CSL759: Cryptography and Computer Security

Ragesh Jaiswal

CSE, IIT Delhi

Minor-1 Exam

- Let $AES: \{0,1\}^{128} \times \{0,1\}^{128} \rightarrow \{0,1\}^{128}$ be a (t,q,ϵ) secure PRF. Consider the function family $F: \{0,1\}^{128} \times$ $\{0,1\}^{128} \rightarrow \{0,1\}^{128}$ defined as $F_K(M) = AES_M(K)$. Is F a secure PRF? Discuss.
- Is *F* a secure PRF?

- Let $AES: \{0,1\}^{128} \times \{0,1\}^{128} \rightarrow \{0,1\}^{128}$ be a (t,q,ϵ) secure PRF. Consider the function family $F: \{0,1\}^{128} \times$ $\{0,1\}^{128} \rightarrow \{0,1\}^{128}$ defined as $F_K(M) = AES_M(K)$. Is F a secure PRF? Discuss.
- Is *F* a secure PRF?
 - No.
- How do you show this?

- Let $AES: \{0,1\}^{128} \times \{0,1\}^{128} \rightarrow \{0,1\}^{128}$ be a (t,q,ϵ) secure PRF. Consider the function family $F: \{0,1\}^{128} \times$ $\{0,1\}^{128} \rightarrow \{0,1\}^{128}$ defined as $F_K(M) = AES_M(K)$. Is F a secure PRF? Discuss.
- Is *F* a secure PRF?
 - No.
- How do you show this?
 - Adversary A
 - Query message 0^{128} and get back C as reply.
 - Query message 1^{128} and get back C' as reply.
 - If $(AES_{0^{128}}^{-1}(C) = AES_{1^{128}}^{-1}(C'))$ then output 1 else output 0.

- Adversary A
 - Query message 0^{128} and get back C as reply.
 - Query message 1^{128} and get back C' as reply.
 - If $(AES_{0^{128}}^{-1}(C) = AES_{1^{128}}^{-1}(C'))$ then output 1 else output 0.

- Adversary A
 - Query message 0^{128} and get back C as reply.
 - Query message 1^{128} and get back C' as reply.
 - If $(AES_{0^{128}}^{-1}(C) = AES_{1^{128}}^{-1}(C'))$ then ourput 1 else output 0.

- Adversary A
 - Query message 0^{128} and get back C as reply.
 - Query message 1^{128} and get back C' as reply.
 - If $(AES_{0^{128}}^{-1}(C) = AES_{1^{128}}^{-1}(C'))$ then ourput 1 else output 0.

- Adversary A
 - Query message 0^{128} and get back C as reply.
 - Query message 1^{128} and get back C' as reply.
 - If $(AES_{0^{128}}^{-1}(C) = AES_{1^{128}}^{-1}(C'))$ then ourput 1 else output 0.

•
$$Adv_{PRF}(A,F) = 1 - \frac{1}{2^{128}}$$
.

• Let $F: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a (t,q,ϵ) -secure PRF. Consider the function $G: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^{2n}$ defined as follows:

 $G_K(M) = F_K(M) || F_K(F_K(M))$

where || means concatenation. Is G a secure PRF? Discuss.

• Is G a secure PRF?

• Let $F: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a (t,q,ϵ) -secure PRF. Consider the function $G: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^{2n}$ defined as follows:

 $G_K(M) = F_K(M) || F_K(F_K(M))$

where || means concatenation. Is G a secure PRF? Discuss.

- Is *G* a secure PRF?
 - Yes.
- How do we show this?

• Let $F: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a (t,q,ϵ) -secure PRF. Consider the function $G: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^{2n}$ defined as follows:

 $G_K(M) = F_K(M) || F_K(F_K(M))$

where || means concatenation. Is G a secure PRF? Discuss.

- Is *G* a secure PRF?
 - Yes.
- How do we show this?
 - <u>Theorem</u>: Let A be a PRF adversary for G that runs in time t' and makes q' queries, then there exists a PRF adversary for F that makes 2q' queries and runs in time $t' + \theta(qn)$ such that $Adv_{PRF}(A,G) \leq Adv_{PRF}(B,F)$

• <u>Theorem</u>: Let A be a PRF adversary for G that runs in time t' and makes q' queries, then there exists a PRF adversary for F that makes 2q' queries and runs in time $t' + \theta(qn)$ such that $Adv_{PRF}(A,G) \leq Adv_{PRF}(B,F)$

• <u>Theorem</u>: Let A be a PRF adversary for G that runs in time t' and makes q' queries, then there exists a PRF adversary for F that makes 2q' queries and runs in time $t' + \theta(qn)$ such that $Adv_{PRF}(A,G) \leq Adv_{PRF}(B,F)$

• <u>Theorem</u>: Let A be a PRF adversary for G that runs in time t' and makes q' queries, then there exists a PRF adversary for F that makes 2q' queries and runs in time $t' + \theta(qn)$ such that $Adv_{PRF}(A,G) \leq Adv_{PRF}(B,F)$

• Let $F: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a (t,q,ϵ) -secure PRF. Consider the function $G: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^{2n}$ defined as follows:

 $G_K(M) = F_K(M) || F_K(F_K(M))$

where || means concatenation. Is G a secure PRF? Discuss.

- Is *G* a secure PRF?
 - No. Consider the following adversary:
 - A
 - Make a query 0^{128} and get back $V_1 || V_2$.
 - Make a query V_1 and get back $V'_1 || V'_2$.
 - If $(V_2 = V_1')$ then output 1 else output 0.

• A

- Make a query 0^{128} and get back $V_1 || V_2$.
- Make a query V_1 and get back $V'_1 || V'_2$.
- If $(V_2 = V_1')$ then output 1 else output 0.

• What is
$$\Pr[Real_{A,G} = 1] = ?$$

• A

- Make a query 0^{128} and get back $V_1 || V_2$.
- Make a query V_1 and get back $V'_1 || V'_2$.
- If $(V_2 = V_1')$ then output 1 else output 0.
- What is $\Pr[Real_{A,G} = 1] = 1$.
- What is $Pr[Random_A = 1] = ?$

• A

- Make a query 0^{128} and get back $V_1 || V_2$.
- Make a query V_1 and get back $V'_1 || V'_2$.
- If $(V_2 = V_1')$ then output 1 else output 0.
- What is $\Pr[Real_{A,G} = 1] = 1$.
- What is $\Pr[Random_A = 1] = \frac{1}{2^n}$.
- So $Adv_{PRF}(A,G) = 1 \frac{1}{2^n}$.
- <u>Verdict</u>: G is insecure PRF.

• So where is the fallacy?

• Let $F: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a (t,q,ϵ) -secure PRF. Consider the function $G: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^{2n}$ defined as follows:

 $G_K(M) = F_K(M) || F_K(F_K(M))$

where || means concatenation. Is G a secure PRF? Discuss.

• Is G a secure PRF?

• Yes.

- How do we show this?
 - <u>Theorem</u>: Let A be a PRF adversary for G that runs in time t' and makes q' queries, then there exists a PRF adversary for F that makes 2q' queries and runs in time $t' + \theta(qn)$ such that $Adv_{PRF}(A,G) \leq Adv_{PRF}(B,F)$

End