CSL759: Cryptography and Computer

Security

Ragesh Jaiswal
CSE, IIT Delhi

The Factoring Problem

The Factoring Problem

® We would like to understand the success of polynomial time
algorithms in factoring integers. We formally define this in
terms of an experiment:

® Experiment Factor(4, n)
® Choose two Nn-bit primes X1 and X, at random.
® Compute N = xq * X,
* Adversary A is given N and let it output (X1, X3).
* If (x1 - X3 = N) then output 1 else output 0.

e How do we randomly generate an Nn-bit prime number?

The Factoring Problem

® How do we randomly generate an 1-bit prime number?
e GRP(1")
eFori=1tot
Randomly pick p’ € {0,1}"1
p<1lp’
If (p is prime) then output p
® Output “fail”

® What is the probability (in terms of t) that the above

algorithm outputs a prime number?

The Factoring Problem

e How do we randomly generate an n-bit prime number?
e GRP(1")
eFori=1tot
Randomly pick p' € {0’1}11—1

p < 1p’
If (p is prime) then output p

® Output “fail”
® What is the probability (in terms of t) that the above

algorithm outputs a prime number?

® Theorem (Prime Number Theorem): There exists a constant

¢ such that for any n > 1, the number of 1 bit primes is at
27’1—1

least C - .
n

The Factoring Problem

® How do we randomly generate an 1-bit prime number?
e GRP(1")
eFori=1tot
Randomly pick p’ € {0,1}"1
p<1lp’
If (p is prime) then output p
® Output “fail”

® Problem(Primality Testing): Given an integer N > 1, how
do we check that it is prime or not?

The Factoring Problem

® How do we randomly generate an n-bit prime number?
e GRP(1")
eFori=1tot
Randomly pick p” € {0,1}n1
p < 1p’
If (p is prime) then output p
® Output “fail”

® Problem(Primality Testing): Given an integer N > 1, how
do we check that it is prime or not?

® There is a randomized algorithm (Miller-Rabin) with one-sided

error when the given number is composite. This algorithm runs
very fast.

® There is a polynomial time deterministic algorithm (AKS) too
but it runs slower than the randomized algorithm.

Primality Testing

Miller-Rabin

Miller-Rabin Primality Test

® Theorem 1:The Miller-Rabin algorithm takes as input an

integer N and a parameter t. If N is prime, then the
algorithms outputs “prime” with probability 1. If N is
composite, then the algorithm outputs “prime” with
probability at most 27t Moreover, the algorithm runs in

time polynomial in t and the size of N .

The Factoring Problem

We would like to understand the success of polynomial time
algorithms in factoring integers. We formally define this in terms
of an experiment:

GenModulus(1™)

* Run GRP(1") to obtain p, q. Let N = p - q. Return (N, p, q).
Experiment Factor(A, GRP, n)

* Run GenModulus(1™) to obtain (N, p, q).

* Compute N =p-q

* Adversary 4 is given N and let it output (»',q").

o If (p' - @' = N) then output 1 else output 0.

We say that factoring is hard w.r.t. GenModulus(1™) if for all PPT

algorithms A, there exists a negligible function negl such that
Pr[Factor(A,GRP,n) = 1] < negl(n)

The RSA Problem

® We would like to understand the success of polynomial time
algorithms in solving the RSA problem. We formally define
this in terms of an experiment.
* GenRSA(1™)
* Run GenModulus(1™) to obtain (N, p, q).
cLetp(N) =(p—1) (g —1).
* Find e such that gcd(e, (N)) = 1.
e Compute d = [8_1 (mod ¢(N))].
e Return (N, e,d)
® Experiment RSA—inV(A, GenRSA, Tl)
* Run GenRSA(1™) to obtain (N, e, d).
® Choose y « Zy.
* Aisgiven N, e,y, and outputs X € Zy.
° If (x® =y (mod N)), then output 1 else output 0.

The RSA Problem

* GenRSA(1™)

Run GenModulus(1™) to obtain (N, p, q).
Letp(N) = (p—1) - (¢ - D).

Find e such that gcd(e, qb(N)) = 1.
Compute d = [6_1 (mod ¢(N))].
Return (N , €, d)

e Experiment RSA-inv(4, GenRSA, n)
® Run GenRSA(1™) to obtain (N, e, d).
® Choose y « Zy.
* Aisgiven N, e, Yy, and outputs X € Zy.
° If (x® =y (mod N)), then output 1 else output 0.

* We say that the RSA problem is hard relative to GenRSA it

for all PPT algorithms A, there exists a negligible function
negl such that Pr[RSA — inv(A, GenRSA,n) = 1] <

negl(n).

Factoring Vs RSA

e
Factoring Vs RSA

e Experiment RSA-inv(4, GenRSA,n)

* Run GenRSA(1™) to obtain
(N,e, d).

® Choosey « Zy.

e Ais given N,e,y, and outputs X €
7%

e If (x® =y (mod N)), then output
1 else output 0.

® Which is the harder problem?

® Experiment Factor(A, GRP, n)

* Run GenModulus(1™) to obtain
(N,p,).

* Compute N =p - q

* Adversary A is given N and let it
output (p', C[').

o If (p' - @' = N) then output 1 else
output 0.

e
Factoring Vs RSA

e Experiment RSA-inv(4, GenRSA,n) ® Experiment Factor(A, GRP, n)

* Run GenRSA(1™) to obtain * Run GenModulus(1™) to obtain
(N, e, d). (N,p,q).

® Choosey « Zy. * Compute N =p - q

° Ais given N,e,y, and outputs X € ° Adversary A is given N and let it
Z;\}. output (p', C[').

e If (x® =y (mod N)), then output o If (p' - @' = N) then output 1 else
1 else output 0. output 0.

® Which is the harder problem?
® Claim: If the RSA problem is hard w.r.t. GenRSA, then the

factoring problem is hard w.r.t. GenModulus.

® |s the converse also true?

® Not known.

Cyclic Groups and Diffie-Hellman

Cyclic Groups

e et (G be a finite group of order m.

® For any element g € G, consider the set < g > =

{g°9" ..}
® Since g™ = 1, we know that < g > = {g°, ..., g™ 1}.

® Let 1 < m be the smallest integer such that gi = 1.Then
<g>={g9%g%...9" "}
® lemmal:| < g>|=I.

® Lemma 2: < g > is a subgroup of G.

* < g > is called the subgroup generated by g.
® The order of < g > is called the order of g in short.

Cyclic Groups

e et (G be a finite group of order m.

® For any element g € G, consider the set < g > =

{g°9" ..}
® Since g™ = 1, we know that < g > = {g°, ..., g™ 1}.

® Let 1 < m be the smallest integer such that gi = 1.Then
<g>={g9%g%...9" "}
® lemmal:| < g>|=I.

® Lemma 2: < g > is a subgroup of G.

* < g > is called the subgroup generated by g.
® The order of < g > is called the order of g in short.

® Lemma 3: Let g € G be aby element of order I. Then for any

integer X, we have g* = g[x (mod 1)]

Cyclic Groups

Let (G be a finite group of order m.

For any element g € G, consider the set < g > =

9%, 9% ...}
Since g™ = 1, we know that < g > = {g°, ..., g™ 1}.

Let i < m be the smallest integer such that gi = 1.Then
<g>=1{g%g' ...9""}
Lemmal: | < g>|=1.

Lemma 2: < g > is a subgroup of G.

® < g > is called the subgroup generated by g.
® The order of < g > is called the order of g in short.

Lemma 3: Let g € G be any element of order . Then for any

integer X, we have g* = g[x (mod 1)]

Lemma 4: Let i be the order of an element g € G.Then i|m.

Cycllc Groups

Let G be a finite group of order m.

® For any element g € G, consider the set < g > = {go,gl, ey }.
® Since g™ =1, we know that < g > = {go, ...,gm_l}.
® Leti < m be the smallest integer such that gi = 1.Then
<g>={g9%g"...g" "}
® lemmal:| < g>|=1I.
® Lemma2: < g > is asubgroup of G.
* < g > is called the subgroup generated by g.
® The order of < g > is called the order of g in short.

® Lemma 3: Let g € G be any element of order i. Then for any integer X, we
have gx — g[x (mod i)].

® Definition (Cyclic group and generator): If there an element

g € G of order m, then G is called a cyclic group and say
that g is a generator of G.

Cyclic Groups

® Definition (Cyclic group and generator): If there an element

g € G of order m, then G is called a cyclic group and say
that g is a generator of G.

® [emma4: Let G bea group of order m. Let [be the order of
an element g € G.Then I|m.

® Lemma 5: If G is a group of prime order, then G is cyclic.

Furthermore, all elements of G except the identity are

generators of G.

® Theorem 6: If p is prime, then Z; is cyclic.

Discrete Logarithm Problem

Discerete Logarithm Problem

® Let G be a cyclic group of order ¢ and let g be a generator.
® For every h € G, there exists X € Z; such that g* =nh.

® X is called the discrete logarithm of h with respect to g. This
is denoted as X = log h.

® [emma 1: logg 1=0.
* Lemma2: log,(h, - hy) = [(log, hy + log, hy)(mod q)].

* We now formally define the Discrete Logarithm problem.

Discerete Logarithm Problem

 Let Gen be an algorithm that takes as input 1™ and outputs a
cyclic group G of order q such that |q| = n and a generator g for

G.
* Experiment Dlog(A, Gen n)
e Run Gen(1™) to obtain (G, q, g).
® Choose h « G uniformly at random.
* Aisgiven G, q, g, h and let its output be X € Z.
e If (g* = h), then output 1 else output 0.

® We say that the discrete logarithm problem is hard relative to
Gen if for all PPT algorithms A, there exists a negligible
function negl such that Pr[DLog (4, Gen,n) = 1] <

negl(n).

Discerete Logarithm Problem

Let Gen be an algorithm that takes as input 1™ and outputs a
cyclic group G of order q such that |q| = n and a generator g for

G.

Experiment Dlog(4, Gen n)

e Run Gen(1™) to obtain (G, q, g).

® Choose h « G uniformly at random.

* Aisgiven G, q, g, h and let its output be X € Z.
e If (g* = h), then output 1 else output 0.

We say that the discrete logarithm problem is hard relative to
Gen if for all PPT algorithms A, there exists a negligible
function negl such that Pr[DLog (4, Gen,n) = 1] <
negl(n).

Is there a Gen w.r.t. which discrete log is hard?

e
Discerete Logarithm Problem

Index Calculus

Let p be a prime and G = Z7,. Then there is an algorithm that finds
discrete logs in G in time

£1:92(In p)Y3(InIn p)?/3

This is sub-exponential, and quite a bit less than
NCE o(lnp)/2

Note: The actual running time is e!-92(n a)*3(Inlna)*> \here q is the
largest prime factor of p — 1, but we chose p so that g =~ p, for example
p—1=2q for g a prime.

K 45 / 70

e
Discerete Logarithm Problem

Elliptic Curve Groups

Let G be a prime-order group of points over an elliptic curve. Then the
best known algorithm to compute discrete logs takes time

O(vP)

where p = |G|

e

Discerete Logarithm Problem

Comparison

Say we want 80-bits of security, meaning discrete log computation by
the best known algorithm should take time 2°°. Then
e If we work in Z7 (p a prime) we need to set |[£}| =p— 1= 21024
« But if we work on an elliptic curve group of prime order p then it
suffices to set p == 2160

Why?
o1:02(In 23 InIn 210H)E L /STRD _ 580

e

Discerete Logarithm Problem

Why are Smaller Groups Preferable?

Group Size | Cost of Exponentiation
160
2 1
21024 260

Exponentiation takes time cubic in leg |G| where G is the group.

Encryption and decryption will be 260 times faster in the smaller group!

Diffie-Hellman Problems

Diffie-Hellman Problems

® Let G be a cyclic group with generator g.

e Let DHy(hy, hy) = g'08g Mlogg ha paiisif hy = g*
and h, = g7, then DH,(hy, hy) = g*7.

* Computational Ditfie-Hellman(CDH): Compute
DHg(hy, hy) for randomly chosen hy, h;.

® Claim 1: The CDH problem is not harder than Discrete Log

problem.

Diffie-Hellman Problems

® Let G be a cyclic group with generator g.

e Let DHy(hy, hy) = g'08g Mlogg ha paiisif hy = g*
and h, = g7, then DH,(hy, hy) = g*7.

* Computational Diffie-Hellman(CDH): Compute
DHg(hy, hy) for randomly chosen hy, h;.

® Claim 1: The CDH problem is not harder than Discrete Log
problem.

® Decisional Diffie-Hellman(DDH): Distinguish D H (h;, h,)
from randomly chosen h' € G.
* We say that the DDH problem is hard relative to Gen if for all

PPT algorithms A, there exists a negligible function neg! such

that
| Pr[A(G,q,9,9% 9”,9%) = 1] — Pr[A(G,q,9,9%, 9%, 9*) = 1]| < negl(n).

Diffie-Hellman Problems

e DL - CDH - DDH

e Is there a Gen w.r.t. which DDH problem is hard?
® Yes. We will see this shortly.

Problem Group
Z: | EC
DL hard | harder

CDH hard | harder
DDH gasy | harder

hard: best known algorithm takes time ¢-%2(" p)! /3 (Inln p)2/2

harder: best known algorithm takes time ,/p, where p is the prime order
of the group.

easy: There is a polynomial time algorithm.

Diffie-Hellman Key Exchange

4 ™
Diffie-Hellman Key Exchange

Run Gen to obtain (G, q, g)
Pick x € Z q randomly and let

h1 = gx.
G; CI; g; h]_ >
2 Picky € Z; randomly
£ and let h, = g7.
h,)/
< a9
KB - hi]

_ Note that the adversary sees g * and g¥ but does not know g*¥ Y,

4 ™
Diffie-Hellman Key Exchange

Run Gen to obtain (G, q, g)
Pick x € Z q randomly and let

G; CI; g; h]_

i/ Picky € Z q randomly
and let h, = g7.

K=K,=Kg= g

- Note that the adversary sees g* and g but does not know g*¥.

-When do we call a key exchange protocol secure?

- /

4 ™
Diffie-Hellman Key Exchange

Run Gen to obtain (G, q, g)
Pick x € Z q randomly and let

G; CI; g; h]_

h Il Picky € Z q randomly
and let h, = g7.

K=K,=Kg= g

- Note that the adversary sees g* and g but does not know g*¥.
- When do we call a key exchange protocol secure?

\ - When an adversary knows nothing about K. /

Security: Key Exchange Protocols

e Experiment KE, (1)

® Two parties execute the key exchange protocol [1. This
execution of the protocol results in a transcript trans
containing all the messages sent by the parties, and a key k that
is output by each of the parties.

* A random bit b € {0,1} is chosen. If b = 0, then choose k' «
{0,1}" uniformly at random, and if b = 1, set k' =k.

* Adversary A is given trans and k' and let it output bit b’

e If(b=0b), then output 1 else output 0.

® Definition(Security): A key-exchange protocol Il is secure in
the presence of an eavesdropper if for every PPT adversary A
there exists a negligible function neg! such that

1
Pr[KEA,H(n) = 1] < 5 + negl(n).

-

Security: Key Exchange Protocols

® Experiment KE ATl (n)

* Two parties execute the key exchange protocol II. This execution of the protocol
results in a transcript t7ans containing all the messages sent by the parties, and a key

k that is output by each of the parties.

e Arandom bit b € {0,1} is chosen. If b = 0, then choose k" « {0,1}" uniformly at
random, and if b = 1, set k' = k.

® Adversary A is given trans and k' and let it output bit b’.
e If (b =Db'), then output 1 else output 0.

® Definition(Security): A key—exchange protocol II is secure in the presence of an

eavesdropper if for every PPT adversary A there exists a negligible function
negl such that

1
Pr[KEA,H(n) = 1] < > + negl(n).

® Theorem(informal): If the DDH problem is hard w.r.t.
Gen, then the Diffie-Hellman key exchange protocol is

secure as per the above notion of security.

4 ™
Diffie-Hellman Key Exchange

Run Gen to obtain (G, q, g)
Pick x € Z q randomly and let

Gl q; g; hl

/|l Pick y € Z4 randomly
and let h, = g7.

K=K, =Ky =g~

® So can we safely deploy Diffie-Hellman key exchange protocol?

4 ™
Diffie-Hellman Key Exchange

Run Gen to obtain (G, q, g)
Pick x € Z q randomly and let

Gl q; g; hl

o || Pick y € Z4 randomly
and let h, = g7.

K=K, =Ky =g~

® So can we safely deploy Diffie-Hellman key exchange protocol?

® No there is a simple attack on the protocol called man-in-the-

middle-attack.

4 ™
Diffie-Hellman Key Exchange

Run Gen to obtain (G, q, g)
Pick x € Z q randomly and let

Gl q; g; hl

Picky € Z; randomly
and let h, = g7.

K=K, =Ky=g~
® So can we safely deploy Diffie-Hellman key exchange protocol?

® No there is a simple attack on the protocol called man-in-the-middle-
attack.

® So is our security notion weak?

\ ® No it is a strong notion but for passive adversaries only.

™~

Diffie-Hellman Key Exchange: mimm attack

Run Gen to

obtain (G, q, g) .

-~ 0,499
>
g’
attacker <
Alice uses gxy ’ Malcolm uses

g*Y , with Alice
gx’y with Bob

Diffie-Hellman Key Exchange: mitm attack

™~

Run Gen to
obtain (G, q, g)
-~ G,9,99"
>
g’
<
attacker
Alice uses gxy ’ Malcolm uses

-

g*Y " with Alice
gx’y with Bob

® So, do we actually use Dittile-Hallman key exchange protocol
in practice.

® Yes but in a more sophisticated form.

/

e

-

Case study: TLS handshake protocol

Handshake Protoool
N T ol

Clierit Hello
Server Hello
Serer Certificate
Serer Kev Erchange
iClient Certificate Request
Serer Hello Done

Clie it Cert ficate

Cliett Kev Exchange

Certificate Verifiy

Chetyge Cipher Spec

Clier Firdshed Message
Zhemge Cipher Spec
Server Finished Message

Record Protocol
Application Data

e Server Certificate: [pKk, Signgk,. (pk)]
* pk is the public key of the sever.
* sk is the secret key of the trusted authority.

End

Slides 26-29 and 33 use Mihir Bellare’s slides.

