
Ragesh Jaiswal

CSE, IIT Delhi

CSL759: Cryptography and Computer

Security

Public-key Encryption

Public-key Encryption
 Definition: A public-key encryption scheme 𝑃𝐾𝐸 =
(𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) consists of three algorithms such that:

1. The key generation algorithm 𝐺𝑒𝑛 takes as input 1𝑛 (𝑛 is the

security parameter) and outputs a pair of keys (𝑝𝑘, 𝑠𝑘). 𝑝𝑘
is known as the public key and 𝑠𝑘 is known as the secret key.

2. The encryption algorithm 𝐸𝑛𝑐 takes as input the public key

𝑝𝑘 and a message (from appropriate space) and outputs the

ciphertext 𝑐 ← 𝐸𝑛𝑐𝑝𝑘(𝑚).

3. The decryption algorithm takes as input the private key 𝑠𝑘
and a ciphertext and outputs a message 𝑚 or a special symbol

⊥ (denoting failure). This is denoted by 𝑚 ← 𝐷𝑒𝑐𝑠𝑘(𝑐).

We have Pr 𝐷𝑒𝑐𝑠𝑘 𝐸𝑛𝑐𝑝𝑘 𝑚 = 𝑚 ≈ 1.

Public-key Encryption

𝐺𝑒𝑛

𝐸𝑛𝑐 𝐷𝑒𝑐𝑚

𝑝𝑘

𝑠𝑘

𝑐 𝑐

𝑚 or ⊥Adversary 𝐴

Public-key Encryption
 What are the advantages of Public-key encryption over

private-key encryption?

 Key distribution is simpler.

 Open systems: The identity of the person is not required to be

known before secure communication.

 What are the disadvantages of PKE?

 PKE schemes tend to be slow because it involves more complex

arithmetic operations (e.g. computing exponentiations, inverses

modulo 𝑁 etc.).

 We will first see two PKE schemes before discussing security

for PKE.

RSA and El-Gamal

Textbook RSA
 𝐺𝑒𝑛: On input 1𝑛 run
𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain
𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key
𝑝𝑘 =< 𝑁, 𝑒 > and a message
𝑚 ∈ 𝑍𝑁

∗ , compute the
ciphertext 𝑐 =
[𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key
𝑠𝑘 =< 𝑁, 𝑑 > and a
ciphertext 𝑐 ∈ 𝑍𝑁

∗ , compute the
message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 GenRSA(1𝑛)
 Run GenModulus(1𝑛) to obtain
(𝑁, 𝑝, 𝑞).

 Let 𝜙 𝑁 = 𝑝 − 1 ⋅ (𝑞 − 1).

 Find 𝑒 such that gcd 𝑒, 𝜙 𝑁 = 1.

 Compute 𝑑 = [𝑒−1 (𝑚𝑜𝑑 𝜙(𝑁))].
 Return (𝑁, 𝑒, 𝑑)

 GenModulus(1𝑛)
 Run GRP(1𝑛) to obtain 𝑝, 𝑞.
 Let 𝑁 = 𝑝 ⋅ 𝑞.
 Return (𝑁, 𝑝, 𝑞).

 GRP(1𝑛)
 For 𝑖 = 1 to 𝑡

 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

Textbook RSA
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute

the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].
 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁

∗ , compute
the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 What are the issues with Textbook RSA as a PKE?

Textbook RSA
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute

the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].
 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁

∗ , compute
the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 What are the issues with Textbook RSA as a PKE?

1. Message 𝑚 should be a member of 𝑍𝑁
∗ .

Textbook RSA
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute

the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].
 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁

∗ , compute
the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 What are the issues with Textbook RSA as a PKE?

1. Message 𝑚 should be a member of 𝑍𝑁
∗ .

2. Can this PKE scheme be IND-CPA secure?

Textbook RSA
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute

the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].
 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁

∗ , compute
the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 What are the issues with Textbook RSA as a PKE?

1. Message 𝑚 should be a member of 𝑍𝑁
∗ .

2. Can this PKE scheme be IND-CPA secure?

 No, since this is a deterministic encryption scheme.

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 1: How do we encode a typical message 𝑚 which is

a 𝑘-bit string?

 If 𝑘 ≥ 𝑁, then we will have to break the message into bit

chunks and then do appropriate padding. This will allow us to

get 𝑚1
′ , 𝑚2

′ , … ∈ 𝑍𝑁 which we can individually encrypt using

textbook RSA.

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 1: How do we encode a typical message 𝑚 which is

a 𝑘-bit string?

 If 𝑘 ≥ 𝑁, then we will have to break the message into bit

chunks and then do appropriate padding. This will allow us to

get 𝑚1
′ , 𝑚2

′ , … ∈ 𝑍𝑁 which we can individually encrypt using

textbook RSA.

 Problem 2: What do we do if 𝑚 ∉ 𝑍𝑁
∗ (i.e., gcd 𝑚,𝑁 ≠ 1)?

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 1: How do we encode a typical message 𝑚 which is

a 𝑘-bit string?

 If 𝑘 ≥ 𝑁, then we will have to break the message into bit

chunks and then do appropriate padding. This will allow us to

get 𝑚1
′ , 𝑚2

′ , … ∈ 𝑍𝑁 which we can individually encrypt using

textbook RSA.

 Problem 2: What do we do if 𝑚 ∉ 𝑍𝑁
∗ (i.e., gcd 𝑚,𝑁 ≠ 1)?

 Let 𝑚 ∉ 𝑍𝑁
∗ , what is the value of [𝑚𝑒 𝑑 (𝑚𝑜𝑑 𝑁)]?

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 1: How do we encode a typical message 𝑚 which is

a 𝑘-bit string?

 If 𝑘 ≥ 𝑁, then we will have to break the message into bit

chunks and then do appropriate padding. This will allow us to

get 𝑚1
′ , 𝑚2

′ , … ∈ 𝑍𝑁 which we can individually encrypt using

textbook RSA.

 Problem 2: What do we do if 𝑚 ∉ 𝑍𝑁
∗ (i.e., gcd 𝑚,𝑁 ≠ 1)?

 Let 𝑚 ∉ 𝑍𝑁
∗ , what is the value of [𝑚𝑒 𝑑 (𝑚𝑜𝑑 𝑁)]?

 Answer: 𝑚

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 1: How do we encode a typical message 𝑚 which is

a 𝑘-bit string?

 Problem 2: What do we do if 𝑚 ∉ 𝑍𝑁
∗ (i.e., gcd 𝑚,𝑁 ≠ 1)?

 Claim 3: Given that the messages are random strings, the

probability that the encrypted message 𝑚 ∉ 𝑍𝑁
∗ is very

small.

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 1: How do we encode a typical message 𝑚 which is

a 𝑘-bit string?

 Problem 2: What do we do if 𝑚 ∉ 𝑍𝑁
∗ (i.e., gcd 𝑚,𝑁 ≠ 1)?

 Claim 3: Given that the messages are random strings, the

probability that the encrypted message 𝑚 ∉ 𝑍𝑁
∗ is very

small.

 Claim 4: It is computationally hard to find a message 𝑚 such

that 𝑚 ∉ 𝑍𝑁
∗ .

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 5: What is the running time for encrypting a

message 𝑚 ∈ 𝑍𝑁? That is, computing [𝑚𝑒 (𝑚𝑜𝑑 𝑁)]?

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 5: What is the running time for encrypting a

message 𝑚 ∈ 𝑍𝑁? That is, computing [𝑚𝑒 (𝑚𝑜𝑑 𝑁)]?

 Answer: 2𝑛 ⋅ 3 ⋅ 2𝑛 2 = 24𝑛3.

 Suppose we use a small value of 𝑒 (say 𝑒 = 3). Then encryption

is faster. 𝑂(𝑛2) instead of 𝑂(𝑛3).

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 5: What is the running time for encrypting a

message 𝑚 ∈ 𝑍𝑁? That is, computing [𝑚𝑒 (𝑚𝑜𝑑 𝑁)]?

 Answer: 2𝑛 ⋅ 3 ⋅ 2𝑛 2 = 24𝑛3.

 Suppose we use a small value of 𝑒 (say 𝑒 = 3). Then encryption

is faster. 𝑂(𝑛2) instead of 𝑂(𝑛3).

 Suppose we want decryption to be fast. Can we pick a small

𝑑 such that 𝑒 ⋅ 𝑑 ≡ 1 (𝑚𝑜𝑑 𝜙(𝑁))?

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 5: What is the running time for encrypting a

message 𝑚 ∈ 𝑍𝑁? That is, computing [𝑚𝑒 (𝑚𝑜𝑑 𝑁)]?

 Answer: 2𝑛 ⋅ 3 ⋅ 2𝑛 2 = 24𝑛3.

 Suppose we use a small value of 𝑒 (say 𝑒 = 3). Then encryption

is faster. 𝑂(𝑛2) instead of 𝑂(𝑛3).

 Suppose we want decryption to be fast. Can we pick a small

𝑑 such that 𝑒 ⋅ 𝑑 ≡ 1 (𝑚𝑜𝑑 𝜙(𝑁))?

 No. Since then an adversary can try all possible values of 𝑑 to

decrypt.

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 5: What is the running time for encrypting a

message 𝑚 ∈ 𝑍𝑁? That is, computing [𝑚𝑒 (𝑚𝑜𝑑 𝑁)]?

 Suppose we want decryption to be fast. Can we pick a small

𝑑 such that 𝑒 ⋅ 𝑑 ≡ 1 (𝑚𝑜𝑑 𝜙(𝑁))?

 Is there a way to make decryption faster?

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 5: What is the running time for encrypting a

message 𝑚 ∈ 𝑍𝑁? That is, computing [𝑚𝑒 (𝑚𝑜𝑑 𝑁)]?

 Suppose we want decryption to be fast. Can we pick a small

𝑑 such that 𝑒 ⋅ 𝑑 ≡ 1 (𝑚𝑜𝑑 𝜙(𝑁))?

 Is there a way to make decryption faster?

 CRT-RSA: Instead of computing [𝑐𝑑 (𝑚𝑜𝑑 𝑝)] and

[𝑐𝑑 (𝑚𝑜𝑑 𝑞)] and then use CRT to compute [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 5: What is the running time for encrypting a message
𝑚 ∈ 𝑍𝑁? That is, computing [𝑚𝑒 (𝑚𝑜𝑑 𝑁)]?

 Suppose we want decryption to be fast. Can we pick a small 𝑑
such that 𝑒 ⋅ 𝑑 ≡ 1 (𝑚𝑜𝑑 𝜙(𝑁))?

 Is there a way to make decryption faster?

 CRT-RSA: Instead of computing [𝑐𝑑 (𝑚𝑜𝑑 𝑝)] and [𝑐𝑑 (𝑚𝑜𝑑 𝑞)]
and then use CRT to compute [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Note that 𝑐𝑑 𝑚𝑜𝑑 𝑝 = [𝑐𝑑𝑝 (𝑚𝑜𝑑 𝑝)] and
𝑐𝑑𝑞 𝑚𝑜𝑑 𝑞 = [𝑐𝑑𝑞 (𝑚𝑜𝑑 𝑞)], where
 𝑑𝑝 = [𝑑 (𝑚𝑜𝑑 (𝑝 − 1))] and

 𝑑𝑞 = [𝑑 (𝑚𝑜𝑑 (𝑞 − 1))]

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Problem 5: What is the running time for encrypting a message
𝑚 ∈ 𝑍𝑁? That is, computing [𝑚𝑒 (𝑚𝑜𝑑 𝑁)]?

 Suppose we want decryption to be fast. Can we pick a small 𝑑
such that 𝑒 ⋅ 𝑑 ≡ 1 (𝑚𝑜𝑑 𝜙(𝑁))?

 Is there a way to make decryption faster?
 CRT-RSA: Instead of computing [𝑐𝑑 (𝑚𝑜𝑑 𝑝)] and [𝑐𝑑 (𝑚𝑜𝑑 𝑞)]

and then use CRT to compute [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].
 Note that 𝑐𝑑 𝑚𝑜𝑑 𝑝 = [𝑐𝑑𝑝 (𝑚𝑜𝑑 𝑝)] and

𝑐𝑑𝑞 𝑚𝑜𝑑 𝑞 = [𝑐𝑑𝑞 (𝑚𝑜𝑑 𝑞)], where
 𝑑𝑝 = [𝑑 (𝑚𝑜𝑑 (𝑝 − 1))] and

 𝑑𝑞 = [𝑑 (𝑚𝑜𝑑 (𝑞 − 1))]

 This reduces the running time by a constant factor.

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Attacks on Textbook-RSA:

 Encrypting short messages using small 𝑒:

 Suppose 𝑒 = 3 and 𝑚 < 𝑁1/3, is it possible to find 𝑚 from 𝑐 =
𝑚3 𝑚𝑜𝑑 𝑁 ?

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Attacks on Textbook-RSA:

 Encrypting short messages using small 𝑒:

 Suppose 𝑒 = 3 and 𝑚 < 𝑁1/3, is it possible to find 𝑚 from 𝑐 =
𝑚3 𝑚𝑜𝑑 𝑁 ?

 Yes. Simply compute 𝑐1/3.

 Encrypting same message under different keys using small 𝑒:

 Suppose 𝑚 is encrypted using the following public keys < 𝑁1, 3 >,< 𝑁2, 3 >
,< 𝑁3, 3 >, is it possible to find 𝑚?

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Attacks on Textbook-RSA:

 Encrypting short messages using small 𝑒:

 Suppose 𝑒 = 3 and 𝑚 < 𝑁1/3, is it possible to find 𝑚 from 𝑐 =
𝑚3 𝑚𝑜𝑑 𝑁 ?

 Yes. Simply compute 𝑐1/3.

 Encrypting same message under different keys using small 𝑒:

 Suppose 𝑚 is encrypted using the following public keys < 𝑁1, 3 >,< 𝑁2, 3 >
,< 𝑁3, 3 >, is it possible to find 𝑚?

 Yes. Compute 𝑚3 𝑚𝑜𝑑 𝑁1 , 𝑚
3 𝑚𝑜𝑑 𝑁2 , 𝑚

3 𝑚𝑜𝑑 𝑁3 → 𝑐 =
𝑚3 𝑚𝑜𝑑 𝑁1 ⋅ 𝑁2 ⋅ 𝑁3 .

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Attacks on Textbook-RSA:

 Encrypting short messages using small 𝑒:

 Encrypting same message under different keys using small 𝑒:

 Using same RSA modulus 𝑁 for creating different key pairs

< 𝑁, 𝑒1 >,< 𝑁, 𝑑1 > , < 𝑁, 𝑒2 >,< 𝑁, 𝑑2 > ,… for

different people.

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Attacks on Textbook-RSA:

 Encrypting short messages using small 𝑒:

 Encrypting same message under different keys using small 𝑒:

 Using same RSA modulus 𝑁 for creating different key pairs

< 𝑁, 𝑒1 >,< 𝑁, 𝑑1 > , < 𝑁, 𝑒2 >,< 𝑁, 𝑑2 > ,… for

different people.

1. Fact: 𝑁 can be factored using (𝑒𝑖 , 𝑑𝑖).

Textbook RSA: Nuts and Bolts
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 𝑍𝑁
∗ , compute the ciphertext 𝑐 = [𝑚𝑒 (𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)].

 Attacks on Textbook-RSA:

 Encrypting short messages using small 𝑒:

 Encrypting same message under different keys using small 𝑒:

 Using same RSA modulus 𝑁 for creating different key pairs

< 𝑁, 𝑒1 >,< 𝑁, 𝑑1 > , < 𝑁, 𝑒2 >,< 𝑁, 𝑑2 > ,… for

different people.

1. Fact: 𝑁 can be factored using (𝑒𝑖 , 𝑑𝑖).

2. If gcd 𝑒1, 𝑒2 = 1, then 𝑋 ⋅ 𝑒1 + 𝑌 ⋅ 𝑒2 = 1.Let 𝑐1 = 𝑚𝑒1 𝑚𝑜𝑑 𝑁
and 𝑐2 = [𝑚𝑒2(𝑚𝑜𝑑 𝑁)]. Then 𝑚 = 𝑐1

𝑋 ⋅ 𝑐2
𝑌 𝑚𝑜𝑑 𝑁 .

Padded RSA
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈

0,1 𝑙(𝑛), choose a random string 𝑟 ← 0,1 𝑁 −𝑙 𝑛 −1 and

compute the ciphertext 𝑐 = [𝑟||𝑚 𝑒(𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈
𝑍𝑁
∗ , compute the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)]. Output the 𝑙(𝑛)

low order bits of 𝑚.

Padded RSA
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 0,1 𝑙(𝑛),
choose a random string 𝑟 ← 0,1 𝑁 −𝑙 𝑛 −1 and compute the ciphertext 𝑐 =
[𝑟||𝑚 𝑒(𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁, compute
the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)]. Output the 𝑙(𝑛) low order bits of 𝑚.

 Can the above scheme be IND-CPA secure if 𝑙(𝑛) is large?

Padded RSA
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a message 𝑚 ∈ 0,1 𝑙(𝑛),
choose a random string 𝑟 ← 0,1 𝑁 −𝑙 𝑛 −1 and compute the ciphertext 𝑐 =
[𝑟||𝑚 𝑒(𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁, compute
the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)]. Output the 𝑙(𝑛) low order bits of 𝑚.

 Can the above scheme be IND-CPA secure if 𝑙(𝑛) is large?

 No. The adversary can try out all possibilities for the random string.

 What if 𝑙(𝑛) is small compared to 2𝑛?

 Theorem: If the RSA problem is hard relative to GenRSA, then the

above scheme with 𝑙 𝑛 = 𝑂(log 𝑛) has indistinguishable

encryptions under chosen-plaintext attack.

Case study:PKCS#1 v1.5
 𝐺𝑒𝑛: On input 1𝑛 run 𝐺𝑒𝑛𝑅𝑆𝐴 1𝑛 to obtain 𝑁, 𝑒, 𝑑. Let 𝑁 be 𝑘 bytes long.

 𝑝𝑘 =< 𝑁, 𝑒 >

 𝑠𝑘 =< 𝑁, 𝑑 >

 𝐸𝑛𝑐: On input a public key 𝑝𝑘 =< 𝑁, 𝑒 > and a 𝐷 byte long message 𝑚 such
that 𝐷 ≤ 𝑘 − 11, choose a random string 𝑟 ← 0,1 8(𝑘−𝐷−3) and compute the
ciphertext 𝑐 = [00000000| 00000010 |𝑟| 00000000 |𝑚 𝑒(𝑚𝑜𝑑 𝑁)].

 𝐷𝑒𝑐: On input a private key 𝑠𝑘 =< 𝑁, 𝑑 > and a ciphertext 𝑐 ∈ 𝑍𝑁, compute
the message 𝑚 = [𝑐𝑑 (𝑚𝑜𝑑 𝑁)]. Output the appropriate message.

 There are chosen ciphertext attacks on the above scheme.

This attacks decrypts a target ciphertext by using just 0/1

information regarding whether a few related ciphertexts

decrypt correctly or not!

End

