CSL759: Cryptography and Computer Security

Ragesh Jaiswal

CSE, IIT Delhi

- We would like to understand the success of polynomial time algorithms in factoring integers. We formally define this in terms of an experiment:
- Experiment Factor(*A*, *n*)
 - Choose two *n*-bit primes x_1 and x_2 at random.
 - Compute $N = x_1 \cdot x_2$
 - Adversary A is given N and let it output (x'_1, x'_2) .
 - If $(x'_1 \cdot x'_2 = N)$ then output 1 else output 0.
- How do we randomly generate an *n*-bit prime number?

- How do we randomly generate an *n*-bit prime number?
- GRP(1ⁿ)
 - For i = 1 to t
 - Randomly pick $p' \in \{0,1\}^{n-1}$
 - $p \leftarrow 1|p'$
 - If (p is prime) then output p
 - Output "fail"
- What is the probability (in terms of *t*) that the above algorithm outputs a prime number?

- How do we randomly generate an *n*-bit prime number?
- GRP(1ⁿ)
 - For i = 1 to t
 - Randomly pick $p' \in \{0,1\}^{n-1}$
 - $p \leftarrow 1|p'$
 - If (*p* is prime) then output *p*
 - Output "fail"
- What is the probability (in terms of *t*) that the above algorithm outputs a prime number?
- <u>Theorem (Prime Number Theorem</u>): There exists a constant *C* such that for any n > 1, the number of *n* bit primes is at least $C \cdot \frac{2^{n-1}}{n}$.

- How do we randomly generate an n-bit prime number?
- GRP(1ⁿ)
 - For i = 1 to t
 - Randomly pick $p' \in \{0,1\}^{n-1}$
 - $p \leftarrow 1 | p'$
 - If (*p* is prime) then output *p*
 - Output "fail"
- <u>Problem(Primality Testing)</u>: Given an integer N > 1, how do we check that it is prime or not?

- How do we randomly generate an *n*-bit prime number?
- GRP(1ⁿ)
 - For i = 1 to t
 - Randomly pick $p' \in \{0,1\}^{n-1}$
 - $p \leftarrow 1 | p'$
 - If (*p* is prime) then output *p*
 - Output "fail"
- <u>Problem(Primality Testing)</u>: Given an integer N > 1, how do we check that it is prime or not?
 - There is a randomized algorithm (Miller-Rabin) with one-sided error when the given number is composite. This algorithm runs very fast.
 - There is a polynomial time deterministic algorithm (AKS) too but it runs slower than the randomized algorithm.

Primality Testing

Miller-Rabin

Miller-Rabin Primality Test

• <u>Theorem 1</u>: The Miller-Rabin algorithm takes as input an integer N and a parameter t. If N is prime, then the algorithms outputs "prime" with probability 1. If N is composite, then the algorithm outputs "prime" with probability at most 2^{-t} . Moreover, the algorithm runs in time polynomial in t and the size of N.

- We would like to understand the success of polynomial time algorithms in factoring integers. We formally define this in terms of an experiment:
- GenModulus(1ⁿ)
 - Run GRP(1^{*n*}) to obtain *p*, *q*. Let $N = p \cdot q$. Return (*N*, *p*, *q*).
- Experiment Factor(*A*, GRP, *n*)
 - Run GenModulus (1^n) to obtain (N, p, q).
 - Compute $N = p \cdot q$
 - Adversary A is given N and let it output (p', q').
 - If $(p' \cdot q' = N)$ then output 1 else output 0.
- We say that factoring is hard w.r.t. GenModulus(1^n) if for all PPT algorithms A, there exists a negligible function negl such that $\Pr[Factor(A, GRP, n) = 1] \leq negl(n)$

The RSA Problem

- We would like to understand the success of polynomial time algorithms in solving the RSA problem. We formally define this in terms of an experiment.
- GenRSA (1^n)
 - Run GenModulus (1^n) to obtain (N, p, q).
 - Let $\phi(N) = (p-1) \cdot (q-1)$.
 - Find e such that $gcd(e, \phi(N)) = 1$.
 - Compute $d = [e^{-1} (mod \phi(N))].$
 - Return (*N*, *e*, *d*)
- Experiment RSA-inv(*A*, *GenRSA*, *n*)
 - Run GenRSA (1^n) to obtain (N, e, d).
 - Choose $y \leftarrow Z_N^*$.
 - A is given N, e, y, and outputs $x \in Z_N^*$.
 - If $(x^e \equiv y \pmod{N})$, then output 1 else output 0.

The RSA Problem

- GenRSA (1^n)
 - Run GenModulus (1^n) to obtain (N, p, q).
 - Let $\phi(N) = (p-1) \cdot (q-1)$.
 - Find *e* such that $gcd(e, \phi(N)) = 1$.
 - Compute $d = [e^{-1} \pmod{\phi(N)}].$
 - Return (*N*, *e*, *d*)
- Experiment RSA-inv(*A*, *GenRSA*, *n*)
 - Run GenRSA (1^n) to obtain (N, e, d).
 - Choose $y \leftarrow Z_N^*$.
 - A is given N, e, y, and outputs $x \in Z_N^*$.
 - If $(x^e \equiv y \pmod{N})$, then output 1 else output 0.
- We say that the RSA problem is hard relative to GenRSA if for all PPT algorithms A, there exists a negligible function negl such that $\Pr[RSA inv(A, GenRSA, n) = 1] \leq negl(n)$.

Factoring Vs RSA

Factoring Vs RSA

- Experiment RSA-inv(A, GenRSA, n)
 - Run GenRSA (1^n) to obtain (N, e, d).
 - Choose $y \leftarrow Z_N^*$.
 - A is given N, e, y, and outputs $x \in Z_N^*$.
 - If $(x^e \equiv y \pmod{N})$, then output 1 else output 0.

- Experiment Factor(A, GRP, n)
 - Run GenModulus(1ⁿ) to obtain (N, p, q).
 - Compute $N = p \cdot q$
 - Adversary A is given N and let it output (p', q').
 - If $(p' \cdot q' = N)$ then output 1 else output 0.
- Which is the harder problem?

Factoring Vs RSA

- Experiment RSA-inv(A, GenRSA, n)
 - Run GenRSA (1^n) to obtain (N, e, d).
 - Choose $y \leftarrow Z_N^*$.
 - A is given N, e, y, and outputs $x \in Z_N^*$.
 - If $(x^e \equiv y \pmod{N})$, then output 1 else output 0.

- Experiment Factor(A, GRP, n)
 - Run GenModulus(1ⁿ) to obtain (N, p, q).
 - Compute $N = p \cdot q$
 - Adversary A is given N and let it output (p', q').
 - If $(p' \cdot q' = N)$ then output 1 else output 0.
- Which is the harder problem?
- <u>Claim</u>: If the RSA problem is hard w.r.t. GenRSA, then the factoring problem is hard w.r.t. GenModulus.
- Is the converse also true?
 - Not known.

Cyclic Groups and Diffie-Hellman

- Let G be a finite group of order m.
- For any element $g \in G$, consider the set $\langle g \rangle = \{g^0, g^1, \dots, \}$.
- Since $g^m = 1$, we know that $\langle g \rangle = \{g^0, ..., g^{m-1}\}$.
- Let $i \le m$ be the smallest integer such that $g^i = 1$. Then $\langle g \rangle = \{g^0, g^1, \dots, g^{i-1}\}.$

• <u>Lemma 1</u>: | < g > | = i.

- Lemma 2: < g > is a subgroup of G.
 - < g > is called the subgroup generated by g.
 - The order of < g > is called the order of g in short.

- Let G be a finite group of order m.
- For any element $g \in G$, consider the set $\langle g \rangle = \{g^0, g^1, \dots, \}$.
- Since $g^m = 1$, we know that $\langle g \rangle = \{g^0, ..., g^{m-1}\}$.
- Let $i \le m$ be the smallest integer such that $g^i = 1$. Then $\langle g \rangle = \{g^0, g^1, \dots, g^{i-1}\}.$

• <u>Lemma 1</u>: | < g > | = i.

- Lemma 2: < g > is a subgroup of G.
 - < g > is called the subgroup generated by g.
 - The order of < g > is called the order of g in short.
- Lemma 3: Let $g \in G$ be aby element of order *i*. Then for any integer x, we have $g^x = g^{[x \pmod{i}]}$.

- Let G be a finite group of order m.
- For any element $g \in G$, consider the set $\langle g \rangle = \{g^0, g^1, \dots, \}$.
- Since $g^m = 1$, we know that $\langle g \rangle = \{g^0, ..., g^{m-1}\}$.
- Let $i \le m$ be the smallest integer such that $g^i = 1$. Then $\langle g \rangle = \{g^0, g^1, \dots, g^{i-1}\}.$
- <u>Lemma 1</u>: | < g > | = i.
- Lemma 2: < g > is a subgroup of G.
 - < g > is called the subgroup generated by g.
 - The order of < g > is called the order of g in short.
- Lemma 3: Let $g \in G$ be any element of order *i*. Then for any integer x, we have $g^x = g^{[x \pmod{i}]}$.
- Lemma 4: Let i be the order of an element $g \in G$. Then i|m.

- Let *G* be a finite group of order *m*.
- For any element $g \in G$, consider the set $\langle g \rangle = \{g^0, g^1, \dots, \}$.
- Since $g^m = 1$, we know that $\langle g \rangle = \{g^0, ..., g^{m-1}\}$.
- Let $i \le m$ be the smallest integer such that $g^i = 1$. Then $\langle g \rangle = \{g^0, g^1, \dots, g^{i-1}\}.$
- <u>Lemma 1</u>: | < g > | = i.
- Lemma 2: < g > is a subgroup of G.
 - < g > is called the subgroup generated by g.
 - The order of $\langle g \rangle$ is called the order of g in short.
- Lemma 3: Let $g \in G$ be any element of order *i*. Then for any integer x, we have $g^x = g^{[x \pmod{i}]}$.
- Definition (Cyclic group and generator): If there an element $g \in G$ of order m, then G is called a cyclic group and say that g is a generator of G.

- <u>Definition (Cyclic group and generator</u>): If there an element $g \in G$ of order m, then G is called a cyclic group and say that g is a generator of G.
- Lemma 4: Let G be a group of order m. Let i be the order of an element $g \in G$. Then i|m.
- Lemma 5: If G is a group of prime order, then G is cyclic. Furthermore, all elements of G except the identity are generators of G.
- <u>Theorem 6</u>: If p is prime, then Z_p^* is cyclic.

- Let G be a cyclic group of order q and let g be a generator.
- For every $h \in G$, there exists $x \in Z_q$ such that $g^x = h$.
- x is called the discrete logarithm of h with respect to g. This is denoted as $x = \log_g h$.
- Lemma 1: $\log_g 1 = 0$.
- Lemma 2: $\log_g(h_1 \cdot h_2) = [(\log_g h_1 + \log_g h_2)(mod q)].$
- We now formally define the Discrete Logarithm problem.

- Let *Gen* be an algorithm that takes as input 1^n and outputs a cyclic group *G* of order *q* such that |q| = n and a generator *g* for *G*.
- Experiment Dlog(*A*, *Gen n*)
 - Run $Gen(1^n)$ to obtain (G, q, g).
 - Choose $h \leftarrow G$ uniformly at random.
 - A is given G, q, g, h and let its output be $x \in Z_q$.
 - If $(g^x = h)$, then output 1 else output 0.
- We say that the discrete logarithm problem is hard relative to *Gen* if for all PPT algorithms *A*, there exists a negligible function negl such that $Pr[DLog(A, Gen, n) = 1] \leq negl(n)$.

- Let *Gen* be an algorithm that takes as input 1^n and outputs a cyclic group G of order q such that |q| = n and a generator g for G.
- Experiment Dlog(*A*, *Gen n*)
 - Run $Gen(1^n)$ to obtain (G, q, g).
 - Choose $h \leftarrow G$ uniformly at random.
 - A is given G, q, g, h and let its output be $x \in Z_q$.
 - If $(g^x = h)$, then output 1 else output 0.
- We say that the discrete logarithm problem is hard relative to *Gen* if for all PPT algorithms *A*, there exists a negligible function negl such that $Pr[DLog(A, Gen, n) = 1] \leq negl(n)$.
- Is there a *Gen* w.r.t. which discrete log is hard?

Index Calculus

Let p be a prime and $G = \mathbf{Z}_{p}^{*}$. Then there is an algorithm that finds discrete logs in G in time

 $_{
m P}$ 1.92(ln p)^{1/3}(ln ln p)^{2/3}

This is sub-exponential, and quite a bit less than

 $\sqrt{p} = e^{(\ln p)/2}$

Note: The actual running time is $e^{1.92(\ln q)^{1/3}(\ln \ln q)^{2/3}}$ where q is the largest prime factor of p-1, but we chose p so that $q \approx p$, for example p-1=2q for q a prime.

Elliptic Curve Groups

Let G be a prime-order group of points over an elliptic curve. Then the best known algorithm to compute discrete logs takes time

 $O(\sqrt{p})$

where p = |G|.

4 D > 4 B > 4 E > 4 E > E - 9 Q C 46 / 70

Comparison

Say we want 80-bits of security, meaning discrete log computation by the best known algorithm should take time 2⁸⁰. Then

- If we work in \mathbf{Z}_p^* (p a prime) we need to set $|\mathbf{Z}_p^*| = p 1 \approx 2^{1024}$
- But if we work on an elliptic curve group of prime order p then it suffices to set p ≈ 2¹⁶⁰.

Why?

$$e^{1.92(\ln 2^{1024})^{1/3}(\ln \ln 2^{1024})^{2/3}} \approx \sqrt{2^{160}} = 2^{80}$$

Why are Smaller Groups Preferable?

Exponentiation takes time cubic in $\log |G|$ where G is the group. Encryption and decryption will be 260 times faster in the smaller group!

法国际 法国际

- つへで 48 / 70

- Let G be a cyclic group with generator g.
- Let $DH_g(h_1, h_2) = g^{\log_g h_1 \cdot \log_g h_2}$, that is if $h_1 = g^x$ and $h_2 = g^y$, then $DH_g(h_1, h_2) = g^{x \cdot y}$.
- <u>Computational Diffie-Hellman(CDH)</u>: Compute $DH_g(h_1, h_2)$ for randomly chosen h_1, h_2 .
- <u>Claim 1</u>: The CDH problem is not harder than Discrete Log problem.

- Let G be a cyclic group with generator g.
- Let $DH_g(h_1, h_2) = g^{\log_g h_1 \cdot \log_g h_2}$, that is if $h_1 = g^x$ and $h_2 = g^y$, then $DH_g(h_1, h_2) = g^{x \cdot y}$.
- <u>Computational Diffie-Hellman(CDH)</u>: Compute $DH_g(h_1, h_2)$ for randomly chosen h_1, h_2 .
- <u>Claim 1</u>: The CDH problem is not harder than Discrete Log problem.
- <u>Decisional Diffie-Hellman(DDH)</u>: Distinguish $DH_g(h_1, h_2)$ from randomly chosen $h' \in G$.
 - We say that the DDH problem is hard relative to *Gen* if for all PPT algorithms *A*, there exists a negligible function *negl* such that

 $|\Pr[A(G,q,g,g^x,g^y,g^z)=1] - \Pr[A(G,q,g,g^x,g^y,g^{xy})=1]| \le negl(n).$

- DL \rightarrow CDH \rightarrow DDH
- Is there a *Gen* w.r.t. which DDH problem is hard?
 - Yes. We will see this shortly.

Run *Gen* to obtain (G, q, g)Pick $x \in Z_q$ randomly and let $h_1 = g^x$.

 $K = K_A = K_B = g^{xy}$

Note that the adversary sees g^{χ} and g^{γ} but does not know $g^{\chi\gamma}$

Run *Gen* to obtain (G, q, g)Pick $x \in Z_q$ randomly and let $h_1 = g^x$.

- Note that the adversary sees g^x and g^y but does not know g^{xy} . - When do we call a key exchange protocol secure?

Run *Gen* to obtain (G, q, g)Pick $x \in Z_q$ randomly and let $h_1 = g^x$.

Pick $y \in Z_q$ randomly and let $h_2 = g^y$.

- Note that the adversary sees g^x and g^y but does not know g^{xy} .

- When do we call a key exchange protocol secure?
 - When an adversary knows *nothing* about K.

Security: Key Exchange Protocols

- Experiment $KE_{A,\Pi}(n)$
 - Two parties execute the key exchange protocol Π. This execution of the protocol results in a transcript *trans* containing all the messages sent by the parties, and a key k that is output by each of the parties.
 - A random bit $b \in \{0,1\}$ is chosen. If b = 0, then choose $k' \leftarrow \{0,1\}^n$ uniformly at random, and if b = 1, set k' = k.
 - Adversary A is given trans and k' and let it output bit b'.
 - If (b = b'), then output 1 else output 0.
- <u>Definition(Security)</u>: A key-exchange protocol Π is secure in the presence of an eavesdropper if for every PPT adversary A there exists a negligible function negl such that

$$\Pr\left[KE_{A,\Pi}(n)=1\right] \leq \frac{1}{2} + negl(n).$$

Security: Key Exchange Protocols

- Experiment $KE_{A,\Pi}(n)$
 - Two parties execute the key exchange protocol Π. This execution of the protocol results in a transcript *trans* containing all the messages sent by the parties, and a key k that is output by each of the parties.
 - A random bit $b \in \{0,1\}$ is chosen. If b = 0, then choose $k' \leftarrow \{0,1\}^n$ uniformly at random, and if b = 1, set k' = k.
 - Adversary A is given *trans* and k' and let it output bit b'.
 - If (b = b'), then output 1 else output 0.
- <u>Definition(Security)</u>: A key-exchange protocol Π is secure in the presence of an eavesdropper if for every PPT adversary A there exists a negligible function *negl* such that

$$\Pr\left[KE_{A,\Pi}(n)=1\right] \leq \frac{1}{2} + negl(n).$$

<u>Theorem(informal)</u>: If the DDH problem is hard w.r.t.
 Gen, then the Diffie-Hellman key exchange protocol is secure as per the above notion of security.

Run *Gen* to obtain (G, q, g)Pick $x \in Z_q$ randomly and let $h_1 = g^x$.

• So can we safely deploy Diffie-Hellman key exchange protocol?

Run *Gen* to obtain (G, q, g)Pick $x \in Z_q$ randomly and let $h_1 = g^x$.

• So can we safely deploy Diffie-Hellman key exchange protocol?

• No there is a simple attack on the protocol called *man-in-the-middle-attack*.

Run *Gen* to obtain (G, q, g)Pick $x \in Z_q$ randomly and let $h_1 = g^x$.

- So can we safely deploy Diffie-Hellman key exchange protocol?
- No there is a simple attack on the protocol called *man-in-the-middle-attack*.
- So is our security notion weak?
 - No it is a strong notion but for *passive* adversaries only.

Diffie-Hellman Key Exchange: MITM attack

Run *Gen* to obtain (G, q, g) G, q, g, g^x $G, q, g, g^{x'}$ $g^{y'}$ g^{y} attacker Bob uses $g^{x'y}$ Alice uses $g^{xy'}$ Malcolm uses $g^{xy'}$ with Alice $g^{x'y}$ with Bob

Diffie-Hellman Key Exchange: MITM attack

- So, do we actually use Diffile-Hallman key exchange protocol in practice.
 - Yes but in a more sophisticated form.

Case study: TLS handshake protocol

- <u>Server Certificate</u>: [pk, Sign_{skg}(pk)]
 - *pk* is the public key of the sever.
 - sk_G is the secret key of the trusted authority.

End

Slides 26-29 and 33 use Mihir Bellare's slides.