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Course Project

® Let me know your team (at most 2 students per project) and

your project topic by tomorrow (1 2t Mar.).

* We will set up meetings this Wed-Fri and early next week
with all the groups.

® There will be a Demo/Presentation at the end of the course.




Towards Public Key Cryptography

Number Theory




Towards Public Key Cryptography

® Until now, we have talked about private key cryptography where
the interating parties are assumed to be sharing the same

secret key.

o Public—key Cryptography:

® Parties do not share a common secret key.

® Each party has a pair of keys (pk, sk). One is public and other

secret.

® The basic building blocks for private key cryptography:
® Pseudorandom generator

® Pseudorandom permutation
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Towards Public Key Cryptography

® The basic building blocks for private key cryptography:
® Pseudorandom generator

® Pseudorandom permutation

Symmetric Message
encryption authentication

PRF

[ Block cipher ] PRG ]

® (Can we start from a milder assumption?

* Existence of one-way functions (easy to compute but hard to invert).
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Number Theory

e / will denote integers.

® a|b means a divides b. If a # {1, b}, then a is called a
factor of b.

® Fact 1: Let a be an integer and b be a positive integer. Then
there exist unique integers q, 7 for which a = gb + r and
0<r<hb.

e gcd(a, b) denotes the ged of @ and b.
® a and b are relatively prime if gcd(a,b) = 1.

® Lemma 1: Leta, b be positive integers. Then there exist

integers X, Y such that Xa + Yb = gcd(a, b).
Furthermore, gcd(a, b) is the smallest positive integer that

can be expressed in this way.




Number Theory

® Lemma 2: If c|ab and gcd(a,c) = 1, thenc|b.In
particular, if p is prime and p|ab, then either p|a or p|b.

® Lemma 3: If p|N, g|N, and gcd(p, q) = 1, then pq|N.

e Modular Arithmetic:

* Let a, N be integers such that N > 1. [a (mod N)] is defined
to be the remainder in the division of @ by V.

Recall, there are unique integers ¢, 7 such that 0 < r < Nand a =
gN +r.[a(mod N)] =r.

What is [16 (mod 11)]?

What is [—6 (mod 11)]?
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® Lemma 2: If c|ab and gcd(a,c) = 1, thenc|b.In
particular, if p is prime and p|ab, then either p|a or p|b.
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e Modular Arithmetic:

* Let a, N be integers such that N > 1. [a (mod N)] is defined
to be the remainder in the division of @ by V.

* Congurence: Integers a and b are said to be congruent modulo
N > 1if[a (mod N)] = [b (mod N)]. This is denoted by
a = b (mod N)




Number Theory

e Modular Arithmetic:

* Let a, N be integers such that N > 1. [a (mod N)] is defined
to be the remainder in the division of @ by N.

* Congurence: Integers @ and b are said to be congruent modulo
N > 1if[a (mod N)] = [b (mod N)]. This is denoted by
a=b (modN)
* Inverse:If for a given integer b there exists an integer b~ such
that bb~1 = 1 (mod N), we say that b~lisa multiplicative

inverse of b modulo N and call b invertible modulo N.

® Modular division: E (mod N )] is defined to be
[ab™! (mod N)] only when b is invertible modulo N.




Number Theory

e Modular Arithmetic:

* Let a, N be integers such that N > 1. [a (mod N)] is defined
to be the remainder in the division of @ by N.

* Congurence: Integers @ and b are said to be congruent modulo
N > 1if[a (mod N)] = [b (mod N)]. This is denoted by
a=b (modN)
* Inverse:If for a given integer b there exists an integer b~ such
that bb~1 = 1 (mod N), we say that b~lisa multiplicative

inverse of b modulo N and call b invertible modulo N.

® Modular division: E (mod N )] is defined to be
[ab™! (mod N)] only when b is invertible modulo N.

® Lemma4:Leta, N be integers with N > 1.Then a is
invertible modulo N if and only if gcd(a,N) = 1.




Number Theory

Groups




Groups

® Definition(Group): A group is a set G along with a binary

operator © for which the following conditions hold:

® Closure: Forallg,h € G,goh € (.

* Identity: There exists an identity € € G such that for all g € G,
ecg=9g=9gcee.

® Inverse: For all g € G, there exists an element h € G, such

that g o h = e = h o g. Such an h is called an inverse of g.

* Assodiativity: For all g4, 92,93 € G, (91° g2) °© g3 = g1 °
(g2 ° 93).

® Definition(Finite group):When (¢ has a finite number of

elements we say G is a finite group of order | G|.

® Definition(Abelian group): (r is called an abelian group if it is

a group and also satisfies the following condition:
e Commutativity: Forallg,h € G,goh =ho g.




Groups

® [emma 1: Identity element in any group is unique.

® [ emma 2: Every element in any group has a unique Inverse.

® Definition(Additive notation): The operator is denoted using

+, the identity element is 0 and the inverse of any element

g € G is denote by —g.
* g+ g+ -+ g (Mmoperations) is denoted by mg.

® Definition( Multiplicative notation): The operator is denoted

using -, the identity element is 1 and the inverse of any
element g € G is denote by gt
°®g-g- .. g (Mmoperations) is denoted by g"™.

® Lemma 3:Let G be a group and a, b,c € G.Ifac = bc,
then @ = b. In particular, if ac = ¢, then a is the identity.

/




Groups

® Lemma 4: Let G be a finite abelian group with m = |G|.
Then for any element g € G, g™ = 1.

 Corollary 5: Let G be a finite group with m = 1G] > 1.

Then for any g € G and any integer i, we have g =

g[i (mod m)].

 Corollary 6: Let G be a finite group with m = |G| > 1. Let
e > 0 be an integer, and define the function fo: G = G by
fe(g) = g°.1fgcd(e,m) = 1, then f, is a permutation.
Moreover, if d = [e~1 (mod m)], then f; is the inverse of

fe-




Groups: The group Z;;

® Operation: Multiplication modulo N.
® Set: Zy=Subset of {1, ..., N} that are invertible modulo N.
¢ lemmal:Zy ={a €{1,..,N} gcd(a,N) = 1}.

® Lemma 2: Z) is an abelian group under multiplication

modulo N.

® Definition(Euler phi function): The order of group Zy is
denoted by the Euler phi function ¢ (N).
* Let N be prime. What is ¢ (N)?
® Let N = p - q for primes p, . What is ¢ (N)?

¢ Theorem 3: Let N = []; pie ' where p;’s are distinct primes
and €; = 1.Then ¢p(N) = Hipei_l - (p; — 1).
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Groups: The group Z;;

® Operation: Multiplication modulo N.
® Set: Zy=Subset of {1, ..., N} that are invertible modulo N.
¢ lemmal:Zy ={a €{1,..,N} gcd(a,N) = 1}.

® Lemma 2: Z) is an abelian group under multiplication

modulo N.

® Definition(Euler phi function): The order of group Zy is
denoted by the Euler phi function ¢ (N).

¢ Theorem 3: Let N = []; pl-e ' where p;’s are distinct primes
and €; = 1.Then ¢p(N) = Hipiei_l -(p; — 1).

* Corollary 4:Take arbitrary N>1landa € Z ;{,.Then
a®W) =1 (mod N). For the case when N = p is prime

anda € {1, ...,p — 1}, we have a?~1 = 1 (mod p).
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Groups: The group Z;;

® Definition(Euler phi function): The order of group Zy is
denoted by the Euler phi function ¢ (N).

¢ Theorem 3: Let N = []; pl-e ' where pi’s are distinct primes
and e; = 1.Then p(N) = Hipiei_l -(p; — 1).

e Corollary 4: Take arbitrary N > 1 and a € Zy. Then
a®M) =1 (mod N). For the case when N = p is prime
and a € {1, ...,p — 1}, we have a?~1 = 1 (mod p).

e Corollary 5: Fix N > 1. For integer € > 0 define f,: Zy —
Zy by fe(x) = [x¢ (mod N)]. If e is relatively prime to
phi(N), then f is a permutation. Moreover, if d =
[e™1 (mod ¢(N))], then fj is the inverse of f,.




Chinese Remaindering Theorem
(CRT)




Chinese Remaindering Theorem

® Lemma 1(Group cross product): Let G, H be group under

operations ©g,°y respectively. Then G X H under the
operations © defined as (g,h)o(g',h') =
(gogcg',hoy h')isalsoa group.

® Definition(Isomorphism): Let G, H be groups under

operations ©y,0. respectively. A function f:G > Hisan
isomorphism from G to H if
1. f is a bijection, and

2. Forall g1, 9, € G we have f(g1 oc gy) =
f(91) °u £ (92).

If there exists an isomorphism from G to H, then we say that

these groups are isomporphic and write thisas G =~ H.
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Chinese Remaindering Theorem

e Recall:
e Zy=10,...,N —1}isa group under addition modulo N.
e Zy=1{a€ef{l,.. N—1} gcd(a,N) = 1} is a group under

multiplication modulo N.

® Theorem 2: Let N = p - @ where p and q are relatively
prime (i.e., gcd(p,q) = 1).Then
Iy = ZyXZgandZy = Z5 X Zg.
Moreover, let f be the function mapping elements x €
{0, ..., N — 1} to pairs (X, Xg) with x,, € {0, ...,p — 1}
and X4 € {0, ..., q — 1} defined by
f(x) = (Ix (mod p)], [x (mod q)])

Then f is am isomorphism from Zy to Z), X Z; as well as

an isomorphism from Zy to Z, X Zg.




Chinese Remaindering Theorem

® Theorem 2: Let N = p - @ where p and q are relatively
prime (i.e., gcd(p,q) = 1).Then
Iy =ZyXZgandZy = Z, X Zg.
Moreover, let f be the function mapping elements x €
{0, ..., N — 1} to pairs (xp,xq) with X, € {0,...,p — 1}
and x4 € {0, ..., ¢ — 1} defined by
f(x) = ([x (mod p)], [x (mod q)])

Then f is am isomorphism from Zy to Z), X Z; as well as

an isomorphism from Z to Z;; X Z Z;

® Lemma 3: f is efficiently computable.

 Lemma4: f1is efficiently computable.
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Chinese Remaindering Theorem

® Theorem 2: Let N = p - @ where p and q are relatively prime (i.e., gcd(p, q) = 1).
Then

Iy =ZpyXZgand Zy = 75 X Zg.
Moreover, let f be the function mapping elements x € {0, ..., N — 1} to pairs (xp, X4)
with xp, € {0, ...,p — 1} and x4 € {0, ..., ¢ — 1} defined by
f(x) = (Ix (mod p)], [x (mod g)])

Then f is am isomorphism from Zy to Z, X Z as well as an isomorphism from Z N to
Zyp X Zg.

® Lemma4: f1is efficiently computable.
e Since gcd(p, q) = 1, there exists integers X, Y such that
X-p+Y -qg=1.
°Letl, =[Y-q(modN)]and 1, = [X - p (mod N)].
o M:f‘l(xp,xq) = [(xp 1, + x4 1q)(m0d N)].

e How efficient is this computation?
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Extended Euclid Algorithm for GCD

® Problem: Given integers a, b >0, design an algorithm for
computing gcd(a, b).

e Euclid-GCD(a, b)
e If b|a, then return b.
* Else return Euclid-GCD(b, [a (mod b)]).

® [ emma 5: The above algorithrn is correct.

e What is the running time of Euclid-GCD?

® Problem: Given integers a, b>0, design an algorithm for
computing integers X, Y suchthat X -a + Y - b =
gcd(a, b).
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Extended Euclid Algorithm for GCD

® Problem: Given integers a = b>0, design an algorithm
for computing gcd(a, b).
e Euclid-GCD(a, b)
e If b|a, then return b.
* Else return Euclid-GCD(b, [a (mod b)]).
® Problem: Given integers a = b >0, design an algorithm
for computing integers X,Ysuchthat X ca+Y : b =
gcd(a, b).
e Extended-Euclid-GCD(a, b)
e If b|a, then return (b, 0, 1).
® Else
Compute integers q,7 suchthata = q-b+rand 0 < r < b.

Let (d, X,Y) =Extended-Euclid-GCD(b, ).
return (d,Y, X =Y - q).




Extended Euclid Algorithm for GCD

® Problem: Given integers a = b >0, design an algorithm
for computing integers X, Y suchthat X -a +Y - b =
gcd(a, b).
e Extended-Euclid-GCD(a, b)
e If b|a, then return (b, 0, 1).
¢ Else
Compute integers q, 7 suchthata = q-b+7rand 0 <7 < b.
Let (d, X,Y) =Extended-Euclid-GCD(b, ).
return (d,Y,X =Y - q).
® Problem: Given positive integers 1 < a < N such that
gcd(a, N) = 1. Compute the inverse of @ in the group Zy

under multiplication modulo N .




The Factoring Problem




The Factoring Problem

e We would like to understand the success of polynomial time
algorithms in factoring integers. We formally define this in

terms of an experiment:
® Experiment Weak-Factor(4, n)
® Choose two N-bit integers X7 and X, at random.
® Compute N = xq * X,
* Adversary A is given N and let it output (X1, X3).
* If (x1 - X3 = N) then output 1 else output 0.
® Can we show that for all PPT algorithms 4, Pr[Weak —




The Factoring Problem

® We would like to understand the success of polynomial time
algorithms in factoring integers. We formally define this in
terms of an experiment:

® Experiment Factor(4, n)
® Choose two Nn-bit primes X1 and X, at random.
® Compute N = xq * X,
* Adversary A is given N and let it output (X1, X3).
* If (x1 - X3 = N) then output 1 else output 0.

e How do we randomly generate an Nn-bit prime number?




The Factoring Problem

® How do we randomly generate an 1-bit prime number?
e GRP(1")
eFori=1tot
Randomly pick p’ € {0,1}"1
p<1lp’
If (p is prime) then output p
® Output “fail”

® What is the probability (in terms of t) that the above

algorithm outputs a prime number?




The Factoring Problem

e How do we randomly generate an n-bit prime number?
e GRP(1")
eFori=1tot
Randomly pick p' € {0’1}11—1

p < 1p’
If (p is prime) then output p

® Output “fail”
® What is the probability (in terms of t) that the above

algorithm outputs a prime number?

® Theorem (Prime Number Theorem): There exists a constant

¢ such that for any n > 1, the number of 1 bit primes is at
27’1—1

least C - .
n




The Factoring Problem

® How do we randomly generate an 1-bit prime number?
e GRP(1")
eFori=1tot
Randomly pick p’ € {0,1}"1
p<1lp’
If (p is prime) then output p
® Output “fail”

® Problem(Primality Testing): Given an integer N > 1, how
do we check that it is prime or not?




The Factoring Problem

® How do we randomly generate an n-bit prime number?
e GRP(1")
eFori=1tot
Randomly pick p” € {0,1}n1
p < 1p’
If (p is prime) then output p
® Output “fail”

® Problem(Primality Testing): Given an integer N > 1, how
do we check that it is prime or not?

® There is a randomized algorithm (Miller-Rabin) with one-sided

error when the given number is composite. This algorithm runs
very fast.

® There is a polynomial time deterministic algorithm (AKS) too
but it runs slower than the randomized algorithm.
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