
Ragesh Jaiswal

CSE, IIT Delhi

CSL759: Cryptography and Computer 

Security



Course Project



Course Project

 Let me know your team (at most 2 students per project) and 

your project topic by tomorrow (12th Mar.).

 We will set up meetings this Wed-Fri and early next week 

with all the groups.

 There will be a Demo/Presentation at the end of the course. 



Towards Public Key Cryptography

Number Theory



Towards Public Key Cryptography

 Until now, we have talked about private key cryptography where 

the interating parties are assumed to be sharing the same 

secret key.

 Public-key Cryptography: 

 Parties do not share a common secret key.

 Each party has a pair of keys (𝑝𝑘, 𝑠𝑘). One is public and other 

secret.

 The basic building blocks for private key cryptography:

 Pseudorandom generator

 Pseudorandom permutation



Towards Public Key Cryptography

 The basic building blocks for private key cryptography:

 Pseudorandom generator

 Pseudorandom permutation
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 Can we start from a milder assumption?

 Existence of one-way functions (easy to compute but hard to invert).



Towards Public Key Cryptography

Block cipher

PRF

Symmetric 

encryption

Message 

authentication

PRG

OWF

Number theoretic 

problems

Public Key 

Cryptography



Number Theory



Number Theory
 𝑍 will denote integers.

 𝑎|𝑏 means 𝑎 divides 𝑏. If 𝑎 ≠ {1, 𝑏}, then 𝑎 is called a 

factor of 𝑏.

 Fact 1: Let 𝑎 be an integer and 𝑏 be a positive integer. Then 

there exist unique integers 𝑞, 𝑟 for which 𝑎 = 𝑞𝑏 + 𝑟 and 

0 ≤ 𝑟 < 𝑏. 

 gcd(𝑎, 𝑏) denotes the gcd of 𝑎 and 𝑏.

 𝑎 and 𝑏 are relatively prime if gcd 𝑎, 𝑏 = 1.

 Lemma 1: Let 𝑎, 𝑏 be positive integers. Then there exist 

integers 𝑋, 𝑌 such that 𝑋𝑎 + 𝑌𝑏 = gcd(𝑎, 𝑏). 
Furthermore, 𝑔𝑐𝑑(𝑎, 𝑏) is the smallest positive integer that 

can be expressed in this way.



Number Theory
 Lemma 2: If 𝑐|𝑎𝑏 and gcd 𝑎, 𝑐 = 1, then 𝑐|𝑏. In 

particular, if 𝑝 is prime and 𝑝|𝑎𝑏, then either 𝑝|𝑎 or 𝑝|𝑏.

 Lemma 3: If 𝑝|𝑁, 𝑞|𝑁, and gcd 𝑝, 𝑞 = 1, then 𝑝𝑞|𝑁.

 Modular Arithmetic:

 Let 𝑎,𝑁 be integers such that 𝑁 > 1. [𝑎 (𝑚𝑜𝑑 𝑁)] is defined 

to be the remainder in the division of 𝑎 by 𝑁.

 Recall, there are unique integers 𝑞, 𝑟 such that 0 ≤ 𝑟 < 𝑁 and 𝑎 =
𝑞𝑁 + 𝑟. 𝑎 𝑚𝑜𝑑 𝑁 = 𝑟.

 What is [16 (𝑚𝑜𝑑 11)]?

 What is [−6 (𝑚𝑜𝑑 11)]?



Number Theory
 Lemma 2: If 𝑐|𝑎𝑏 and gcd 𝑎, 𝑐 = 1, then 𝑐|𝑏. In 

particular, if 𝑝 is prime and 𝑝|𝑎𝑏, then either 𝑝|𝑎 or 𝑝|𝑏.

 Lemma 3: If 𝑝|𝑁, 𝑞|𝑁, and gcd 𝑝, 𝑞 = 1, then 𝑝𝑞|𝑁.

 Modular Arithmetic:

 Let 𝑎,𝑁 be integers such that 𝑁 > 1. [𝑎 (𝑚𝑜𝑑 𝑁)] is defined 

to be the remainder in the division of 𝑎 by 𝑁.

 Congurence: Integers 𝑎 and 𝑏 are said to be congruent modulo 

𝑁 > 1 if 𝑎 𝑚𝑜𝑑 𝑁 = [𝑏 (𝑚𝑜𝑑 𝑁)]. This is denoted by 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑁)



Number Theory
 Modular Arithmetic:

 Let 𝑎,𝑁 be integers such that 𝑁 > 1. [𝑎 (𝑚𝑜𝑑 𝑁)] is defined 

to be the remainder in the division of 𝑎 by 𝑁.

 Congurence: Integers 𝑎 and 𝑏 are said to be congruent modulo 

𝑁 > 1 if 𝑎 𝑚𝑜𝑑 𝑁 = [𝑏 (𝑚𝑜𝑑 𝑁)]. This is denoted by 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑁)

 Inverse:If for a given integer 𝑏 there exists an integer 𝑏−1 such 

that 𝑏𝑏−1 ≡ 1 (𝑚𝑜𝑑 𝑁), we say that 𝑏−1 is a multiplicative 

inverse of 𝑏 modulo 𝑁 and call 𝑏 invertible modulo 𝑁.

 Modular division: 
𝑎

𝑏
(𝑚𝑜𝑑 𝑁) is defined to be 

[𝑎𝑏−1 (𝑚𝑜𝑑 𝑁)] only when 𝑏 is invertible modulo 𝑁.



Number Theory
 Modular Arithmetic:

 Let 𝑎,𝑁 be integers such that 𝑁 > 1. [𝑎 (𝑚𝑜𝑑 𝑁)] is defined 

to be the remainder in the division of 𝑎 by 𝑁.

 Congurence: Integers 𝑎 and 𝑏 are said to be congruent modulo 

𝑁 > 1 if 𝑎 𝑚𝑜𝑑 𝑁 = [𝑏 (𝑚𝑜𝑑 𝑁)]. This is denoted by 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑁)

 Inverse:If for a given integer 𝑏 there exists an integer 𝑏−1 such 

that 𝑏𝑏−1 ≡ 1 (𝑚𝑜𝑑 𝑁), we say that 𝑏−1 is a multiplicative 

inverse of 𝑏 modulo 𝑁 and call 𝑏 invertible modulo 𝑁.

 Modular division: 
𝑎

𝑏
(𝑚𝑜𝑑 𝑁) is defined to be 

[𝑎𝑏−1 (𝑚𝑜𝑑 𝑁)] only when 𝑏 is invertible modulo 𝑁.

 Lemma 4: Let 𝑎, 𝑁 be integers with 𝑁 > 1. Then 𝑎 is 

invertible modulo 𝑁 if and only if gcd 𝑎, 𝑁 = 1.



Number Theory

Groups



Groups

 Definition(Group): A group is a set 𝐺 along with a binary 
operator ∘ for which the following conditions hold:

 Closure: For all 𝑔, ℎ ∈ 𝐺, 𝑔 ∘ ℎ ∈ 𝐺.

 Identity: There exists an identity 𝑒 ∈ 𝐺 such that for all 𝑔 ∈ 𝐺, 
𝑒 ∘ 𝑔 = 𝑔 = 𝑔 ∘ 𝑒.

 Inverse: For all 𝑔 ∈ 𝐺, there exists an element ℎ ∈ 𝐺, such 
that 𝑔 ∘ ℎ = 𝑒 = ℎ ∘ 𝑔. Such an ℎ is called an inverse of 𝑔.

 Associativity: For all 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺, (𝑔1∘ 𝑔2) ∘ 𝑔3 = 𝑔1 ∘
(𝑔2 ∘ 𝑔3).

 Definition(Finite group): When 𝐺 has a finite number of 
elements we say 𝐺 is a finite group of order |𝐺|.

 Definition(Abelian group): 𝐺 is called an abelian group if it is 
a group and also satisfies the following condition:

 Commutativity: For all 𝑔, ℎ ∈ 𝐺, 𝑔 ∘ ℎ = ℎ ∘ 𝑔.



Groups

 Lemma 1: Identity element in any group is unique. 

 Lemma 2: Every element in any group has a unique inverse.

 Definition(Additive notation): The operator is denoted using 

+,  the identity element is 0 and the inverse of any element 

𝑔 ∈ 𝐺 is denote by −𝑔.

 𝑔 + 𝑔 +⋯+ 𝑔 (𝑚operations) is denoted by 𝑚𝑔.

 Definition(Multiplicative notation): The operator is denoted 

using ⋅,  the identity element is 1 and the inverse of any 

element 𝑔 ∈ 𝐺 is denote by 𝑔−1.

 𝑔 ⋅ 𝑔 ⋅ … ⋅ 𝑔 (𝑚 operations) is denoted by 𝑔𝑚.

 Lemma 3:Let 𝐺 be a group and 𝑎, 𝑏, 𝑐 ∈ 𝐺. If 𝑎𝑐 = 𝑏𝑐, 

then 𝑎 = 𝑏. In particular, if 𝑎𝑐 = 𝑐, then 𝑎 is the identity.



Groups

 Lemma 4: Let 𝐺 be a finite abelian group with 𝑚 = |𝐺|. 
Then for any element 𝑔 ∈ 𝐺, 𝑔𝑚 = 1.

 Corollary 5: Let 𝐺 be a finite group with 𝑚 = 𝐺 > 1. 

Then for any 𝑔 ∈ 𝐺 and any integer 𝑖, we have 𝑔𝑖 =
𝑔[𝑖 (𝑚𝑜𝑑 𝑚)].

 Corollary 6: Let 𝐺 be a finite group with 𝑚 = 𝐺 > 1. Let 

𝑒 > 0 be an integer, and define the function 𝑓𝑒: 𝐺 → 𝐺 by 

𝑓𝑒 𝑔 = 𝑔𝑒. If gcd 𝑒,𝑚 = 1, then 𝑓𝑒 is a permutation. 

Moreover, if 𝑑 = [𝑒−1 (𝑚𝑜𝑑 𝑚)], then 𝑓𝑑 is the inverse of 

𝑓𝑒.



Groups: The group 𝑍𝑛
∗

 Operation: Multiplication modulo 𝑁.

 Set: 𝑍𝑁
∗=Subset of {1, … , 𝑁} that are invertible modulo 𝑁.

 Lemma 1: 𝑍𝑁
∗ = {𝑎 ∈ {1, … , 𝑁}| gcd 𝑎, 𝑁 = 1}.

 Lemma 2: 𝑍𝑁
∗ is an abelian group under multiplication 

modulo 𝑁.

 Definition(Euler phi function): The order of group 𝑍𝑁
∗ is 

denoted by the Euler phi function 𝜙(𝑁).

 Let 𝑁 be prime. What is 𝜙(𝑁)?

 Let 𝑁 = 𝑝 ⋅ 𝑞 for primes 𝑝, 𝑞. What is 𝜙(𝑁)?

 Theorem 3: Let 𝑁 =  𝑖 𝑝𝑖
𝑒𝑖, where 𝑝𝑖’s are distinct primes 

and 𝑒𝑖 ≥ 1. Then 𝜙 𝑁 =  𝑖 𝑝𝑖
𝑒𝑖−1 ⋅ (𝑝𝑖 − 1).



Groups: The group 𝑍𝑛
∗

 Operation: Multiplication modulo 𝑁.

 Set: 𝑍𝑁
∗=Subset of {1, … , 𝑁} that are invertible modulo 𝑁.

 Lemma 1: 𝑍𝑁
∗ = {𝑎 ∈ {1, … , 𝑁}| gcd 𝑎, 𝑁 = 1}.

 Lemma 2: 𝑍𝑁
∗ is an abelian group under multiplication 

modulo 𝑁.

 Definition(Euler phi function): The order of group 𝑍𝑁
∗ is 

denoted by the Euler phi function 𝜙(𝑁).

 Theorem 3: Let 𝑁 =  𝑖 𝑝𝑖
𝑒𝑖, where 𝑝𝑖’s are distinct primes 

and 𝑒𝑖 ≥ 1. Then 𝜙 𝑁 =  𝑖 𝑝𝑖
𝑒𝑖−1 ⋅ (𝑝𝑖 − 1).

 Corollary 4: Take arbitrary 𝑁 > 1 and 𝑎 ∈ 𝑍𝑁
∗ . Then 

𝑎𝜙(𝑁) ≡ 1 (𝑚𝑜𝑑 𝑁). For the case when 𝑁 = 𝑝 is prime 

and 𝑎 ∈ {1, … , 𝑝 − 1}, we have 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝).



Groups: The group 𝑍𝑛
∗

 Definition(Euler phi function): The order of group 𝑍𝑁
∗ is 

denoted by the Euler phi function 𝜙(𝑁).

 Theorem 3: Let 𝑁 =  𝑖 𝑝𝑖
𝑒𝑖, where 𝑝𝑖’s are distinct primes 

and 𝑒𝑖 ≥ 1. Then 𝜙 𝑁 =  𝑖 𝑝𝑖
𝑒𝑖−1 ⋅ (𝑝𝑖 − 1).

 Corollary 4: Take arbitrary 𝑁 > 1 and 𝑎 ∈ 𝑍𝑁
∗ . Then 

𝑎𝜙(𝑁) ≡ 1 (𝑚𝑜𝑑 𝑁). For the case when 𝑁 = 𝑝 is prime 

and 𝑎 ∈ {1, … , 𝑝 − 1}, we have 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝).

 Corollary 5: Fix 𝑁 > 1. For integer 𝑒 > 0 define 𝑓𝑒: 𝑍𝑁
∗ →

𝑍𝑁
∗ by 𝑓𝑒 𝑥 = [𝑥𝑒 (𝑚𝑜𝑑 𝑁)]. If 𝑒 is relatively prime to 

𝑝ℎ𝑖 𝑁 , then 𝑓𝑒 is a permutation. Moreover, if 𝑑 =
[𝑒−1 (𝑚𝑜𝑑 𝜙(𝑁))], then 𝑓𝑑 is the inverse of 𝑓𝑒.



Chinese Remaindering Theorem 

(CRT)



Chinese Remaindering Theorem
 Lemma 1(Group cross product): Let 𝐺,𝐻 be group under 

operations ∘𝐺 ,∘𝐻 respectively. Then 𝐺 × 𝐻 under the 

operations ∘ defined as 𝑔, ℎ ∘ 𝑔′, ℎ′ =
(𝑔 ∘𝐺 𝑔

′, ℎ ∘𝐻 ℎ′) is also a group.

 Definition(Isomorphism): Let 𝐺,𝐻 be groups under 

operations ∘𝐻,∘𝐺 respectively.A function 𝑓: 𝐺 → 𝐻 is an 

isomorphism from 𝐺 to 𝐻 if 

1. 𝑓 is a bijection, and

2. For all 𝑔1, 𝑔2 ∈ 𝐺 we have 𝑓 𝑔1 ∘𝐺 𝑔2 =
𝑓 𝑔1 ∘𝐻 𝑓(𝑔2).

If there exists an isomorphism from 𝐺 to 𝐻, then we say that 

these groups are isomporphic  and write this as 𝐺 ≃ 𝐻.



Chinese Remaindering Theorem
 Recall:

 𝑍𝑁 = {0,… ,𝑁 − 1} is a group under addition modulo 𝑁.

 𝑍𝑁
∗ = {𝑎 ∈ {1,… ,𝑁 − 1}| gcd 𝑎, 𝑁 = 1} is a group under 

multiplication modulo 𝑁.

 Theorem 2: Let 𝑁 = 𝑝 ⋅ 𝑞 where 𝑝 and 𝑞 are relatively 

prime (i.e., gcd 𝑝, 𝑞 = 1). Then

𝑍𝑁 ≃ 𝑍𝑝 × 𝑍𝑞 and 𝑍𝑁
∗ ≃ 𝑍𝑝

∗ × 𝑍𝑞
∗.

Moreover, let 𝑓 be the function mapping elements 𝑥 ∈

{0, … , 𝑁 − 1} to pairs (𝑥𝑝, 𝑥𝑞) with 𝑥𝑝 ∈ {0, … , 𝑝 − 1}

and 𝑥𝑞 ∈ {0, … , 𝑞 − 1} defined by 

𝑓 𝑥 = 𝑥 𝑚𝑜𝑑 𝑝 , 𝑥 𝑚𝑜𝑑 𝑞

Then 𝑓 is am isomorphism from 𝑍𝑁 to 𝑍𝑝 × 𝑍𝑞 as well as 

an isomorphism from 𝑍𝑁
∗ to 𝑍𝑝

∗ × 𝑍𝑞
∗.



Chinese Remaindering Theorem
 Theorem 2: Let 𝑁 = 𝑝 ⋅ 𝑞 where 𝑝 and 𝑞 are relatively 

prime (i.e., gcd 𝑝, 𝑞 = 1). Then

𝑍𝑁 ≃ 𝑍𝑝 × 𝑍𝑞 and 𝑍𝑁
∗ ≃ 𝑍𝑝

∗ × 𝑍𝑞
∗.

Moreover, let 𝑓 be the function mapping elements 𝑥 ∈

{0, … , 𝑁 − 1} to pairs (𝑥𝑝, 𝑥𝑞) with 𝑥𝑝 ∈ {0, … , 𝑝 − 1}

and 𝑥𝑞 ∈ {0, … , 𝑞 − 1} defined by 

𝑓 𝑥 = 𝑥 𝑚𝑜𝑑 𝑝 , 𝑥 𝑚𝑜𝑑 𝑞

Then 𝑓 is am isomorphism from 𝑍𝑁 to 𝑍𝑝 × 𝑍𝑞 as well as 

an isomorphism from 𝑍𝑁
∗ to 𝑍𝑝

∗ × 𝑍𝑞
∗.

 Lemma 3: 𝑓 is efficiently computable.

 Lemma 4: 𝑓−1 is efficiently computable.



Chinese Remaindering Theorem
 Theorem 2: Let 𝑁 = 𝑝 ⋅ 𝑞 where 𝑝 and 𝑞 are relatively prime (i.e., gcd 𝑝, 𝑞 = 1). 

Then

𝑍𝑁 ≃ 𝑍𝑝 × 𝑍𝑞 and 𝑍𝑁
∗ ≃ 𝑍𝑝

∗ × 𝑍𝑞
∗.

Moreover, let 𝑓 be the function mapping elements 𝑥 ∈ {0, … , 𝑁 − 1} to pairs (𝑥𝑝, 𝑥𝑞)

with 𝑥𝑝 ∈ {0, … , 𝑝 − 1} and 𝑥𝑞 ∈ {0, … , 𝑞 − 1} defined by 

𝑓 𝑥 = 𝑥 𝑚𝑜𝑑 𝑝 , 𝑥 𝑚𝑜𝑑 𝑞

Then 𝑓 is am isomorphism from 𝑍𝑁 to 𝑍𝑝 × 𝑍𝑞 as well as an isomorphism from 𝑍𝑁
∗ to 

𝑍𝑝
∗ × 𝑍𝑞

∗.

 Lemma 4: 𝑓−1 is efficiently computable.

 Since gcd 𝑝, 𝑞 = 1, there exists integers 𝑋, 𝑌 such that 

𝑋 ⋅ 𝑝 + 𝑌 ⋅ 𝑞 = 1.

 Let 1𝑝 = [𝑌 ⋅ 𝑞 (𝑚𝑜𝑑 𝑁)] and 1𝑞 = [𝑋 ⋅ 𝑝 (𝑚𝑜𝑑 𝑁)].

 Claim: 𝑓−1 𝑥𝑝, 𝑥𝑞 = 𝑥𝑝 ⋅ 1𝑝 + 𝑥𝑞 ⋅ 1𝑞 𝑚𝑜𝑑 𝑁 .

 How efficient is this computation?



Extended Euclid Algorithm for GCD
 Problem: Given integers 𝑎, 𝑏 > 0, design an algorithm for 

computing gcd(𝑎, 𝑏).

 Euclid-GCD(𝑎, 𝑏)

 If 𝑏|a, then return 𝑏.

 Else return Euclid-GCD(𝑏, [𝑎 (𝑚𝑜𝑑 𝑏)]).

 Lemma 5: The above algorithm is correct.

 What is the running time of Euclid-GCD?

 Problem: Given integers 𝑎, 𝑏 > 0, design an algorithm for 

computing integers 𝑋, 𝑌 such that 𝑋 ⋅ 𝑎 + 𝑌 ⋅ 𝑏 =
gcd(𝑎, 𝑏).



Extended Euclid Algorithm for GCD
 Problem: Given integers 𝑎 ≥ 𝑏 > 0, design an algorithm 

for computing gcd(𝑎, 𝑏).

 Euclid-GCD(𝑎, 𝑏)

 If 𝑏|a, then return 𝑏.

 Else return Euclid-GCD(𝑏, [𝑎 (𝑚𝑜𝑑 𝑏)]).

 Problem: Given integers 𝑎 ≥ 𝑏 > 0, design an algorithm 
for computing integers 𝑋, 𝑌 such that 𝑋 ⋅ 𝑎 + 𝑌 ⋅ 𝑏 =
gcd(𝑎, 𝑏).

 Extended-Euclid-GCD(𝑎, 𝑏)

 If 𝑏|a, then return (𝑏, 0, 1).
 Else 

 Compute integers 𝑞, 𝑟 such that 𝑎 = 𝑞 ⋅ 𝑏 + 𝑟 and 0 ≤ 𝑟 < 𝑏.

 Let 𝑑, 𝑋, 𝑌 =Extended-Euclid-GCD(𝑏, 𝑟).

 return (𝑑, 𝑌, 𝑋 − 𝑌 ⋅ 𝑞).



Extended Euclid Algorithm for GCD
 Problem: Given integers 𝑎 ≥ 𝑏 > 0, design an algorithm 

for computing integers 𝑋, 𝑌 such that 𝑋 ⋅ 𝑎 + 𝑌 ⋅ 𝑏 =
gcd(𝑎, 𝑏).

 Extended-Euclid-GCD(𝑎, 𝑏)

 If 𝑏|a, then return (𝑏, 0, 1).

 Else 

 Compute integers 𝑞, 𝑟 such that 𝑎 = 𝑞 ⋅ 𝑏 + 𝑟 and 0 ≤ 𝑟 < 𝑏.

 Let 𝑑, 𝑋, 𝑌 =Extended-Euclid-GCD(𝑏, 𝑟).

 return (𝑑, 𝑌, 𝑋 − 𝑌 ⋅ 𝑞).

 Problem: Given positive integers 1 ≤ 𝑎 < 𝑁 such that 

gcd 𝑎, 𝑁 = 1. Compute the inverse of 𝑎 in the group 𝑍𝑁
∗

under multiplication modulo 𝑁.
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The Factoring Problem

 We would like to understand the success of polynomial time 

algorithms in factoring integers. We formally define this in 

terms of an experiment:

 Experiment Weak-Factor(𝐴, 𝑛)

 Choose two 𝑛-bit integers 𝑥1 and 𝑥2 at random.

 Compute 𝑁 = 𝑥1 ⋅ 𝑥2
 Adversary 𝐴 is given 𝑁 and let it output (𝑥1

′ , 𝑥2
′ ).

 If (𝑥1
′ ⋅ 𝑥2

′ = 𝑁) then output 1 else output 0.

 Can we show that for all PPT algorithms 𝐴, Pr[𝑊𝑒𝑎𝑘 −
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 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)

 For 𝑖 = 1 to 𝑡
 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 What is the probability (in terms of 𝑡) that the above 

algorithm outputs a prime number?
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 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)

 For 𝑖 = 1 to 𝑡
 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 What is the probability (in terms of 𝑡) that the above 

algorithm outputs a prime number?

 Theorem (Prime Number Theorem): There exists a constant 

𝑐 such that for any 𝑛 > 1, the number of 𝑛 bit primes is at 

least 𝑐 ⋅
2𝑛−1

𝑛
.
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do we check that it is prime or not?



The Factoring Problem

 How do we randomly generate an 𝑛-bit prime number?

 GRP(1𝑛)
 For 𝑖 = 1 to 𝑡

 Randomly pick 𝑝′ ∈ 0,1 𝑛−1

 𝑝 ← 1|𝑝′

 If (𝑝 is prime) then output 𝑝

 Output “fail”

 Problem(Primality Testing): Given an integer 𝑁 > 1, how 
do we check that it is prime or not?

 There is a randomized algorithm (Miller-Rabin) with one-sided 
error when the given number is composite. This algorithm runs 
very fast.

 There is a polynomial time deterministic algorithm (AKS) too 
but it runs slower than the randomized algorithm.



End


