CSL759: Cryptography and Computer

Security

Ragesh Jaiswal
CSE, IIT Delhi

Key Distribution

Diffie Hellman Key Exchange

Both parties share g {xy} which is the secret key for the session.

Authentication

Diffie Hellman Key Exchange

The adversary will be able to read all messages being exchanged between Alice and Bob

Key Distribution in Public Key Setting
® Public key cryptography:

(sg,rg)

CERT, = ..{Alice’s public key is pa},,

CERT,

4 N
Key Distribution in Public Key Setting

® (Certificate Process

?m/

(sg,rg)

CERT, = ..{Alice’s public key is pa},,

'

o

CERT,

(sa, pa)

Key Distribution in Public Key Setting

Certificate Process

o Alice generates pk and sends it to CA
CA does identity check

Alice proves knowledge of secret key to CA

e CA issues certificate to Alice

Alice sends certificate to Bob

Bob verifies certificate and extracts Alice's pk

Key Distribution in Public Key Setting

Generate key and send to CA

Key generation: Alice generates her keys locally via (pk, sk) &K

Send to CA: Alice sends (Alice, pk) to a certificate authority (CA).

Key Distribution in Public Key Setting

|dentity check

Upon receiving (Alice, pk) the CA performs some checks to ensure pk is
really Alice's key:

¢ Call Alice by phone
¢ (Check documents

These checks are out-of-band.

Key Distribution in Public Key Setting

Proof of knowledge

The CA might have Alice sign or decrypt something under pk to ensure
that Alice knows the corresponding secret key sk.

This ensures Alice has not copied someone else’s key.

Key Distribution in Public Key Setting

Certificate Issuance

Once CA is convinced that pk belongs to Alice it forms a certificate

CERT, = (CERTDATA, 7),

where o is the CA's signature on CERTDATA, computed under the
CA's secret key sk[CA].

CERTDATA:

pk, 1D (Alice)

e Name of CA

o Expiry date of certificate

¢ Restrictions
® Security level

The certificate CERT4 is returned to Alice.

Key Distribution in Public Key Setting

Certificate usage

Alice can send CERT4 to Bob who will:

e (CERTDATA, o) +— CERT4
Check Vpyrca(CERTDATA,) = 1 where pk[CA] is CA's public key
(pk, Alice, expiry,...) +— CERTDATA

e Check certificate has not expired

If all is well we are ready for usage.

1174

Key Distribution in Public Key Setting

How does Bob get pk[CA]?

CA public keys are embedded in software such as your browser.

Key Distribution in Public Key Setting

Certificate hierarchies

CA(USA) CERT M
- “‘uh
,,/j CERT[CA(USA) : CA(Calif)]
CMGaliE) — CA(Mass) | cppTica(calif) - CA(SD))
/ CERT[CA(SD) : CA(UCSD))
CA(SD) CERT[CA(UCSD) : Mihir]
CA}UCSD)
Mihir

CERTIX : Y] = (pk[YLY,..., Supx(PKIY], Y. ..))

To verify CERTminir you need only pkcajusa)-

Key Distribution in Public Key Setting

Why certificate hierarchies?

e |t is easier for CA(UCSD) to check Mihir's identity (and issue a
certificate) than for CA(USA) since Mihir is on UC5D’s payroll and

UCSD already has a lot of information about him.

¢ Spreads the identity-check and certification job to reduce work for
individual CAs

¢ Browsers need to have fewer embedded public keys. (Only root CA
public keys needed.)

Key Distribution in Public Key Setting

Revocation

Suppose Alice wishes to revoke her certificate CERTa, perhaps because
her secret key was compromised.

o Alice sends CERT4 and revocation request to CA

e CA checks that request comes from Alice
e CA marks CERT 4 as revoked

Key Distribution in Public Key Setting

Certificate revocation lists (CRLs)

CA maintains a CEL with entries of form
(CERT , Revocation date)
This list is disseminated.

Before Bob trusts Alice's certificate he should ensure it is not on the
CRL.

Key Distribution in Public Key Setting

Revocation Issues

o November 22: Alice's secret key compromised
o November 24: Alice's CERT 4 revoked
e November 25: Bob sees CRL

In the period Nov. 22-25, CERT4 might be used and Bob might be
accepting as authentic signatures that are really the adversary's. Also
Bob might be encrypting data for Alice which the adversary can decrypt.

Key Distribution in Public Key Setting

OCSP

The On-line Certificate Status Protocol (OCSP) enables on-line checks
of whether or not a certificate has been revoked.

Bob CA

CERTA CERTA

ok / not

il

But on-line verification kind of defeats the purpose of public-key
cryptography!

Key Distribution in Public Key Setting

Revocation in practice

¢ VeriSign estimates that 20% of certificates are revoked

® |n practice, CRLs are huge

Revocation is a big problem and one of the things that is holding up
widespread deployment of a PKI and use of public-key cryptography.

Key Distribution in Public Key Setting

PGP

In PGP, there are no CAs. You get Alice's public key from Carol and

decide to what extent you want to trust it based on your feelings about
Carol. Requires user involvement.

Key Distribution in the symmetric
setting

Key Distribution: Symmetric Setting

™~

™~

Key Distribution: Symmetric Setting

Key Distribution: Symmetric Setting

™~

e
Key Distribution: Symmetric Setting

=

AN AN
a 9w

o

Key Distribution: Kerberos

Best understood using a dialogue in four scenes

Scene |

Kerberos

e

e
Kerberos: Scene |

e

Kerberos: Scene |

Kerberos: Scene ||

Authentication Service

Kerberos: Scene ||

Authentication Service

Kerberos: Scene ||

Authentication Service

{A’B} [KB]

Kerberos: Scene ||

Authentication Service

4

KA
{A’B} [KB]

j {A,B}[K,]

Kerberos: Scene ||

Authentication Service

4

KA
{A’B} [KB]

j {A,B}[K,]

Kerberos: Scene ||

Authentication Service

v

; v Tam A
{A,B}[K] "

{A’B} [KB]

Kerberos: Scene ||

Authentication Service

4

I<A
{A,B,Add}[K,] = Ticket,,

o | g

Kerberos: Scene |l

A

{Ticket,q}[K,]

Ticket

Ticket,,

Authentication Service

S

Ticket,

Kg

Ticketyy={X,Y,AddX} [K,]

Kerberos: Scene |l

A

{Ticket,q}[K,]

Ticket

Ticket,,

Authentication Service

S

Ticketyy={X,Y,AddX} [K,]

e

Kerberos: Scene |l

Authentication Service

S

Ticketyy={X,Y,AddX} [K,]

Kerberos: Scene |l

Authentication Service S

A

{Ticket,o} K,
Ticket,

Tickety,={X,Y,AddX, timestamp, lifespan}[K,]

Ticket

Ticket,,

e

A

Kerberos: Scene IV

{SK s, Ticket, g} [K,]

Auth, , Ticket,

Authentication Service

S

{SK 5, Ticket,, } [SK 4]

Tickety,={SKyy, X,Y,AddX, TS, LS} [K,]

Authyy= {X, AddX}[SK,y]

Auth,, Ticket,,

e

A

Kerberos: Scene IV

{SK s, Ticket, g} [K,]

Auth, , Ticket,

Auth,,, Ticket,,

Authentication Service

S

{SK 5, Ticket,, } [SK 4]

Tickety,={SKyy, X,Y,AddX, TS, LS} [K,]

Authyy= {X, AddX}[SK,y]

®
Ee E
Kg °
B

r

a I
Kerberos: Scene |V

Authentication Service S

A SKygTicket,g}[K,] {SK s, Ticket,;} [SK]

Tickety,={SKyy, X,Y,AddX, TS, LS} [K,]

Auth, , Ticket,

Authy, = {X, AddX, TS, LS}[SKyy]

|

Few minutes

Auth,, Ticket,,

e

A

Kerberos: Scene IV

Authentication Service

S

{SKss, Tickets} K] {SK y, Ticket, } [SK]

Auth, , Ticket,

Tickety,={SKyy, X,Y,AddX, TS, LS} [K,]

AuthXY: {X, AddX, TS, L/‘\S} [SKXY]

Auth,, Ticket,,

|

Few minutes

Kerberos: Scene IV

Authentication Service S

18K x5, Tickets} [Ky] {SK s, Ticket,;} [SK]

Tickety,={SKyy, X,Y,AddX, TS, LS} [K,]

Auth, , Ticket,

Authy, = {X, AddX, TS, LS}[SKyy]

|

Few minutes

Auth,, Ticket,,

{Reply} [SK]

Other Cryptographic Protocols

- Secret sharing
- Coin ﬂipping over phone

- Oblivious transfer

e

Secret Sharing

Entrusting one person with K is

not safe.

e

Secret Sharing

Secret Sharing

- t out of n keys are sufficient to obtain K
- If less than t keys are available, then K
remains secret. /

e

Secret Sharing

e How do we construct such a protocol?

® [deas?

Secret Sharing

e How do we construct such a protocol?

e Shamir’s secret sharing protocol: A degree d polynomial is
completely determined by d points evaluated on the

polynomial.

e

Coin flipping

Alice and Bob want to agree on a secret bit.

e

Coin flipping

Alice and Bob want to agree on a secret bit.

@

e
Coin flipping

Alice and Bob want to agree on a secret bit.

@

)

Bit commitment protocol

Other protocols we did not talk about

e Oblivious transfer.
o Multi—party computation.
e Electronic voting,

© Homomorphic Encryption.

End

Slides 7-21 have been borrowed from Prof. Mihir Bellare’s lecture

slides.

