
Ragesh Jaiswal

CSE, IIT Delhi

CSL759: Cryptography and Computer

Security

The Factoring Problem

The Factoring Problem

 We would like to understand the success of polynomial time

algorithms in factoring integers. We formally define this in

terms of an experiment:

 Experiment Factor(𝐴, 𝑛)

 Choose two 𝑛-bit primes 𝑥1 and 𝑥2 at random.

 Compute 𝑁 = 𝑥1 ⋅ 𝑥2
 Adversary 𝐴 is given 𝑁 and let it output (𝑥1

′ , 𝑥2
′).

 If (𝑥1
′ ⋅ 𝑥2

′ = 𝑁) then output 1 else output 0.

 How do we randomly generate an 𝑛-bit prime number?

The Factoring Problem

 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)

 For 𝑖 = 1 to 𝑡
 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 What is the probability (in terms of 𝑡) that the above

algorithm outputs a prime number?

The Factoring Problem

 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)

 For 𝑖 = 1 to 𝑡
 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 What is the probability (in terms of 𝑡) that the above

algorithm outputs a prime number?

 Theorem (Prime Number Theorem): There exists a constant

𝑐 such that for any 𝑛 > 1, the number of 𝑛 bit primes is at

least 𝑐 ⋅
2𝑛−1

𝑛
.

The Factoring Problem

 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)

 For 𝑖 = 1 to 𝑡
 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 Problem(Primality Testing): Given an integer 𝑁 > 1, how

do we check that it is prime or not?

The Factoring Problem

 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)
 For 𝑖 = 1 to 𝑡

 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 Problem(Primality Testing): Given an integer 𝑁 > 1, how
do we check that it is prime or not?

 There is a randomized algorithm (Miller-Rabin) with one-sided
error when the given number is composite. This algorithm runs
very fast.

 There is a polynomial time deterministic algorithm (AKS) too
but it runs slower than the randomized algorithm.

Primality Testing

Miller-Rabin

Miller-Rabin Primality Test
 Theorem 1: The Miller-Rabin algorithm takes as input an

integer 𝑁 and a parameter 𝑡. If 𝑁 is prime, then the

algorithms outputs “prime” with probability 1. If 𝑁 is

composite, then the algorithm outputs “prime” with

probability at most 2−𝑡. Moreover, the algorithm runs in

time polynomial in 𝑡 and the size of 𝑁.

The Factoring Problem

 We would like to understand the success of polynomial time

algorithms in factoring integers. We formally define this in terms

of an experiment:

 GenModulus(1𝑛)

 Run GRP(1𝑛) to obtain 𝑝, 𝑞. Let 𝑁 = 𝑝 ⋅ 𝑞. Return (𝑁, 𝑝, 𝑞).

 Experiment Factor(𝐴, GRP, 𝑛)

 Run GenModulus(1𝑛) to obtain (𝑁, 𝑝, 𝑞).

 Compute 𝑁 = 𝑝 ⋅ 𝑞

 Adversary 𝐴 is given 𝑁 and let it output (𝑝′, 𝑞′).

 If (𝑝′ ⋅ 𝑞′ = 𝑁) then output 1 else output 0.

 We say that factoring is hard w.r.t. GenModulus(1𝑛) if for all PPT

algorithms 𝐴, there exists a negligible function 𝑛𝑒𝑔𝑙 such that

Pr 𝐹𝑎𝑐𝑡𝑜𝑟 𝐴, 𝐺𝑅𝑃, 𝑛 = 1 ≤ 𝑛𝑒𝑔𝑙(𝑛)

The RSA Problem

 We would like to understand the success of polynomial time
algorithms in solving the RSA problem. We formally define
this in terms of an experiment.

 GenRSA(1𝑛)

 Run GenModulus(1𝑛) to obtain (𝑁, 𝑝, 𝑞).
 Let 𝜙 𝑁 = 𝑝 − 1 ⋅ (𝑞 − 1).

 Find 𝑒 such that gcd 𝑒, 𝜙 𝑁 = 1.

 Compute 𝑑 = [𝑒−1 (𝑚𝑜𝑑 𝜙(𝑁))].
 Return (𝑁, 𝑒, 𝑑)

 Experiment RSA-inv(𝐴, 𝐺𝑒𝑛𝑅𝑆𝐴, 𝑛)
 Run GenRSA(1𝑛) to obtain (𝑁, 𝑒, 𝑑).
 Choose 𝑦 ← 𝑍𝑁

∗ .

 𝐴 is given 𝑁, 𝑒, 𝑦, and outputs 𝑥 ∈ 𝑍𝑁
∗ .

 If (𝑥𝑒 ≡ 𝑦 (𝑚𝑜𝑑 𝑁)), then output 1 else output 0.

The RSA Problem
 GenRSA(1𝑛)

 Run GenModulus(1𝑛) to obtain (𝑁, 𝑝, 𝑞).

 Let 𝜙 𝑁 = 𝑝 − 1 ⋅ (𝑞 − 1).

 Find 𝑒 such that gcd 𝑒, 𝜙 𝑁 = 1.

 Compute 𝑑 = [𝑒−1 (𝑚𝑜𝑑 𝜙(𝑁))].

 Return (𝑁, 𝑒, 𝑑)

 Experiment RSA-inv(𝐴, 𝐺𝑒𝑛𝑅𝑆𝐴, 𝑛)
 Run GenRSA(1𝑛) to obtain (𝑁, 𝑒, 𝑑).
 Choose 𝑦 ← 𝑍𝑁

∗ .

 𝐴 is given 𝑁, 𝑒, 𝑦, and outputs 𝑥 ∈ 𝑍𝑁
∗ .

 If (𝑥𝑒 ≡ 𝑦 (𝑚𝑜𝑑 𝑁)), then output 1 else output 0.

 We say that the RSA problem is hard relative to GenRSA if
for all PPT algorithms 𝐴, there exists a negligible function
𝑛𝑒𝑔𝑙 such that Pr 𝑅𝑆𝐴 − 𝑖𝑛𝑣 𝐴, 𝐺𝑒𝑛𝑅𝑆𝐴, 𝑛 = 1 ≤
𝑛𝑒𝑔𝑙(𝑛).

Factoring Vs RSA

Factoring Vs RSA

 Experiment RSA-inv(𝐴, 𝐺𝑒𝑛𝑅𝑆𝐴, 𝑛)

 Run GenRSA(1𝑛) to obtain

(𝑁, 𝑒, 𝑑).

 Choose 𝑦 ← 𝑍𝑁
∗ .

 𝐴 is given 𝑁, 𝑒, 𝑦, and outputs 𝑥 ∈
𝑍𝑁
∗ .

 If (𝑥𝑒 ≡ 𝑦 (𝑚𝑜𝑑 𝑁)), then output

1 else output 0.

 Experiment Factor(𝐴, GRP, 𝑛)

 Run GenModulus(1𝑛) to obtain

(𝑁, 𝑝, 𝑞).

 Compute 𝑁 = 𝑝 ⋅ 𝑞

 Adversary 𝐴 is given 𝑁 and let it

output (𝑝′, 𝑞′).

 If (𝑝′ ⋅ 𝑞′ = 𝑁) then output 1 else

output 0.

 Which is the harder problem?

Factoring Vs RSA

 Experiment RSA-inv(𝐴, 𝐺𝑒𝑛𝑅𝑆𝐴, 𝑛)

 Run GenRSA(1𝑛) to obtain

(𝑁, 𝑒, 𝑑).

 Choose 𝑦 ← 𝑍𝑁
∗ .

 𝐴 is given 𝑁, 𝑒, 𝑦, and outputs 𝑥 ∈
𝑍𝑁
∗ .

 If (𝑥𝑒 ≡ 𝑦 (𝑚𝑜𝑑 𝑁)), then output

1 else output 0.

 Experiment Factor(𝐴, GRP, 𝑛)

 Run GenModulus(1𝑛) to obtain

(𝑁, 𝑝, 𝑞).

 Compute 𝑁 = 𝑝 ⋅ 𝑞

 Adversary 𝐴 is given 𝑁 and let it

output (𝑝′, 𝑞′).

 If (𝑝′ ⋅ 𝑞′ = 𝑁) then output 1 else

output 0.

 Which is the harder problem?

 Claim: If the RSA problem is hard w.r.t. GenRSA, then the

factoring problem is hard w.r.t. GenModulus.

 Is the converse also true?

 Not known.

Cyclic Groups and Diffie-Hellman

Cyclic Groups
 Let 𝐺 be a finite group of order 𝑚.

 For any element 𝑔 ∈ 𝐺, consider the set < 𝑔 > =
{𝑔0, 𝑔1, … , }.

 Since 𝑔𝑚 = 1, we know that < 𝑔 > = {𝑔0, … , 𝑔𝑚−1}.

 Let 𝑖 ≤ 𝑚 be the smallest integer such that 𝑔𝑖 = 1. Then

< 𝑔 > = {𝑔0, 𝑔1, … , 𝑔𝑖−1}.

 Lemma 1: | < 𝑔 > | = 𝑖.

 Lemma 2: < 𝑔 > is a subgroup of 𝐺.

 < 𝑔 > is called the subgroup generated by 𝑔.

 The order of < 𝑔 > is called the order of 𝑔 in short.

Cyclic Groups
 Let 𝐺 be a finite group of order 𝑚.

 For any element 𝑔 ∈ 𝐺, consider the set < 𝑔 > =
{𝑔0, 𝑔1, … , }.

 Since 𝑔𝑚 = 1, we know that < 𝑔 > = {𝑔0, … , 𝑔𝑚−1}.

 Let 𝑖 ≤ 𝑚 be the smallest integer such that 𝑔𝑖 = 1. Then

< 𝑔 > = {𝑔0, 𝑔1, … , 𝑔𝑖−1}.

 Lemma 1: | < 𝑔 > | = 𝑖.

 Lemma 2: < 𝑔 > is a subgroup of 𝐺.

 < 𝑔 > is called the subgroup generated by 𝑔.

 The order of < 𝑔 > is called the order of 𝑔 in short.

 Lemma 3: Let 𝑔 ∈ 𝐺 be aby element of order 𝑖.Then for any

integer 𝑥, we have 𝑔𝑥 = 𝑔[𝑥 (𝑚𝑜𝑑 𝑖)].

Cyclic Groups
 Let 𝐺 be a finite group of order 𝑚.

 For any element 𝑔 ∈ 𝐺, consider the set < 𝑔 > =
{𝑔0, 𝑔1, … , }.

 Since 𝑔𝑚 = 1, we know that < 𝑔 > = {𝑔0, … , 𝑔𝑚−1}.

 Let 𝑖 ≤ 𝑚 be the smallest integer such that 𝑔𝑖 = 1. Then

< 𝑔 > = {𝑔0, 𝑔1, … , 𝑔𝑖−1}.

 Lemma 1: | < 𝑔 > | = 𝑖.

 Lemma 2: < 𝑔 > is a subgroup of 𝐺.

 < 𝑔 > is called the subgroup generated by 𝑔.

 The order of < 𝑔 > is called the order of 𝑔 in short.

 Lemma 3: Let 𝑔 ∈ 𝐺 be any element of order 𝑖.Then for any

integer 𝑥, we have 𝑔𝑥 = 𝑔[𝑥 (𝑚𝑜𝑑 𝑖)].

 Lemma 4: Let 𝑖 be the order of an element 𝑔 ∈ 𝐺. Then 𝑖|𝑚.

Cyclic Groups
 Let 𝐺 be a finite group of order 𝑚.

 For any element 𝑔 ∈ 𝐺, consider the set < 𝑔 > = {𝑔0, 𝑔1, … , }.

 Since 𝑔𝑚 = 1, we know that < 𝑔 > = {𝑔0, … , 𝑔𝑚−1}.

 Let 𝑖 ≤ 𝑚 be the smallest integer such that 𝑔𝑖 = 1. Then

< 𝑔 > = {𝑔0, 𝑔1, … , 𝑔𝑖−1}.

 Lemma 1: | < 𝑔 > | = 𝑖.

 Lemma 2: < 𝑔 > is a subgroup of 𝐺.

 < 𝑔 > is called the subgroup generated by 𝑔.

 The order of < 𝑔 > is called the order of 𝑔 in short.

 Lemma 3: Let 𝑔 ∈ 𝐺 be any element of order 𝑖.Then for any integer 𝑥, we

have 𝑔𝑥 = 𝑔[𝑥 (𝑚𝑜𝑑 𝑖)].

 Definition (Cyclic group and generator): If there an element

𝑔 ∈ 𝐺 of order 𝑚, then 𝐺 is called a cyclic group and say

that 𝑔 is a generator of 𝐺.

Cyclic Groups
 Definition (Cyclic group and generator): If there an element

𝑔 ∈ 𝐺 of order 𝑚, then 𝐺 is called a cyclic group and say

that 𝑔 is a generator of 𝐺.

 Lemma 4: Let 𝐺 be a group of order 𝑚. Let 𝑖 be the order of

an element 𝑔 ∈ 𝐺. Then 𝑖|𝑚.

 Lemma 5: If 𝐺 is a group of prime order, then 𝐺 is cyclic.

Furthermore, all elements of 𝐺 except the identity are

generators of 𝐺.

 Theorem 6: If 𝑝 is prime, then 𝑍𝑝
∗ is cyclic.

Discrete Logarithm Problem

Discerete Logarithm Problem
 Let 𝐺 be a cyclic group of order 𝑞 and let 𝑔 be a generator.

 For every ℎ ∈ 𝐺, there exists 𝑥 ∈ 𝑍𝑞 such that 𝑔𝑥 = ℎ.

 𝑥 is called the discrete logarithm of ℎ with respect to 𝑔. This

is denoted as 𝑥 = log𝑔 ℎ.

 Lemma 1: log𝑔 1 = 0.

 Lemma 2: log𝑔 ℎ1 ⋅ ℎ2 = [log𝑔 ℎ1 + log𝑔 ℎ2 (𝑚𝑜𝑑 𝑞)].

 We now formally define the Discrete Logarithm problem.

Discerete Logarithm Problem
 Let 𝐺𝑒𝑛 be an algorithm that takes as input 1𝑛 and outputs a

cyclic group 𝐺 of order 𝑞 such that 𝑞 = 𝑛 and a generator 𝑔 for

𝐺.

 Experiment Dlog(𝐴, 𝐺𝑒𝑛 𝑛)

 Run 𝐺𝑒𝑛(1𝑛) to obtain (𝐺, 𝑞, 𝑔).

 Choose ℎ ← 𝐺 uniformly at random.

 𝐴 is given 𝐺, 𝑞, 𝑔, ℎ and let its output be 𝑥 ∈ 𝑍𝑞.

 If (𝑔𝑥 = ℎ), then output 1 else output 0.

 We say that the discrete logarithm problem is hard relative to

𝐺𝑒𝑛 if for all PPT algorithms 𝐴, there exists a negligible

function 𝑛𝑒𝑔𝑙 such that Pr 𝐷𝐿𝑜𝑔 𝐴, 𝐺𝑒𝑛, 𝑛 = 1 ≤
𝑛𝑒𝑔𝑙(𝑛).

Discerete Logarithm Problem
 Let 𝐺𝑒𝑛 be an algorithm that takes as input 1𝑛 and outputs a

cyclic group 𝐺 of order 𝑞 such that 𝑞 = 𝑛 and a generator 𝑔 for

𝐺.

 Experiment Dlog(𝐴, 𝐺𝑒𝑛 𝑛)

 Run 𝐺𝑒𝑛(1𝑛) to obtain (𝐺, 𝑞, 𝑔).

 Choose ℎ ← 𝐺 uniformly at random.

 𝐴 is given 𝐺, 𝑞, 𝑔, ℎ and let its output be 𝑥 ∈ 𝑍𝑞.

 If (𝑔𝑥 = ℎ), then output 1 else output 0.

 We say that the discrete logarithm problem is hard relative to

𝐺𝑒𝑛 if for all PPT algorithms 𝐴, there exists a negligible

function 𝑛𝑒𝑔𝑙 such that Pr 𝐷𝐿𝑜𝑔 𝐴, 𝐺𝑒𝑛, 𝑛 = 1 ≤
𝑛𝑒𝑔𝑙(𝑛).

 Is there a 𝐺𝑒𝑛 w.r.t. which discrete log is hard?

Discerete Logarithm Problem

Discerete Logarithm Problem

Discerete Logarithm Problem

Discerete Logarithm Problem

Diffie-Hellman Problems

Diffie-Hellman Problems
 Let 𝐺 be a cyclic group with generator 𝑔.

 Let 𝐷𝐻𝑔 ℎ1, ℎ2 = 𝑔log𝑔 ℎ1⋅log𝑔 ℎ2, that is if ℎ1 = 𝑔𝑥

and ℎ2 = 𝑔𝑦, then 𝐷𝐻𝑔 ℎ1, ℎ2 = 𝑔𝑥⋅𝑦.

 Computational Diffie-Hellman(CDH): Compute

𝐷𝐻𝑔(ℎ1, ℎ2) for randomly chosen ℎ1, ℎ2.

 Claim 1: The CDH problem is not harder than Discrete Log

problem.

Diffie-Hellman Problems
 Let 𝐺 be a cyclic group with generator 𝑔.

 Let 𝐷𝐻𝑔 ℎ1, ℎ2 = 𝑔log𝑔 ℎ1⋅log𝑔 ℎ2, that is if ℎ1 = 𝑔𝑥

and ℎ2 = 𝑔𝑦, then 𝐷𝐻𝑔 ℎ1, ℎ2 = 𝑔𝑥⋅𝑦.

 Computational Diffie-Hellman(CDH): Compute
𝐷𝐻𝑔(ℎ1, ℎ2) for randomly chosen ℎ1, ℎ2.

 Claim 1: The CDH problem is not harder than Discrete Log
problem.

 Decisional Diffie-Hellman(DDH): Distinguish 𝐷𝐻𝑔(ℎ1, ℎ2)
from randomly chosen ℎ′ ∈ 𝐺.

 We say that the DDH problem is hard relative to 𝐺𝑒𝑛 if for all
PPT algorithms 𝐴, there exists a negligible function 𝑛𝑒𝑔𝑙 such
that
| Pr 𝐴 𝐺, 𝑞, 𝑔, 𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧 = 1 − Pr[𝐴 𝐺, 𝑞, 𝑔, 𝑔𝑥 , 𝑔𝑦 , 𝑔𝑥𝑦 = 1]| ≤ 𝑛𝑒𝑔𝑙(𝑛).

Diffie-Hellman Problems
 DL CDH DDH

 Is there a 𝐺𝑒𝑛 w.r.t. which DDH problem is hard?

 Yes. We will see this shortly.

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

Note that the adversary sees 𝑔𝑥 and 𝑔𝑦 but does not know 𝑔𝑥𝑦

Diffie-Hellman Key Exchange

Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

- Note that the adversary sees 𝑔𝑥 and 𝑔𝑦 but does not know 𝑔𝑥𝑦.

-When do we call a key exchange protocol secure?

Diffie-Hellman Key Exchange

Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

- Note that the adversary sees 𝑔𝑥 and 𝑔𝑦 but does not know 𝑔𝑥𝑦.

- When do we call a key exchange protocol secure?

- When an adversary knows nothing about 𝐾.

Security: Key Exchange Protocols

 Experiment 𝐾𝐸𝐴,Π 𝑛
 Two parties execute the key exchange protocol Π. This

execution of the protocol results in a transcript 𝑡𝑟𝑎𝑛𝑠
containing all the messages sent by the parties, and a key 𝑘 that
is output by each of the parties.

 A random bit 𝑏 ∈ {0,1} is chosen. If 𝑏 = 0, then choose 𝑘′ ←
0,1 𝑛 uniformly at random, and if 𝑏 = 1, set 𝑘′ = 𝑘.

 Adversary 𝐴 is given 𝑡𝑟𝑎𝑛𝑠 and 𝑘′ and let it output bit 𝑏′.
 If 𝑏 = 𝑏′ , then output 1 else output 0.

 Definition(Security): A key-exchange protocol Π is secure in
the presence of an eavesdropper if for every PPT adversary 𝐴
there exists a negligible function 𝑛𝑒𝑔𝑙 such that

Pr 𝐾𝐸𝐴,Π 𝑛 = 1 ≤
1

2
+ 𝑛𝑒𝑔𝑙 𝑛 .

Security: Key Exchange Protocols

 Experiment 𝐾𝐸𝐴,Π 𝑛

 Two parties execute the key exchange protocol Π. This execution of the protocol

results in a transcript 𝑡𝑟𝑎𝑛𝑠 containing all the messages sent by the parties, and a key

𝑘 that is output by each of the parties.

 A random bit 𝑏 ∈ {0,1} is chosen. If 𝑏 = 0, then choose 𝑘′ ← 0,1 𝑛 uniformly at

random, and if 𝑏 = 1, set 𝑘′ = 𝑘.

 Adversary 𝐴 is given 𝑡𝑟𝑎𝑛𝑠 and 𝑘′ and let it output bit 𝑏′.

 If 𝑏 = 𝑏′ , then output 1 else output 0.

 Definition(Security): A key-exchange protocol Π is secure in the presence of an

eavesdropper if for every PPT adversary 𝐴 there exists a negligible function

𝑛𝑒𝑔𝑙 such that

Pr 𝐾𝐸𝐴,Π 𝑛 = 1 ≤
1

2
+ 𝑛𝑒𝑔𝑙 𝑛 .

 Theorem(informal): If the DDH problem is hard w.r.t.

𝐺𝑒𝑛, then the Diffie-Hellman key exchange protocol is

secure as per the above notion of security.

Diffie-Hellman Key Exchange
Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

 So can we safely deploy Diffie-Hellman key exchange protocol?

Diffie-Hellman Key Exchange
Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

 So can we safely deploy Diffie-Hellman key exchange protocol?

 No there is a simple attack on the protocol called man-in-the-

middle-attack.

Diffie-Hellman Key Exchange
Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

 So can we safely deploy Diffie-Hellman key exchange protocol?

 No there is a simple attack on the protocol called man-in-the-middle-
attack.

 So is our security notion weak?
 No it is a strong notion but for passive adversaries only.

Diffie-Hellman Key Exchange: MITM attack

Run 𝐺𝑒𝑛 to

obtain (𝐺, 𝑞, 𝑔)
𝐺, 𝑞, 𝑔, 𝑔𝑥

𝑔𝑦
′

Alice uses 𝑔𝑥𝑦
′

𝐺, 𝑞, 𝑔, 𝑔𝑥
′

𝑔𝑦

Bob uses 𝑔𝑥
′𝑦

Malcolm uses

𝑔𝑥𝑦
′

with Alice

𝑔𝑥
′𝑦 with Bob

Diffie-Hellman Key Exchange: MITM attack

Run 𝐺𝑒𝑛 to

obtain (𝐺, 𝑞, 𝑔)
𝐺, 𝑞, 𝑔, 𝑔𝑥

𝑔𝑦
′

Alice uses 𝑔𝑥𝑦
′

𝐺, 𝑞, 𝑔, 𝑔𝑥
′

𝑔𝑦

Bob uses 𝑔𝑥
′𝑦

Malcolm uses

𝑔𝑥𝑦
′

with Alice

𝑔𝑥
′𝑦 with Bob

 So, do we actually use Diffile-Hallman key exchange protocol
in practice.

 Yes but in a more sophisticated form.

Case study: TLS handshake protocol

 Server Certificate: [𝑝𝑘, 𝑆𝑖𝑔𝑛𝑠𝑘𝐺(𝑝𝑘)]
 𝑝𝑘 is the public key of the sever.
 𝑠𝑘𝐺 is the secret key of the trusted authority.

End

Slides 26-29 and 33 use Mihir Bellare’s slides.

