
Ragesh Jaiswal

CSE, IIT Delhi

CSL759: Cryptography and Computer

Security

The Factoring Problem

The Factoring Problem

 We would like to understand the success of polynomial time

algorithms in factoring integers. We formally define this in

terms of an experiment:

 Experiment Factor(𝐴, 𝑛)

 Choose two 𝑛-bit primes 𝑥1 and 𝑥2 at random.

 Compute 𝑁 = 𝑥1 ⋅ 𝑥2
 Adversary 𝐴 is given 𝑁 and let it output (𝑥1

′ , 𝑥2
′).

 If (𝑥1
′ ⋅ 𝑥2

′ = 𝑁) then output 1 else output 0.

 How do we randomly generate an 𝑛-bit prime number?

The Factoring Problem

 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)

 For 𝑖 = 1 to 𝑡
 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 What is the probability (in terms of 𝑡) that the above

algorithm outputs a prime number?

The Factoring Problem

 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)

 For 𝑖 = 1 to 𝑡
 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 What is the probability (in terms of 𝑡) that the above

algorithm outputs a prime number?

 Theorem (Prime Number Theorem): There exists a constant

𝑐 such that for any 𝑛 > 1, the number of 𝑛 bit primes is at

least 𝑐 ⋅
2𝑛−1

𝑛
.

The Factoring Problem

 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)

 For 𝑖 = 1 to 𝑡
 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 Problem(Primality Testing): Given an integer 𝑁 > 1, how

do we check that it is prime or not?

The Factoring Problem

 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)
 For 𝑖 = 1 to 𝑡

 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 Problem(Primality Testing): Given an integer 𝑁 > 1, how
do we check that it is prime or not?

 There is a randomized algorithm (Miller-Rabin) with one-sided
error when the given number is composite. This algorithm runs
very fast.

 There is a polynomial time deterministic algorithm (AKS) too
but it runs slower than the randomized algorithm.

Primality Testing

Miller-Rabin

Miller-Rabin Primality Test
 Theorem 1: The Miller-Rabin algorithm takes as input an

integer 𝑁 and a parameter 𝑡. If 𝑁 is prime, then the

algorithms outputs “prime” with probability 1. If 𝑁 is

composite, then the algorithm outputs “prime” with

probability at most 2−𝑡. Moreover, the algorithm runs in

time polynomial in 𝑡 and the size of 𝑁.

The Factoring Problem

 We would like to understand the success of polynomial time

algorithms in factoring integers. We formally define this in terms

of an experiment:

 GenModulus(1𝑛)

 Run GRP(1𝑛) to obtain 𝑝, 𝑞. Let 𝑁 = 𝑝 ⋅ 𝑞. Return (𝑁, 𝑝, 𝑞).

 Experiment Factor(𝐴, GRP, 𝑛)

 Run GenModulus(1𝑛) to obtain (𝑁, 𝑝, 𝑞).

 Compute 𝑁 = 𝑝 ⋅ 𝑞

 Adversary 𝐴 is given 𝑁 and let it output (𝑝′, 𝑞′).

 If (𝑝′ ⋅ 𝑞′ = 𝑁) then output 1 else output 0.

 We say that factoring is hard w.r.t. GenModulus(1𝑛) if for all PPT

algorithms 𝐴, there exists a negligible function 𝑛𝑒𝑔𝑙 such that

Pr 𝐹𝑎𝑐𝑡𝑜𝑟 𝐴, 𝐺𝑅𝑃, 𝑛 = 1 ≤ 𝑛𝑒𝑔𝑙(𝑛)

The RSA Problem

 We would like to understand the success of polynomial time
algorithms in solving the RSA problem. We formally define
this in terms of an experiment.

 GenRSA(1𝑛)

 Run GenModulus(1𝑛) to obtain (𝑁, 𝑝, 𝑞).
 Let 𝜙 𝑁 = 𝑝 − 1 ⋅ (𝑞 − 1).

 Find 𝑒 such that gcd 𝑒, 𝜙 𝑁 = 1.

 Compute 𝑑 = [𝑒−1 (𝑚𝑜𝑑 𝜙(𝑁))].
 Return (𝑁, 𝑒, 𝑑)

 Experiment RSA-inv(𝐴, 𝐺𝑒𝑛𝑅𝑆𝐴, 𝑛)
 Run GenRSA(1𝑛) to obtain (𝑁, 𝑒, 𝑑).
 Choose 𝑦 ← 𝑍𝑁

∗ .

 𝐴 is given 𝑁, 𝑒, 𝑦, and outputs 𝑥 ∈ 𝑍𝑁
∗ .

 If (𝑥𝑒 ≡ 𝑦 (𝑚𝑜𝑑 𝑁)), then output 1 else output 0.

The RSA Problem
 GenRSA(1𝑛)

 Run GenModulus(1𝑛) to obtain (𝑁, 𝑝, 𝑞).

 Let 𝜙 𝑁 = 𝑝 − 1 ⋅ (𝑞 − 1).

 Find 𝑒 such that gcd 𝑒, 𝜙 𝑁 = 1.

 Compute 𝑑 = [𝑒−1 (𝑚𝑜𝑑 𝜙(𝑁))].

 Return (𝑁, 𝑒, 𝑑)

 Experiment RSA-inv(𝐴, 𝐺𝑒𝑛𝑅𝑆𝐴, 𝑛)
 Run GenRSA(1𝑛) to obtain (𝑁, 𝑒, 𝑑).
 Choose 𝑦 ← 𝑍𝑁

∗ .

 𝐴 is given 𝑁, 𝑒, 𝑦, and outputs 𝑥 ∈ 𝑍𝑁
∗ .

 If (𝑥𝑒 ≡ 𝑦 (𝑚𝑜𝑑 𝑁)), then output 1 else output 0.

 We say that the RSA problem is hard relative to GenRSA if
for all PPT algorithms 𝐴, there exists a negligible function
𝑛𝑒𝑔𝑙 such that Pr 𝑅𝑆𝐴 − 𝑖𝑛𝑣 𝐴, 𝐺𝑒𝑛𝑅𝑆𝐴, 𝑛 = 1 ≤
𝑛𝑒𝑔𝑙(𝑛).

Factoring Vs RSA

Factoring Vs RSA

 Experiment RSA-inv(𝐴, 𝐺𝑒𝑛𝑅𝑆𝐴, 𝑛)

 Run GenRSA(1𝑛) to obtain

(𝑁, 𝑒, 𝑑).

 Choose 𝑦 ← 𝑍𝑁
∗ .

 𝐴 is given 𝑁, 𝑒, 𝑦, and outputs 𝑥 ∈
𝑍𝑁
∗ .

 If (𝑥𝑒 ≡ 𝑦 (𝑚𝑜𝑑 𝑁)), then output

1 else output 0.

 Experiment Factor(𝐴, GRP, 𝑛)

 Run GenModulus(1𝑛) to obtain

(𝑁, 𝑝, 𝑞).

 Compute 𝑁 = 𝑝 ⋅ 𝑞

 Adversary 𝐴 is given 𝑁 and let it

output (𝑝′, 𝑞′).

 If (𝑝′ ⋅ 𝑞′ = 𝑁) then output 1 else

output 0.

 Which is the harder problem?

Factoring Vs RSA

 Experiment RSA-inv(𝐴, 𝐺𝑒𝑛𝑅𝑆𝐴, 𝑛)

 Run GenRSA(1𝑛) to obtain

(𝑁, 𝑒, 𝑑).

 Choose 𝑦 ← 𝑍𝑁
∗ .

 𝐴 is given 𝑁, 𝑒, 𝑦, and outputs 𝑥 ∈
𝑍𝑁
∗ .

 If (𝑥𝑒 ≡ 𝑦 (𝑚𝑜𝑑 𝑁)), then output

1 else output 0.

 Experiment Factor(𝐴, GRP, 𝑛)

 Run GenModulus(1𝑛) to obtain

(𝑁, 𝑝, 𝑞).

 Compute 𝑁 = 𝑝 ⋅ 𝑞

 Adversary 𝐴 is given 𝑁 and let it

output (𝑝′, 𝑞′).

 If (𝑝′ ⋅ 𝑞′ = 𝑁) then output 1 else

output 0.

 Which is the harder problem?

 Claim: If the RSA problem is hard w.r.t. GenRSA, then the

factoring problem is hard w.r.t. GenModulus.

 Is the converse also true?

 Not known.

Cyclic Groups and Diffie-Hellman

Cyclic Groups
 Let 𝐺 be a finite group of order 𝑚.

 For any element 𝑔 ∈ 𝐺, consider the set < 𝑔 > =
{𝑔0, 𝑔1, … , }.

 Since 𝑔𝑚 = 1, we know that < 𝑔 > = {𝑔0, … , 𝑔𝑚−1}.

 Let 𝑖 ≤ 𝑚 be the smallest integer such that 𝑔𝑖 = 1. Then

< 𝑔 > = {𝑔0, 𝑔1, … , 𝑔𝑖−1}.

 Lemma 1: | < 𝑔 > | = 𝑖.

 Lemma 2: < 𝑔 > is a subgroup of 𝐺.

 < 𝑔 > is called the subgroup generated by 𝑔.

 The order of < 𝑔 > is called the order of 𝑔 in short.

Cyclic Groups
 Let 𝐺 be a finite group of order 𝑚.

 For any element 𝑔 ∈ 𝐺, consider the set < 𝑔 > =
{𝑔0, 𝑔1, … , }.

 Since 𝑔𝑚 = 1, we know that < 𝑔 > = {𝑔0, … , 𝑔𝑚−1}.

 Let 𝑖 ≤ 𝑚 be the smallest integer such that 𝑔𝑖 = 1. Then

< 𝑔 > = {𝑔0, 𝑔1, … , 𝑔𝑖−1}.

 Lemma 1: | < 𝑔 > | = 𝑖.

 Lemma 2: < 𝑔 > is a subgroup of 𝐺.

 < 𝑔 > is called the subgroup generated by 𝑔.

 The order of < 𝑔 > is called the order of 𝑔 in short.

 Lemma 3: Let 𝑔 ∈ 𝐺 be aby element of order 𝑖.Then for any

integer 𝑥, we have 𝑔𝑥 = 𝑔[𝑥 (𝑚𝑜𝑑 𝑖)].

Cyclic Groups
 Let 𝐺 be a finite group of order 𝑚.

 For any element 𝑔 ∈ 𝐺, consider the set < 𝑔 > =
{𝑔0, 𝑔1, … , }.

 Since 𝑔𝑚 = 1, we know that < 𝑔 > = {𝑔0, … , 𝑔𝑚−1}.

 Let 𝑖 ≤ 𝑚 be the smallest integer such that 𝑔𝑖 = 1. Then

< 𝑔 > = {𝑔0, 𝑔1, … , 𝑔𝑖−1}.

 Lemma 1: | < 𝑔 > | = 𝑖.

 Lemma 2: < 𝑔 > is a subgroup of 𝐺.

 < 𝑔 > is called the subgroup generated by 𝑔.

 The order of < 𝑔 > is called the order of 𝑔 in short.

 Lemma 3: Let 𝑔 ∈ 𝐺 be any element of order 𝑖.Then for any

integer 𝑥, we have 𝑔𝑥 = 𝑔[𝑥 (𝑚𝑜𝑑 𝑖)].

 Lemma 4: Let 𝑖 be the order of an element 𝑔 ∈ 𝐺. Then 𝑖|𝑚.

Cyclic Groups
 Let 𝐺 be a finite group of order 𝑚.

 For any element 𝑔 ∈ 𝐺, consider the set < 𝑔 > = {𝑔0, 𝑔1, … , }.

 Since 𝑔𝑚 = 1, we know that < 𝑔 > = {𝑔0, … , 𝑔𝑚−1}.

 Let 𝑖 ≤ 𝑚 be the smallest integer such that 𝑔𝑖 = 1. Then

< 𝑔 > = {𝑔0, 𝑔1, … , 𝑔𝑖−1}.

 Lemma 1: | < 𝑔 > | = 𝑖.

 Lemma 2: < 𝑔 > is a subgroup of 𝐺.

 < 𝑔 > is called the subgroup generated by 𝑔.

 The order of < 𝑔 > is called the order of 𝑔 in short.

 Lemma 3: Let 𝑔 ∈ 𝐺 be any element of order 𝑖.Then for any integer 𝑥, we

have 𝑔𝑥 = 𝑔[𝑥 (𝑚𝑜𝑑 𝑖)].

 Definition (Cyclic group and generator): If there an element

𝑔 ∈ 𝐺 of order 𝑚, then 𝐺 is called a cyclic group and say

that 𝑔 is a generator of 𝐺.

Cyclic Groups
 Definition (Cyclic group and generator): If there an element

𝑔 ∈ 𝐺 of order 𝑚, then 𝐺 is called a cyclic group and say

that 𝑔 is a generator of 𝐺.

 Lemma 4: Let 𝐺 be a group of order 𝑚. Let 𝑖 be the order of

an element 𝑔 ∈ 𝐺. Then 𝑖|𝑚.

 Lemma 5: If 𝐺 is a group of prime order, then 𝐺 is cyclic.

Furthermore, all elements of 𝐺 except the identity are

generators of 𝐺.

 Theorem 6: If 𝑝 is prime, then 𝑍𝑝
∗ is cyclic.

Discrete Logarithm Problem

Discerete Logarithm Problem
 Let 𝐺 be a cyclic group of order 𝑞 and let 𝑔 be a generator.

 For every ℎ ∈ 𝐺, there exists 𝑥 ∈ 𝑍𝑞 such that 𝑔𝑥 = ℎ.

 𝑥 is called the discrete logarithm of ℎ with respect to 𝑔. This

is denoted as 𝑥 = log𝑔 ℎ.

 Lemma 1: log𝑔 1 = 0.

 Lemma 2: log𝑔 ℎ1 ⋅ ℎ2 = [log𝑔 ℎ1 + log𝑔 ℎ2 (𝑚𝑜𝑑 𝑞)].

 We now formally define the Discrete Logarithm problem.

Discerete Logarithm Problem
 Let 𝐺𝑒𝑛 be an algorithm that takes as input 1𝑛 and outputs a

cyclic group 𝐺 of order 𝑞 such that 𝑞 = 𝑛 and a generator 𝑔 for

𝐺.

 Experiment Dlog(𝐴, 𝐺𝑒𝑛 𝑛)

 Run 𝐺𝑒𝑛(1𝑛) to obtain (𝐺, 𝑞, 𝑔).

 Choose ℎ ← 𝐺 uniformly at random.

 𝐴 is given 𝐺, 𝑞, 𝑔, ℎ and let its output be 𝑥 ∈ 𝑍𝑞.

 If (𝑔𝑥 = ℎ), then output 1 else output 0.

 We say that the discrete logarithm problem is hard relative to

𝐺𝑒𝑛 if for all PPT algorithms 𝐴, there exists a negligible

function 𝑛𝑒𝑔𝑙 such that Pr 𝐷𝐿𝑜𝑔 𝐴, 𝐺𝑒𝑛, 𝑛 = 1 ≤
𝑛𝑒𝑔𝑙(𝑛).

Discerete Logarithm Problem
 Let 𝐺𝑒𝑛 be an algorithm that takes as input 1𝑛 and outputs a

cyclic group 𝐺 of order 𝑞 such that 𝑞 = 𝑛 and a generator 𝑔 for

𝐺.

 Experiment Dlog(𝐴, 𝐺𝑒𝑛 𝑛)

 Run 𝐺𝑒𝑛(1𝑛) to obtain (𝐺, 𝑞, 𝑔).

 Choose ℎ ← 𝐺 uniformly at random.

 𝐴 is given 𝐺, 𝑞, 𝑔, ℎ and let its output be 𝑥 ∈ 𝑍𝑞.

 If (𝑔𝑥 = ℎ), then output 1 else output 0.

 We say that the discrete logarithm problem is hard relative to

𝐺𝑒𝑛 if for all PPT algorithms 𝐴, there exists a negligible

function 𝑛𝑒𝑔𝑙 such that Pr 𝐷𝐿𝑜𝑔 𝐴, 𝐺𝑒𝑛, 𝑛 = 1 ≤
𝑛𝑒𝑔𝑙(𝑛).

 Is there a 𝐺𝑒𝑛 w.r.t. which discrete log is hard?

Discerete Logarithm Problem

Discerete Logarithm Problem

Discerete Logarithm Problem

Discerete Logarithm Problem

Diffie-Hellman Problems

Diffie-Hellman Problems
 Let 𝐺 be a cyclic group with generator 𝑔.

 Let 𝐷𝐻𝑔 ℎ1, ℎ2 = 𝑔log𝑔 ℎ1⋅log𝑔 ℎ2, that is if ℎ1 = 𝑔𝑥

and ℎ2 = 𝑔𝑦, then 𝐷𝐻𝑔 ℎ1, ℎ2 = 𝑔𝑥⋅𝑦.

 Computational Diffie-Hellman(CDH): Compute

𝐷𝐻𝑔(ℎ1, ℎ2) for randomly chosen ℎ1, ℎ2.

 Claim 1: The CDH problem is not harder than Discrete Log

problem.

Diffie-Hellman Problems
 Let 𝐺 be a cyclic group with generator 𝑔.

 Let 𝐷𝐻𝑔 ℎ1, ℎ2 = 𝑔log𝑔 ℎ1⋅log𝑔 ℎ2, that is if ℎ1 = 𝑔𝑥

and ℎ2 = 𝑔𝑦, then 𝐷𝐻𝑔 ℎ1, ℎ2 = 𝑔𝑥⋅𝑦.

 Computational Diffie-Hellman(CDH): Compute
𝐷𝐻𝑔(ℎ1, ℎ2) for randomly chosen ℎ1, ℎ2.

 Claim 1: The CDH problem is not harder than Discrete Log
problem.

 Decisional Diffie-Hellman(DDH): Distinguish 𝐷𝐻𝑔(ℎ1, ℎ2)
from randomly chosen ℎ′ ∈ 𝐺.

 We say that the DDH problem is hard relative to 𝐺𝑒𝑛 if for all
PPT algorithms 𝐴, there exists a negligible function 𝑛𝑒𝑔𝑙 such
that
| Pr 𝐴 𝐺, 𝑞, 𝑔, 𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧 = 1 − Pr[𝐴 𝐺, 𝑞, 𝑔, 𝑔𝑥 , 𝑔𝑦 , 𝑔𝑥𝑦 = 1]| ≤ 𝑛𝑒𝑔𝑙(𝑛).

Diffie-Hellman Problems
 DL  CDH  DDH

 Is there a 𝐺𝑒𝑛 w.r.t. which DDH problem is hard?

 Yes. We will see this shortly.

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

Note that the adversary sees 𝑔𝑥 and 𝑔𝑦 but does not know 𝑔𝑥𝑦

Diffie-Hellman Key Exchange

Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

- Note that the adversary sees 𝑔𝑥 and 𝑔𝑦 but does not know 𝑔𝑥𝑦.

-When do we call a key exchange protocol secure?

Diffie-Hellman Key Exchange

Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

- Note that the adversary sees 𝑔𝑥 and 𝑔𝑦 but does not know 𝑔𝑥𝑦.

- When do we call a key exchange protocol secure?

- When an adversary knows nothing about 𝐾.

Security: Key Exchange Protocols

 Experiment 𝐾𝐸𝐴,Π 𝑛
 Two parties execute the key exchange protocol Π. This

execution of the protocol results in a transcript 𝑡𝑟𝑎𝑛𝑠
containing all the messages sent by the parties, and a key 𝑘 that
is output by each of the parties.

 A random bit 𝑏 ∈ {0,1} is chosen. If 𝑏 = 0, then choose 𝑘′ ←
0,1 𝑛 uniformly at random, and if 𝑏 = 1, set 𝑘′ = 𝑘.

 Adversary 𝐴 is given 𝑡𝑟𝑎𝑛𝑠 and 𝑘′ and let it output bit 𝑏′.
 If 𝑏 = 𝑏′ , then output 1 else output 0.

 Definition(Security): A key-exchange protocol Π is secure in
the presence of an eavesdropper if for every PPT adversary 𝐴
there exists a negligible function 𝑛𝑒𝑔𝑙 such that

Pr 𝐾𝐸𝐴,Π 𝑛 = 1 ≤
1

2
+ 𝑛𝑒𝑔𝑙 𝑛 .

Security: Key Exchange Protocols

 Experiment 𝐾𝐸𝐴,Π 𝑛

 Two parties execute the key exchange protocol Π. This execution of the protocol

results in a transcript 𝑡𝑟𝑎𝑛𝑠 containing all the messages sent by the parties, and a key

𝑘 that is output by each of the parties.

 A random bit 𝑏 ∈ {0,1} is chosen. If 𝑏 = 0, then choose 𝑘′ ← 0,1 𝑛 uniformly at

random, and if 𝑏 = 1, set 𝑘′ = 𝑘.

 Adversary 𝐴 is given 𝑡𝑟𝑎𝑛𝑠 and 𝑘′ and let it output bit 𝑏′.

 If 𝑏 = 𝑏′ , then output 1 else output 0.

 Definition(Security): A key-exchange protocol Π is secure in the presence of an

eavesdropper if for every PPT adversary 𝐴 there exists a negligible function

𝑛𝑒𝑔𝑙 such that

Pr 𝐾𝐸𝐴,Π 𝑛 = 1 ≤
1

2
+ 𝑛𝑒𝑔𝑙 𝑛 .

 Theorem(informal): If the DDH problem is hard w.r.t.

𝐺𝑒𝑛, then the Diffie-Hellman key exchange protocol is

secure as per the above notion of security.

Diffie-Hellman Key Exchange
Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

 So can we safely deploy Diffie-Hellman key exchange protocol?

Diffie-Hellman Key Exchange
Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

 So can we safely deploy Diffie-Hellman key exchange protocol?

 No there is a simple attack on the protocol called man-in-the-

middle-attack.

Diffie-Hellman Key Exchange
Run 𝐺𝑒𝑛 to obtain (𝐺, 𝑞, 𝑔)

Pick 𝑥 ∈ 𝑍𝑞 randomly and let

ℎ1 = 𝑔𝑥.

𝐺, 𝑞, 𝑔, ℎ1

Pick y ∈ 𝑍𝑞 randomly

and let ℎ2 = 𝑔𝑦.

ℎ2

𝐾𝐴 = ℎ2
𝑥 𝐾𝐵 = ℎ1

𝑦

𝐾 = 𝐾𝐴 = 𝐾𝐵 = 𝑔𝑥𝑦

 So can we safely deploy Diffie-Hellman key exchange protocol?

 No there is a simple attack on the protocol called man-in-the-middle-
attack.

 So is our security notion weak?
 No it is a strong notion but for passive adversaries only.

Diffie-Hellman Key Exchange: MITM attack

Run 𝐺𝑒𝑛 to

obtain (𝐺, 𝑞, 𝑔)
𝐺, 𝑞, 𝑔, 𝑔𝑥

𝑔𝑦
′

Alice uses 𝑔𝑥𝑦
′

𝐺, 𝑞, 𝑔, 𝑔𝑥
′

𝑔𝑦

Bob uses 𝑔𝑥
′𝑦

Malcolm uses

𝑔𝑥𝑦
′

with Alice

𝑔𝑥
′𝑦 with Bob

Diffie-Hellman Key Exchange: MITM attack

Run 𝐺𝑒𝑛 to

obtain (𝐺, 𝑞, 𝑔)
𝐺, 𝑞, 𝑔, 𝑔𝑥

𝑔𝑦
′

Alice uses 𝑔𝑥𝑦
′

𝐺, 𝑞, 𝑔, 𝑔𝑥
′

𝑔𝑦

Bob uses 𝑔𝑥
′𝑦

Malcolm uses

𝑔𝑥𝑦
′

with Alice

𝑔𝑥
′𝑦 with Bob

 So, do we actually use Diffile-Hallman key exchange protocol
in practice.

 Yes but in a more sophisticated form.

Case study: TLS handshake protocol

 Server Certificate: [𝑝𝑘, 𝑆𝑖𝑔𝑛𝑠𝑘𝐺(𝑝𝑘)]
 𝑝𝑘 is the public key of the sever.
 𝑠𝑘𝐺 is the secret key of the trusted authority.

End

Slides 26-29 and 33 use Mihir Bellare’s slides.

