PKE scheme and A an adversary.

Game IND-CPAAE

procedure Initialize
b

$←{0, 1}
(pk, sk)

$←K
return pk

procedure Finalize(b′)
return (b = b′)

procedure LR(M0, M1)

C
$←Epk(Mb)

return C

Then the ind-cpa advantage of A is

Advind-cpa
AE (A) = 2 · Pr

[
INDCPAA

AE ⇒ true
]
− 1
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Chosen-ciphertext attacks

Adversary has access to a decryption oracle

C −→
M ←− Dec

Adversary’s goal is to learn partial information about un-decrypted
messages from their ciphertexts.
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ind-cca adversaries

Let AE = (K, E ,D) be a PKE scheme. An ind-cca adversary A

• Has input public key pk

• Has access to a LR oracle and a decryption oracle Dec

• Outputs a bit

A

d

C

C ′

M ′

M0, M1

LR

Dec

pk
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IND-CCA

Let AE = (K, E ,D) be a PKE scheme and A an ind-cca adversary.

Left world

C

C ′

M ′

M0, M1

A

d

LR

Dec

C
$←Epk(M0)

pk

Right world

C

C ′

M ′

M0, M1

A

d

LR

Dec

C
$←Epk(M1)

pk

Intended meaning:
A’s output d I think I am in the

1 Right world

0 Left world

The harder it is for A to guess world it is in, the more “secure” AE is as
an encryption scheme.
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Avoiding a problem

Encryption can only hide information about un-decrypted messages!

An adversary could just decrypt ciphertext returned from LR.

We address this by making the following rule:

• An ind-cca adversary A is not allowed to query Dec on a ciphertext
previously returned by LR
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The games

Let AE = (K, E ,D) be a PKE scheme and A be an adversary.

Game LeftAE

procedure Initialize
(pk, sk)

$←K ; S ← ∅ ;
return pk

procedure LR(M0, M1)

C
$←Epk(M0) ; S ← S ∪{C}

return C

procedure Dec(C )
if C ∈ S then M ← ⊥
else M ← Dsk(C )
return M

Game RightAE

procedure Initialize
(pk, sk)

$←K ; S ← ∅ ;
return pk

procedure LR(M0, M1)

C
$←Epk(M1) ; S ← S ∪{C}

return C

procedure Dec(C )
if C ∈ S then M ← ⊥
else M ← Dsk(C )
return M

The ind-cca advantage of A is

Advind-cca
AE (A) = Pr

[
RightAAE⇒1

]
− Pr

[
LeftAAE⇒1

]
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Alternative formulation

Let AE = (K, E ,D) be a PKE scheme and A an adversary.

Game INDCCAAE

procedure Initialize
b

$←{0, 1} ; S ← ∅
(pk, sk)

$←K
return pk

procedure Finalize(b′)
return (b = b′)

procedure LR(M0, M1)

C
$←Epk(Mb)

S ← S ∪ {C}
return C

procedure Dec(C )
if C ∈ S then M ← ⊥
else M ← Dsk(C )
return M

Then the ind-cca advantage of A is

Advind-cca
AE (A) = 2 · Pr

[
INDCCAA

AE ⇒ true
]
− 1
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Simplification

We may assume A makes only one LR query. The hybrid argument used
in the symmetric case can be used here too to show that this can
decrease its advantage by at most the number of LR queries.

Note that in the symmetric case we gave the 1-query adversary an
encryption oracle, but that is not needed here since it has the public key
which enables it to encrypt.
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More Formally

Theorem: Let AE be a PKE scheme and A an ind-cpa adversary
making q LR queries and having running time t. Then there is a
ind-cpa adversary A1 making 1 LR query such that

Advind-cpa
AE (A) ≤ q · Advind-cpa

AE (A1)

and the running time of A1 is about t.

Theorem: Let AE be a PKE scheme and A an ind-cca adversary making
qe LR queries and qd Dec queries and having running time t. Then
there is a ind-cca adversary A1 making 1 LR query and qd Dec queries
such that

Advind-cca
AE (A) ≤ qe · Advind-cca

AE (A1)

and the running time of A1 is about t.
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Building a PKE Scheme

We would like security to result from the hardness of computing discrete
logarithms.

Let the receiver’s public key be g where G = 〈g〉 is a cyclic group. Let’s
let the encryption of x be g x . Then

g x︸︷︷︸
Eg (x)

hard−−→ x

so to recover x , adversary must compute discrete logarithms, and we
know it can’t, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to
decrypt too! But decryption needs to be feasible.

Above, receiver has no secret key!
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DH Key Exchange

Let G = 〈g〉 be a cyclic group of order m.

Alice Bob

x
$← Zm; X ← g x

X−−−−→
Y←−−−−

y
$← Zm; Y ← g y

Then
Y x = (g y )x = g xy = (g x)y = X y

• Alice can compute K = Y x

• Bob can compute K = X y

• But adversary wanting to compute K is faced with

g x , g y −→ g xy

which is exactly the CDH problem and is computationally hard.

So this enables Alice and Bob to get a common shared key which they
can then use to secure their communications.
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The El Gamal Scheme: Idea

We can turn DH key exchange into a public key encryption scheme via

• Let Alice have public key g x and secret key x

• If Bob wants to encrypt M for Alice, he
• Picks y and sends g y to Alice
• Encrypts M under g xy = (g x)y and sends ciphertext to Alice.

• But Alice can recompute g xy = (g y )x because
• g y is in the received ciphertext
• x is her secret key

Thus she can decrypt and adversary is still faced with CDH .
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EG Encryption, in Full

Let G = 〈g〉 be a cyclic group of order m. The EG PKE scheme
AEEG = (K, E ,D) is defined by

Alg K
x

$← Zm

X ← g x

return (X , x)

Alg EX (M)

y
$← Zm; Y ← g y

K ← X y

W ← K ·M
return (Y , W )

Alg Dx(Y , W )
K = Y x

M ←W · K−1

return M

We assume the message M ∈ G is a group element.

Correct decryption is assured because

K = X y = g xy = Y x

Implementation uses several algorithms we have studied before:
exponentiation, inverse.
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Security of AEEG

secret key = x ∈ Zm, where m = |G |
public key = X = g x ∈ G = 〈g〉

algorithm EX (M)

y
$← Zm; Y ← g y

K ← X y ; W ← K ·M
return (Y , W )

algorithm Dx(Y , W )
K ← Y x ; M ←W · K−1

return M

• To find x given X , adversary must solve DL problem

• To find M given X , (Y , W ), adversary must compute K = g xy ,
meaning solve CDH problem

• But what prevents leakage of partial information about M? Is the
scheme IND-CPA secure?
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Security of AEEG in Z∗p

In G = Z∗p, where p is a prime

• DL, CDH are hard, yet

• There is an attack showing AEEG is NOT IND-CPA secure
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Number theory

Number theory is fun!
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Squares

We say that a is a square (or quadratic residue) modulo p if there exists
b such that b2 ≡ a (mod p).

We let

Jp(a) =


1 if a is a square mod p
0 if a mod p = 0
−1 otherwise

be the Legendre or Jacobi symbol of a modulo p.

Let p = 11. Then

• Is 4 a square modulo p?

YES because 22 ≡ 4 (mod 11)

• Is 5 a square modulo p?
YES because 42 ≡ 5 (mod 11)

• What is J11(5)?
It equals +1
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The set of squares

We let

QR(Z∗p) = {a ∈ Z∗p : a is a square mod p}

= {a ∈ Z∗p : ∃b ∈ Z∗p such that b2 ≡ a (mod p)}
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Example

Let p = 11

a 1 2 3 4 5 6 7 8 9 10

a2 mod 11

1 4 9 5 3 3 5 9 4 1

Then
QR(Z∗p) = {1, 3, 4, 5, 9}

a 1 2 3 4 5 6 7 8 9 10

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

Observe

• There are 5 squares and 5 non-squares.

• Every square has exactly 2 square roots.
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Relation to discrete log

Recall that 2 is a generator of Z∗11

a 1 2 3 4 5 6 7 8 9 10

DLogZ∗11,2
(a) 0 1 8 2 4 9 7 3 6 5

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

so
J11(a) = 1 iff DLogZ∗11,2

(a) is even

This makes sense because for any generator g ,

g2j = (g j)2

is always a square!
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Squares and discrete logs

Fact: If p ≥ 3 is a prime and g is a generator of Z∗p then

QR(Z∗p) = {g i : 0 ≤ i ≤ p − 2 and i is even}

Example: If p = 11 and g = 2 then p − 2 = 9 and the squares are

• 20 mod 11 = 1

• 22 mod 11 = 4

• 24 mod 11 = 5

• 26 mod 11 = 9

• 28 mod 11 = 3
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Computing the Legendre symbol

Is there an algorithm that given p and a ∈ Z∗p returns Jp(a), meaning
determines whether or not a is a square mod p?

Sure!

Alg TEST-SQ(p, a)
Let g be a generator of Z∗p
Let i ← DLogZ∗p ,g (a)
if i is even then return 1 else return −1

This is correct, but

• How do we find g?

• How do we compute DLogZ∗p ,g (a)?
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Fermat’s Theorem

Fact: If p ≥ 3 is a prime then for any a

Jp(a) ≡ a
p−1

2 (mod p)

Example: Let p = 11.

• Let a = 5. We know that 5 is a square, meaning J11(5) = 1. Now
compute

a
p−1

2 ≡ 55 ≡ (25)(25)(5) ≡ 3 · 3 · 5 ≡ 45 ≡ 1 (mod 11).

• Let a = 6. We know that 6 is not a square, meaning J11(6) = −1.
Now compute

a
p−1

2 ≡ 65 ≡ (36)(36)(6) ≡ 3 · 3 · 6 ≡ 54 ≡ −1 (mod 11).
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Fermat’s Theorem

Fact: If p ≥ 3 is a prime then for any a

Jp(a) ≡ a
p−1

2 (mod p)

This yields a cubic-time algorithm to compute the Legendre symbol,
meaning determine whether or not a given number is a square:

Alg TEST-SQ(p, a)

s ← a
p−1

2 mod p
if s = 1 then return 1 else return −1
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Multiplicity of Legendre symbol

Fact: If p ≥ 3 is a prime then for any a, b

Jp(ab) = Jp(a) · Jp(b)

Example: Let p = 11.

a 1 2 3 4 5 6 7 8 9 10

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

a b ab J11(a) J11(b) J11(ab) J11(a) · J11(b)

5 6 8 1 − 1 − 1 − 1

2 7 3 − 1 − 1 1 1
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Inversion of Legendre symbol

Fact: If p ≥ 3 is a prime then for any a ∈ Z∗p

Jp(a−1) = Jp(a)

Example: p = 11
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Legendre symbol of EG key

Fact: Let p ≥ 3 be a prime and x , y ∈ Zp−1. Let X = g x and Y = g y

and K = g xy . Then

Jp(K ) =

{
1 if Jp(X ) = 1 or Jp(Y ) = 1
−1 otherwise

In particular one can determine Jp(K ) given Jp(X ) and Jp(Y )

Proof:

Jp(K ) = Jp(g xy ) =

{
1 if xy is even
−1 otherwise

=

{
1 if x is even or y is even
−1 otherwise

=

{
1 if Jp(g x) = 1 or Jp(g y ) = 1
−1 otherwise
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EG modulo a prime

Let p be a prime and g a generator of Z∗p. The EG PKE scheme
AEEG = (K, E ,D) is defined by

Alg K
x

$← Zp−1

X ← g x

return (X , x)

Alg EX (M)

y
$← Zp−1; Y ← g y

K ← X y

W ← K ·M
return (Y , W )

Alg Dx(Y , W )
K = Y x

M ←W · K−1

return M

The weakness: Suppose (Y , W )
$←EX (M). Then we claim that given

• the public key X

• the ciphertext (Y , W )

an adversary can easily compute Jp(M).

This represents a loss of partial information.
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EG modulo a prime

Suppose (Y , W ) is an encryption of M under public key X = g x , where
Y = g y . Then

• W = K ·M
• K = g xy

So

Jp(M) = Jp(W · K−1) = Jp(W ) · Jp(K−1) = Jp(W ) · Jp(K )

= Jp(W ) · s

where s =

{
1 if Jp(X ) = 1 or Jp(Y ) = 1
−1 otherwise.

So we can compute Jp(M) via

Alg FIND-J(X , Y , W )
if Jp(X ) = 1 or Jp(Y ) = 1 then s ← 1 else s ← −1
return Jp(W ) · s
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EG modulo a prime

Let p be a prime and g a generator of Z∗p. The EG PKE scheme
AEEG = (K, E ,D) is defined by

Alg K
x

$← Zp−1

X ← g x

return (X , x)

Alg EX (M)

y
$← Zp−1; Y ← g y

K ← X y

W ← K ·M
return (Y , W )

Alg Dx(Y , W )
K = Y x

M ←W · K−1

return M

The weakness: There is an algorithm FIND-J

X

E (Y , W )
M

Jp(M)FIND-J
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IND-CPA attack

Given public key X

• Produce two messages M0, M1

• Receive encrytion (Y , W ) of Mb

• Figure out b

How? Use:

X

Jp(Mb)

E (Y , W )
Mb

FIND-J
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IND-CPA attack

Given public key X

• Let M0, M1 be such that Jp(M0) = −1 and Jp(M1) = 1

• Receive encryption (Y , W ) of Mb

X

Jp(Mb)

E (Y , W )
Mb

FIND-J

• if FIND-J(X , Y , W ) = 1 then return 1 else return 0
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IND-CPA attack on EG

Let AEEG = (K, E ,D) be the EG PKE scheme over Z∗p where p is a
prime.

Left world

A
M0, M1-

C�

LR
C

$←Epk(M0)

Right world

A
M0, M1-

C�

LR
C

$←Epk(M1)

adversary A(X )
M1 ← 1 ; M0 ← g
(Y , W )

$← LR(M0, M1)
if FIND-J(X , Y , W ) = 1 then return 1 else return 0

Then

Advind-cpa
AEEG,A = Pr

[
RightAAEEG

⇒ 1
]
− Pr

[
LeftAAEEG

⇒ 1
]

= 1− 0 = 1
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IND-CPA security of EG

We have seen that EG is not IND-CPA over groups G = Z∗p for prime p.

However it is IND-CPA secure over any group G where the DDH
problem is hard.

This is not a contradiction because if p is prime then the DDH problem
in Z∗p is easy even though DL, CDH seem to be hard.

We can in particular securely implement EG over

• Appropriate prime-order subgroups of Z∗p for a prime p

• Elliptic curve groups of prime order
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Security of AEEG

Fact: If DDH is hard in G then AEEG is IND-CPA secure

Note: DDH is NOT hard in Z∗p (p is a prime)
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DDH based security of AEEG

Theorem: Let AEEG = (K, E ,D) be the El Gamal asymmetric
encryption scheme over a cyclic group G = 〈g〉. Let A be an ind-cpa
adversary making 1 LR query. Then there is a ddh adversary B such
that

Advind-cpa
AEEG

(A) ≤ 2 · Advddh
G ,g (B)

Furthermore the running time of B is that of A.
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Proof Intuition

Given A want to design

g x

Bg y

o

g z

(z = xy)

B will let b
$←{0, 1} ; pk ← g x and provide A challenge ciphertext

(g y , Mb · g z). Then

• If z = xy the ciphertext is correct, so A will have advantage
Advind-cpa

AEEG
(A) in computing b

• If z
$← Zm the ciphertext leaks no information about b so A will

have zero advantage in computing b

By seeing whether or not A successfully computes b, adversary B can
tell how z was chosen.
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Games in proof

Game G0

procedure Initialize

x
$← Zm; X ← g x ; b

$←{0, 1}
return X

procedure LR(M0, M1)

y
$← Zm; Y ← g y ; Z ← g xy

return (Y , Mb · Z)

procedure Finalize(b′)
return (b = b′)

Game G1

procedure Initialize

x
$← Zm; X ← g x ; b

$←{0, 1}
return X

procedure LR(M0, M1)

y
$← Zm; Y ← g y ; z

$← Zm; Z ← g z

return (Y , Mb · Z)

procedure Finalize(b′)
return (b = b′)

Claim 1: Pr
[
GA

1 ⇒ true
]

= 1
2

Claim 2: We can design B so that

Pr
[
GA

0 ⇒ true
]
− Pr

[
GA

1 ⇒ true
]
≤ Advddh

G ,g (B)
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Analysis

Pr
[
GA

0 ⇒ true
]

= Pr
[
GA

1 ⇒ true
]

︸ ︷︷ ︸
1/2

+Pr
[
GA

0 ⇒ true
]
− Pr

[
GA

1 ⇒ true
]

︸ ︷︷ ︸
≤ Advddh

G ,g (B)

So,

Advind-cpa
AE (A) = 2 · Pr

[
GA

0 ⇒ true
]
− 1

≤ 2 ·
(

1

2
+ Advddh

G ,g (B)

)
− 1

= 2 · Advddh
G ,g (B)
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Proof of Claim 1

Game G1

procedure Initialize

x
$← Zm; X ← g x ; b

$←{0, 1}
return X

procedure LR(M0, M1)

y
$← Zm; Y ← g y ; z

$← Zm; Z ← g z

return (Y , Mb · Z)

procedure Finalize(b′)
return (b = b′)

Game G2

procedure Initialize

x
$← Zm; X ← g x ; b

$←{0, 1}
return X

procedure LR(M0, M1)

y
$← Zm; Y ← g y ; w

$← Zm; W ← gw

return (Y , W )

procedure Finalize(b′)
return (b = b′)

Pr
[
GA

1 ⇒ true
]

= Pr
[
GA

2 ⇒ true
]

=
1

2
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Proof of Claim 2

adversary B(X , Y , Z )

b
$←{0, 1}

b′
$← ALRSIM(X )

if (b = b′) then return 1
else return 0

subroutine LRSIM(M0, M1)
return (Y , Mb · Z )

Then

Pr
[
DDH1B

G ,g ⇒ true
]

= Pr
[
GA

0 ⇒ true
]

Pr
[
DDH0B

G ,g ⇒ true
]

= Pr
[
GA

1 ⇒ true
]
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Message encoding in AEEG

The AEEG asymmetric encryption scheme assumes that messages can
be encoded as elements of the underlying group G . But

• Messages may be of large and varying lengths, but we want the
group to be fixed beforehand and as small as possible

• For some groups this encoding is hard even if the messages are
short
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Speed

Asymmetric cryptography is orders of magnitude slower than symmetric
cryptography

An exponentiation in a 160-bit elliptic curve group costs about the same
as 3000-4000 hashes or block cipher operations
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Hybrid encryption

Build an asymmetric encryption scheme by combining symmetric and
asymmetric techniques:

• Symmetrically encrypt data under a key K

• Asymmetrically encrypt K

Benefits:

• Speed

• No encoding problems
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Key Encapsulation Mechanisms (KEMs)

A KEM KEM = (KK, EK,DK) is a triple of algorithms

pk

Ca Ca KDKEK

AK

sk

KK

K ∈ {0, 1}k is a symmetric key of some key length k associated to
KEM
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KEM Security

Let KEM = (KK, EK,DK) be a KEM with key length k . Security
requires that if we let

(K1, Ca)
$←EK(pk)

then K1 should look “random”. Somewhat more precisely, if we also
generate K0

$←{0, 1}k ; b
$←{0, 1} then

Ca
?

Kb

A

A has a hard time figuring out b

60 / 135



KEM IND-CPA security

Let KEM = (KK, EK,DK) be a KEM with key length k , and A an
adversary.

Game INDCPAKEM
procedure Initialize

(pk, sk)
$←KK ; b

$←{0, 1}
return pk

procedure Finalize(b′)
return (b = b′)

procedure Enc

K0
$←{0, 1}k ; (K1, Ca)

$←EKpk()
return (Kb, Ca)

We allow only one call to Enc. The ind-cpa advantage of A is

Advind-cpa
KEM (A) = 2 · Pr

[
INDCPAA

KEM ⇒ true
]
− 1
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Alternative formulation of KEM IND-CPA security

Let KEM = (KK, EK,DK) be a KEM with key length k , and A an
adversary.

Game INDCPA0KEM
procedure Initialize

(pk, sk)
$←KK

return pk

procedure Enc

K0
$←{0, 1}k ; (K1, Ca)

$←EKpk()
return (K0, Ca)

Game INDCPA1KEM
procedure Initialize

(pk, sk)
$←KK

return pk

procedure Enc

K0
$←{0, 1}k ; (K1, Ca)

$←EKpk()
return (K1, Ca)

We allow only one call to Enc. The ind-cpa advantage of A is

Advind-cpa
KEM (A) = Pr

[
INDCPA1A

KEM ⇒ 1
]
− Pr

[
INDCPA0A

KEM ⇒ 1
]
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KEM IND-CCA security

Let KEM = (KK, EK,DK) be a KEM with key length k , and A an
adversary.

Game INDCCAKEM

procedure Initialize

(pk, sk)
$←KK ; b

$←{0, 1}
S ← ∅ ; return pk

procedure Finalize(b′)
return (b = b′)

procedure Enc

K0
$←{0, 1}k ; (K1, Ca)

$←EKpk()
S ← S ∪ {Ca}
return (Kb, Ca)

procedure Dec(Ca)
if Ca ∈ S then K ← ⊥
else K ← DKsk(Ca)
return K

We allow only one call to Enc. The ind-cca advantage of A is

Advind-cca
KEM (A) = 2 · Pr

[
INDCCAA

KEM ⇒ true
]
− 1
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Data Encapsulation Mechanisms (DEMs)

A DEM is simply a symmetric encryption scheme SE = (KS, ES,DS)

where K returns K
$←{0, 1}k for some k called the key length.

A

K

Cs CsES M

K

DSM
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KEM + DEM asymmetric encryption

Given KEM = (KK, EK,DK) and DEM SE = (KS, ES,DS) both
with key length k , define the asymmetric encryption scheme
AE = (KK, E ,D) as follows:

K K

M

E D

DK

DS

Ca

Cs

sk

ES

EK

M

pk

Ciphertext C = (Ca, Cs)
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KEM + DEM works

If the KEM is and the DEM is then the constructed AE scheme is

IND-CPA IND-CPA IND-CPA
IND-CCA IND-CCA IND-CCA
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KEM + DEM: CPA Security

Theorem: Let KEM = (KK, EK,DK) and DEM SE = (KS, ES,DS)
both have key length k , and let AE = (KK, E ,D) be the corresponding
asymmetric encryption scheme. Let A be an ind-cpa adversary making
1 LR query and having running time t. Then there are ind-cpa
adversaries Ba, Bs such that

Advind-cpa
AE (A) ≤ 2 · Advind-cpa

KEM (Ba) + Advind-cpa
SE (Bs)

Furthermore Ba makes one Enc query, Bs makes one LR query, and
both have running time about t.

Note: Since SE is only required to be 1-query secure we can
instantiate it with a deterministic scheme like CBC with fixed IV
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KEM + DEM: CCA Security

Theorem: Let KEM = (KK, EK,DK) and DEM SE = (KS, ES,DS)
both have key length k , and let AE = (KK, E ,D) be the corresponding
asymmetric encryption scheme. Let A be an ind-cca adversary making
1 LR query, qd decryption queries and having running time t. Then
there are ind-cca adversaries Ba, Bs such that

Advind-cca
AE (A) ≤ 2 · Advind-cca

KEM (Ba) + Advind-cca
SE (Bs)

Furthermore Ba makes one Enc query, Bs makes one LR query, and
both have running time about t and make qd decryption queries
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Proof of KEM + DEM security: Intuition

With b
$←{0, 1}; K0

$←{0, 1}k ; (K1, Ca)
$←EKpk()

Game Challenge ciphertext Adversary goal

G0 Ca, ESK1(Mb) Compute b
G1 Ca, ESK0(Mb) Compute b

• A unlikely to win in G1 because of security of symmetric scheme
(DEM)

• A is about as likely to win in G1 as in G0 due to KEM security
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Games for proof of KEM + DEM

Game G0

procedure Initialize

(pk, sk)
$←KK; b

$←{0, 1}
return pk

procedure LR(M0, M1)

K0
$←{0, 1}k ; (K1, Ca)

$←EKpk()

Cs
$←ESK1(Mb)

return (Ca, Cs)

procedure Finalize(b′)
return (b = b′)

Game G1

procedure Initialize

(pk, sk)
$←KK; b

$←{0, 1}
return pk

procedure LR(M0, M1)

K0
$←{0, 1}k ; (K1, Ca)

$←EKpk()

Cs
$←ESK0(Mb)

return (Ca, Cs)

procedure Finalize(b′)
return (b = b′)
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Claim 1

We can design Bs so that

2 · Pr
[
GA

1 ⇒ true
]
− 1 ≤ Advind-cpa

SE (Bs)

Idea:

• Key in Bs ’s IND-CPA game plays role of K0

• Challenge bit in Bs ’s IND-CPA game plays role of b

• Bs itself picks pk, sk , K1, Ca

• Bs invokes its LR oracle to get Cs
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Bs , details

Claim 1: Adversary Bs below satisfies

2 · Pr
[
GA

1 ⇒ true
]
− 1 ≤ Advind-cpa

SE (Bs)

adversary Bs

(pk, sk)
$←KK

b′ ← ALRSIM(pk)
return b′

subroutine LRSIM(M0, M1)

(K1, Ca)
$←EKpk()

Cs
$← LR(M0, M1)

return (Ca, Cs)

Then
Pr
[
GA

1 ⇒ true
]

= Pr
[
INDCPABs

SE ⇒ true
]

But by definition

2 · Pr
[
INDCPABs

SE ⇒ true
]
− 1 = Advind-cpa

SE (Bs)
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Claim 2

We can design Ba so that

Pr
[
GA

0 ⇒ true
]
− Pr

[
GA

1 ⇒ true
]
≤ Advind-cpa

KEM (Ba)

Idea:

• K0, K1, Ca from Ba’s Enc oracle

• pk from Ba’s ind-cpa game

• b choosen by Ba
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Ba, details

Claim 2: Adversary Ba below satisfies

Pr
[
GA

0 ⇒ true
]
− Pr

[
GA

1 ⇒ true
]
≤ Advind-cpa

KEM (Ba)

adversary Ba(pk)

b
$←{0, 1}

b′ ← ALRSIM

if (b = b′) then return 1
else return 0

subroutine LRSIM(M0, M1)

(Kd , Ca)
$← Enc()

Cs
$←ESKd

(Mb)
return (Ca, Cs)

If d = 1 then A gets environment of G0 so

Pr
[
INDCPA1Ba

KEM ⇒ true
]

= Pr
[
GA

0 ⇒ true
]

If d = 0 then A gets environment of G1 so

Pr
[
INDCPA0Ba

KEM ⇒ true
]

= Pr
[
GA

1 ⇒ true
]
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KEM + DEM security proof: Conclusion

Advind-cpa
AE (A)

= 2 · Pr
[
GA

0 ⇒ true
]
− 1

= 2 ·
(

Pr
[
GA

1 ⇒ true
]

+ Pr
[
GA

0 ⇒ true
]
− Pr

[
GA

1 ⇒ true
])
− 1

= 2 · Pr
[
GA

1 ⇒ true
]
− 1 + 2 ·

(
Pr
[
GA

0 ⇒ true
]
− Pr

[
GA

1 ⇒ true
])

≤ Advind-cpa
SE (Bs) + 2 · Advind-cpa

KEM (Ba)
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AEEG as a KEM + DEM

Let G = 〈g〉 be a cyclic group of order m and let sk = x and
pk = X = g x be AEEG keys

algorithm EX (M)

y
$← Zm; Ca ← g y

K ← X y ; Cs ← K ·M
return (Ca, Cs)

algorithm Dx(Y , W )
K ← Ca

x ; M ← Cs · K−1

return M

Is a KEM + DEM with

• Symmetric key K = g xy = X y = Ca
x

• DEM ESK (M) = K ·M
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AEEG as a KEM

Let G = 〈g〉 be a cyclic group of order m and let sk = x and
pk = X = g x be AEEG keys. Then AEEG can be viewed as a KEM +
DEM with

algorithm EKX ()

y
$← Zm; Ca ← g y

K ← X y

return (K , Ca)

algorithm ESK (M)
return K ·M

But this DEM has many drawbacks as we saw before.

Can we substitue the DEM with (say) AES-CBC to solve these
problems?

Difficulty: The key for AES-CBC needs to be a 128 bit string, not a
group element.
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An alternative to AEEG KEM

Let the symmetric key be H(g y‖g xy ) rather than merely g xy , where
H : {0, 1}∗ → {0, 1}k is a hash function

For use with AES-CBC, set k = 128
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The AEEG KEM

Let G = 〈g〉 be a cyclic group of order m and define KEM = (KK, EK,DK) by

algorithm KK
x

$← Zm

X ← g x

return (X , x)

algorithm EKX ()

y
$← Zm; Ca ← g y

Z ← X y

K ← H(Ca‖Z)
return (K , Ca)

algorithm DKx(Ca)
Z ← Ca

x

K ← H(Ca‖Z)
return K

g xy

K

H

x

K

Ca = g y

y
$← Zm

g xyg x

H

Here H : {0, 1}∗ → {0, 1}k
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What H is suitable?

Our analysis will assume H is “perfect”

Question: What does this mean?

Answer: H will be modeled as a random oracle

80 / 135



Random Oracle Model

A random oracle is a publicly-accessible random function

If H [W ] = ⊥ then

H [W ]
$←{0, 1}k

Return H [W ]

W

H (W )

Oracle access to H provided to

• all scheme algorithms

• the adversary

The only access to H is oracle access.
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The RO EG KEM

Let G = 〈g〉 be a cyclic group of order m and define the RO-model
KEM KEM = (KK, EK,DK) by

algorithm KK
x

$← Zm

X ← g x

return (X , x)

algorithm EKH
X ()

y
$← Zm; Ca ← g y

Z ← X y

K ← H(Ca‖Z )
return (K , Ca)

algorithm DKH
x (Ca)

Z ← Ca
x

K ← H(Ca‖Z )
return K
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RO model KEM CPA security

Let KEM = (KK, EK,DK) be a RO model KEM with key length k
and A an adversary

Game INDCPAKEM

procedure Initialize

(pk, sk)
$←KK; b

$←{0, 1}
return pk

procedure Finalize(b′)
return (b = b′)

procedure H(W )

if H [W ] = ⊥ then H [W ]
$←{0, 1}k

return H [W ]

procedure Enc

K0
$←{0, 1}k ; (K1, Ca)

$←EKpk()
return (Kb, Ca)

We allow only one call to Enc. The ind-cpa advantage of A is

Advind-cpa
KEM (A) = 2 · Pr

[
INDCPAA

KEM ⇒ true
]
− 1
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RO model security of our EG KEM

Claim: The AEEG KEM is IND-CPA secure in the RO model

In the IND-CPA game

A
?

Hpk = g x

Kb

Ca = g y

where
b

$←{0, 1}; K0
$←{0, 1}k ; K1 ← H(g y‖g xy )

We are saying A has a hard time figuring out b. Why?
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Intuition

A
g x , g y

K ?

H

where
x , y

$← Zm; b
$←{0, 1}; K0

$←{0, 1}k ;

K1 ← H(g y‖g xy ); K ← Kb

Possible strategy for A:

• Query g y‖g xy to H to get back Z = H(g y‖g xy )

• If Z = K then return 1 else return 0

This startegy works! So why do we say that A can’t figure out b?

Problem: A can’t compute g xy hence can’t make the query
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Intuition

A
g x , g y

K ?

H

where
x , y

$← Zm; b
$←{0, 1}; K0

$←{0, 1}k ;

K1 ← H(g y‖g xy ); K ← Kb

Observation:

• If A does not query g y‖g xy to H then it cannot predict H(g y‖g xy )
and hence has no chance at all to determine whether
K = H(g y‖g xy ) or K is random

• If A does query g y‖g xy to H it has solved the CDH problem

In the second case, we can “see” a solution to CDH by “watching” A’s
oracle queries
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RO model security of EG KEM

Theorem: Let G = 〈g〉 be a cyclic group of order m and let
KEM = (KK, EK,DK) be the RO model of EG KEM over G with key
length k . Let A be an ind-cpa adversary making 1 LR query and q
queries to the RO H and having running time at most t. Then there is a
cdh adversary B such that

Advind-cpa
KEM (A) ≤ q · Advcdh

G ,g (B).

Furthermore B has running time about t.
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Games for proof

Game G0, G1

procedure Initialize

x , y
$← Zm; K

$←{0, 1}k
return g x

procedure Enc
return (K , g y )

procedure H(W )

H[W ]
$←{0, 1}k ; Y ||Z ←W

if Z = g xy and Y = g y then
bad ← true; H[W ]← K

return H[W ]

Assume (wlog) that A never repeats a H-query. Then

Advind-cpa
KEM (A) = Pr[GA

1 ⇒ true]− Pr[GA
0 ⇒ true]

≤ Pr[GA
0 sets bad ]
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Bounding the probability of setting bad

We would like to design B so that Pr[GA
0 sets bad ] ≤ Advcdh

G ,g (B)

adversary B(g x , g y )

K
$←{0, 1}k

b′ ← AEncSIM,HSIM(g x)

subroutine EncSIM
return K , g y

subroutine HSIM(W )

H[W ]
$←{0, 1}k ; Y ||Z ←W

if Z = g xy and Y = g y then
output W and halt

return H[W ]

Problem: B can’t do the test since it does not know g xy .
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The generalized CDH problem

Let G = 〈g〉 be a cyclic group of order m and B ′ an adversary with q
outputs.

Game CDHG ,g

procedure Initialize

x , y
$← Zm

return g x , g y

procedure Finalize(Z1, . . . ,Zq)
for i = 1, . . . , q do

if Zi = g xy then win← true
return win

The cdh-advantage of B ′ is

Advcdh
G ,g (B ′) = Pr[CDHB′

G ,g ⇒ true]
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Reducing generalized CDH to CDH

Lemma: Let G = 〈g〉 be a cyclic group and B ′ a cdh-adversary that has
q outputs and running time t. Then there is a cdh-adversary B that has
1 output, running time about t, and

Advcdh
G ,g (B ′) ≤ q · Advcdh

G ,g (B)

Proof:

Adversary B(g x , g y )

(Z1, . . . ,Zq)
$← B ′(g x , g y )

i
$←{1, . . . , q}

return Zi
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Bounding the probability of setting bad

We design a q-output cdh adversary B ′ so that

Pr[GA
0 sets bad ] ≤ Advcdh

G ,g (B ′)

adversary B(g x , g y )

K
$←{0, 1}k

i ← 0
b′ ← AEncSIM,HSIM(g x)
return Z1, . . . ,Zq

subroutine EncSIM
return K , g y

subroutine HSIM(W )

H[W ]
$←{0, 1}k ; Y ||Z ←W

i ← i + 1; Zi ← Z
return H[W ]

Then the cdh-adversary B of the theorem is obtained by applying the
lemma to B ′.
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DHIES and ECIES [ABR]

The asymmetric encryption scheme derived from KEM + DEM with

• The RO EG KEM

• Some suitable mode of operation DEM (e.g. CBC) is standardized
as DHIES and ECIES

ECIES features:

Operation Cost
encryption 2 160-bit exp

decryption 1 160-bit exp

ciphertext expansion 160-bits

ciphertext expansion = (length of ciphertext) - (length of plaintext)
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But what about H?

We have studied the EG KEM in an abstract model where H is a
random function accessible only as an oracle. To get a “real” scheme we
need to instantiate H with a “real” function

How do we do this securely?

94 / 135



PRF-based RO

We know that PRFs approximate random functions, meaning if
F : {0, 1}s × {0, 1}k → {0, 1}k is a PRF then the I/O behavior of FK is
like that of a random function.

So can we instantiate H via F?

FK depends on a key K . Who will have K? Since the sender needs to
be able to encrypt given just pk, we need to put K in pk.

Problem: The adversary has pk and PRFs don’t preserve security when
the key is known to the adversary.
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RO paradigm

• Design and analyze schemes in RO model

• In instantiation, replace RO with a hash-function based construct.

Example: H(W ) = first 128 bits of SHA1(W ). More generally if we
need ` output bits:

H(W ) = first ` bits of SHA1(1||W ) || SHA1(2||W ) || . . .
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RO paradigm

There is no proof that the instantiated scheme is secure based on some
“standard” assumption about the hash function.

The RO paradigm is a heuristic that seems to work well in practice.

The RO model is a model, not an assumption on H. To say

“Assume SHA1 is a RO”

makes no sense: it isn’t.
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PRF paradigm vs RO paradigm

PRF paradigm: For symmetric cryptography

• Design scheme in a model where parties (sender and receiver) have
oracle access to a random function, but the adversary does not.

• Provable security in maintained when the oracle is replaced by FK

where F is a PRF and K is held by the parties, but not given to the
adversary.

RO paradigm: For asymmetric cryptography

• Design scheme in a model where everyone, adversary included, has
oracle access to a random function.

• Instantiation results in a scheme that is heuristically good, but not
provably so.
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Instantiating ROs

There are schemes which are

• Secure in the RO model

• But insecure for all instantiations of the RO by real (families of)
functions.

However, these counter-example schemes are all artificial, contrived to
fail.

So far it seems that the RO paradigm works (yields secure instantiated
schemes) for “real and natural” schemes.

But there is no proof of this.
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Why the RO paradigm?

It yields practical, natural schemes with provable support that has held
up well in practice.

Cryptanalysts will often attack schemes assuming the hash functions in
them are random, and a RO proof indicates security against such
attacks.

Bottom line on RO paradigm:

• Use, but use with care

• Have a balanced perspective: understand both strengths and
limitations

• Research it!
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A counter-example

Let AE ′ = (K, E ′,D′) be an IND-CPA asymmetric encryption scheme.
We modify it to a RO model asymmetric encryption scheme
AE = (K, E ,D), which

• Is IND-CPA secure in the RO model

• Not IND-CPA secure for any instantiation of the RO.
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Programs are strings, and vice versa

Any (computable) function H : {0, 1}∗ → {0, 1}k has a string
representation as a program 〈H〉.

Any string S can be parsed as the representation of a program P.
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Counter-example

Given AE ′ = (K, E ′,D′) we define AE = (K, E ,D) via

algorithm EH
pk(M)

Parse M as 〈h〉 where h : {0, 1}∗ → {0, 1}k

x
$←{0, 1}k

if H(x) = h(x) then return M
else return E ′pk(M)

If H is a RO then for any M = 〈h〉

Pr[H(x) = h(x)] ≤ q

2k

for an adversary making q queries to H, and hence security is hardly
affected.
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Counter-example

Given AE ′ = (K, E ′,D′) we define AE = (K, E ,D) via

algorithm EH
pk(M)

Parse M as 〈h〉 where h : {0, 1}∗ → {0, 1}k

x
$←{0, 1}k

if H(x) = h(x) then return M
else return E ′pk(M)

Now let h : {0, 1}∗ → {0, 1}k be any fixed function, and instantiate H
with h. Then if we encrypt M = 〈h〉 we have

Eh
pk(〈h〉) = M

so the scheme is insecure.
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RSA Math

Recall that ϕ(N) = |Z∗N |.

Claim: Suppose e, d ∈ Z∗ϕ(N) satisfy ed ≡ 1 (mod ϕ(N)). Then for any
x ∈ Z∗N we have

(xe)d ≡ x (mod N)

Proof:

(xe)d ≡ xed mod ϕ(N) ≡ x1 ≡ x

modulo N
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The RSA function

A modulus N and encryption exponent e define the RSA function
f : Z∗N → Z∗N defined by

f (x) = xe mod N

for all x ∈ Z∗N .

A value d ∈ Z ∗ϕ(N) satisfying ed ≡ 1 (mod ϕ(N)) is called a decryption
exponent.

Claim: The RSA function f : Z∗N → Z∗N is a permutation with inverse
f −1 : Z∗N → Z∗N given by

f −1(y) = yd mod N

Proof: For all x ∈ Z∗N we have

f −1(f (x)) ≡ (xe)d ≡ x (mod N)

by previous claim.
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Example

Let N = 15. So

Z∗N = {1, 2, 4, 7, 8, 11, 13, 14}

ϕ(N) =

8

Z∗ϕ(N) = {1, 3, 5, 7}

Let e = 3 and d = 3. Then

ed ≡ 9 ≡ 1 (mod 8)

Let

f (x) = x3 mod 15

g(y) = y3 mod 15

x f (x) g(f (x))

1 1

1

2

8 2

4

4 4

7

13 7

8

2 8

11

11 11

13

7 13

14

14 14
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g(y) = y3 mod 15

x f (x) g(f (x))

1 1 1

2 8 2

4 4

4

7 13

7

8 2

8

11 11

11

13 7

13

14 14

14
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RSA usage

• pk = N, e; sk = N, d

• Epk(x) = xe mod N = f (x)

• Dsk(y) = yd mod N = f −1(y)

Security will rely on it being hard to compute f −1 without knowing d .

RSA is a trapdoor, one-way permutation:

• Easy to invert given trapdoor d

• Hard to invert given only N, e
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RSA generators

An RSA generator with security parameter k is an algorithm Krsa that
returns N, p, q, e, d satisfying

• p, q are distinct odd primes

• N = pq and is called the (RSA) modulus

• |N| = k , meaning 2k−1 ≤ N ≤ 2k

• e ∈ Z∗ϕ(N) is called the encryption exponent

• d ∈ Z∗ϕ(N) is called the decryption exponent

• ed ≡ 1 (mod ϕ(N))
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Plan

• Building RSA generators

• Basic RSA security

• Encryption with RSA
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Some more math

Fact: If p, q are distinct primes and N = pq then
ϕ(N) = (p − 1)(q − 1).

Proof:

ϕ(N) = |{1, . . . ,N − 1}| − |{ip : 1 ≤ i ≤ q − 1}| − |{iq : 1 ≤ i ≤ p − 1}|

= (N − 1)− (q − 1)− (p − 1)

= N − p − q + 1

= pq − p − q + 1

= (p − 1)(q − 1)

Example:

• 15 = 3 · 5
• Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}
• ϕ(15) = 8 = (3− 1)(5− 1)
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Recall

Given ϕ(N) and e ∈ Z∗ϕ(N), we can compute d ∈ Z∗ϕ(N) satisfying

ed ≡ 1 (mod ϕ(N)) via

d ← MOD-INV(e, ϕ(N)).

We have algorithms to efficiently test whether a number is prime, and a
random number has a pretty good chance of being a prime.
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Building RSA generators

Say we wish to have e = 3 (for efficiency). The generator K3
rsa with

(even) security parameter k :

repeat
p, q

$←{2k/2−1, . . . , 2k/2 − 1}; N ← pq; M ← (p − 1)(q − 1)
until

N ≥ 2k−1 and p, q are prime and gcd(e, M) = 1
d ← MOD-INV(e, M)
return N, p, q, e, d
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One-wayness of RSA

The following should be hard:

Given: N, e, y where y = f (x) = xe mod N

Find: x

Formalism picks x at random and generates N, e via an RSA generator.
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ow-adversaries

N, e −→

y −→
I −→ x

wins if x = f −1(y), meaning xe ≡ y (mod N).
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One-wayness of RSA, formally

Let Krsa be a RSA generator and I an adversary.

Game OWKrsa

procedure Initialize
(N, p, q, e, d)

$← Krsa

x
$← Z∗N ; y ← xe mod N

return N, e, y

procedure Finalize(x ′)
return (x = x ′)

The ow-advantage of I is

Advow
Krsa

(I ) = Pr
[
OWI

Krsa
⇒ true

]
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Inverting RSA

Inverting RSA : given N, e, y find x such that xe ≡ y (mod N)
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EASY because f −1(y) = yd mod N

Know d
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Factoring Problem

Given: N where N = pq and p, q are prime

Find: p, q

If we can factor we can invert RSA. We do not know whether the
converse is true, meaning whether or not one can invert RSA without
factoring.
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A factoring algorithm

Alg FACTOR(N) // N = pq where p, q are primes

for i = 2, . . . ,
⌈√

N
⌉

do
if N mod i = 0 then

p ← i ; q ← N/i ; return p, q

This algorithm works but takes time

O(
√

N) = O(e0.5 ln N)

which is prohibitive.
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Factoring algorithms

Algorithm Time taken to factor N

Naive O(e0.5 ln N)

Quadratic Sieve (QS) O(ec(ln N)1/2(ln ln N)1/2
)

Number Field Sieve (NFS) O(e1.92(ln N)1/3(ln ln N)2/3
)

120 / 135



Factoring records

Number bit-length Factorization alg MIPS years
RSA-400 400 1993 QS 830

RSA-428 428 1994 QS 5000

RSA-431 431 1996 NFS 1000

RSA-465 465 1999 NFS 2000

RSA-515 515 1999 NFS 8000

RSA-576 576 2003 NFS
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How big is big enough?

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus

80-bit security: Factoring takes 280 time.

Factorization of RSA-1024 seems out of reach at present.

Estimates vary, and for more security, longer moduli are recommended.
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RSA: what to remember

The RSA function f (x) = xe mod N is a trapdoor one way
permutation:

• Easy forward: given N, e, x it is easy to compute f (x)

• Easy back with trapdoor: Given N, d and y = f (x) it is easy to
compute x = f −1(y) = yd mod N

• Hard back without trapdoor: Given N, e and y = f (x) it is hard to
compute x = f −1(y)
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Plain-RSA encryption

The plain RSA asymmetric encryption scheme AE = (K, E ,D)
associated to RSA generator Krsa is

Alg K
(N, p, q, e, d)

$← Krsa

pk ← (N, e)
sk ← (N, d)
return (pk, sk)

Alg Epk(M)
C ← Me mod N
return C

Alg Dsk(C )
M ← Cd mod N
return M

The “easy-back with trapdoor” property implies

Dsk(Epk(M)) = M

for all M ∈ Z∗N .
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Plain-RSA encryption security

Alg K
(N, p, q, e, d)

$← Krsa

pk ← (N, e)
sk ← (N, d)
return (pk, sk)

Alg Epk(M)
C ← Me mod N
return C

Alg Dsk(C )
M ← Cd mod N
return M

Getting sk from pk involves factoring N.
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Plain-RSA encryption security

Alg K
(N, p, q, e, d)

$← Krsa

pk ← (N, e)
sk ← (N, d)
return (pk, sk)

Alg Epk(M)
C ← Me mod N
return C

Alg Dsk(C )
M ← Cd mod N
return M

Alg E is deterministic so we can detect repeats and the scheme is not
IND-CPA secure.
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A message recovery attack

Suppose sender encrypts M and M + 1 under public key N, 3. Adversary
has

C1 = M3 mod N and C2 = (M + 1)3 mod N

Then modulo N we have

C2 + 2C1 − 1

C2 − C1 + 2
=

(M + 1)3 + 2M3 − 1

(M + 1)3 −M3 + 2

=
(M3 + 3M2 + 3M + 1) + 2M3 − 1

(M3 + 3M2 + 3M + 1)−M3 + 2

=
3M3 + 3M2 + 3M

3M2 + 3M + 3
=

M(3M2 + 3M + 3)

3M2 + 3M + 3
= M

so adversary an recover M.
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The RO model simple RSA KEM

The SRSA KEM KEM = (K, E ,D) associated to RSA generator Krsa is

Alg K
(N, p, q, e, d)

$← Krsa

pk ← (N, e)
sk ← (N, d)
return (pk, sk)

Alg EH
pk

x
$← Z∗N

K ← H(x)
Ca ← xe mod N
return K , Ca

Alg DH
sk(Ca)

x ← Cd
a mod N

K ← H(x)
return K

where H : {0, 1}x → {0, 1}k is a RO.
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KEM security: Intuition

Here x
$← Z∗N ; b

$←{0, 1}; K0
$←{0, 1}k ; K1 = H(x); K ← Kb;

If A queries x to H it can get H(x) and test whether K = H(x), but

• To find x it must invert RSA at Ca

• Without querying x it has 0 advantage in determining b

• If it queries x we can “see” this and invert RSA
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SRSA KEM security: Result

Theorem: Let Krsa be a RSA generator and KEM = (K, E ,D) the
associated SRSA KEM in the RO model. Let A be an ind-cpa adversary
that makes 1 LR query and q queries to the RO H. Then there is a
OW-adversary I such that

Advind-cpa
KEM (A) ≤ Advow

Krsa
(I )

Furthermore the running time of I is about that of A plus the time for q
RSA encryptions.
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PKCS #1

Receiver keys: pk = (N, e) and sk = (N, d) where n = |N|8 = 128

Alg EN,e(M) // |M|8 ≤ n − 11

Pad
$← ({0, 1}8 − {00})n−m−3

x ← 00||02||Pad ||00||M
C ← xe mod N
return C

Alg DN,d(C ) // C ∈ Z∗N
x ← C d mod N
aa||bb||w ← x
if aa 6= 00 or bb 6= 02 or 00 /∈ w then

return ⊥
Pad ||00||M ← w where 00 /∈ Pad
return M

x = 00 02 Pad 00 M
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Attack on PKCS #1 [Bl98]

A
if DN,d(y) 6= ⊥ return 1

return 0

y1

b1

y2

b2

...

yq

bq

DN,d(y)

DN,d(C )

N, e

Target C

The attack A succeeds in decrypting C after making q ≈ 1 million
clever queries to the box.

131 / 135



Attack on PKCS #1 and response

This is a (limited) chosen-ciphertext attack in which the oracle does not
fully decrypt but indicates whether or not the decryption is valid.

The attack can be mounted on SSL.

Use of an IND-CCA scheme would prevent the attack.
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OAEP [BR94]

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
ROs: G : {0, 1}128 → {0, 1}894 and H: {0, 1}894 → {0, 1}128

Algorithm EN,e(M) // |M| ≤ 765

r
$←{0, 1}128; p ← 765− |M|

128 894

r

ts

0128 ‖M ‖ 10p

H

G

x ← s||t
C ← xe mod N
return C

Algorithm DN,d(C ) // C ∈ Z∗N
x ← C d mod N
s||t ← x

128 894

t

r

s

H

G

a ‖M ‖ 10p

if a = 0128 then return M
else return ⊥
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OAEP security

If RSA is 1-way and H, G are random oracles then

• OAEP is IND-CPA secure [BR94]

• OAEP is IND-CCA secure [FOPS00]
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RSA OAEP usage

Protocols:

• SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1

• SSH ver 1.0, 2.0

• . . .

Standards:

• RSA PKCS #1 versions 1.5, 2.0

• IEEE P1363

• NESSIE (Europe)

• CRYPTREC (Japan)

• . . .
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