CSL759: Cryptography and Computer **Security**

Ragesh Jaiswal CSE, IIT Delhi

Message Authentication

PRF as MAC

• Suppose we have a secure PRF $F: \{0,1\}^k \times \{0,1\}^n \rightarrow$ $(0,1)^n$ and suppose we only need to authenticate messages of size n , then consider the MAC associated with F :

•
$$
T_K(M) = F_K(M)
$$

- \bullet $V_K(M,\sigma) = 1$ if $f \sigma = F_K(M)$.
- Theorem: Consider the function family F above and the associated MAC MA . Let A be a UF-CMA adversary making q_s tag-generation queries and q_v tag-verification queries with $q_v \leq 2^{n-1}$ and having a running time t. There is a PRF adversary B such that:

 $Adv_{uf-cma}(A, MA) \leq Adv_{PRF}(B, F) +$ $2q_v$ $\frac{24v}{2^n}$. Moreover, B makes $(q_s + q_v)$ queries and runs in time $t + \theta(n(q_s + q_v)).$

PRF as MAC

<u>Theorem</u>: Consider the function family F above and the associated MAC MA. Let A be a UF-CMA adversary making q_s tag-generation queries and q_v tag-verification queries with $q_v \leq 2^{n-1}$ and having a running time t. There is a PRF adversary B such that: $Adv_{uf-cma}(A, MA) \leq Adv_{PRF}(B, F) + \frac{2q_v}{2n}$ $\frac{2u v}{2^n}$. Moreover, B makes $(q_s + q_v)$ queries and runs in time $t + \theta(n(q_s + q_v))$.

MACs for arbitrary size messages

CBC MAC

• Suppose we have a secure block cipher $E: \{0,1\}^k \times$ $[0,1]^n \rightarrow \{0,1\}^n$. The tag generation algorithm is shown in the picture below:

CBC MAC

• Suppose we have a secure block cipher $E: \{0,1\}^k \times$ $[0,1]^n \rightarrow \{0,1\}^n$. The tag generation algorithm is shown in the picture below:

CBC MAC

• Suppose we have a secure block cipher $E: \{0,1\}^k \times$ $[0,1]^n \rightarrow \{0,1\}^n$. The tag generation algorithm is shown in the picture below:

Can you give an attack?

- \bullet No.
- Can you give an attack?
- \bullet Adversary A
	- Make a tag-generation query x and receive the tag T .
	- Make a tag-verfification query $(x|| x \oplus T, T)$.

- \bullet No.
- Can you give an attack?
- \bullet Adversary A
	- Make a tag-generation query x and receive the tag T .
	- Make a tag-verfification query $(x|| x \oplus T, T)$.
- What is $Adv_{uf-cma}(A,MA)$?

- \bullet No.
- Can you give an attack?
- \bullet Adversary A
	- Make a tag-generation query x and receive the tag T .
	- Make a tag-verfification query $(x|| x \oplus T, T)$.
- \bullet $Adv_{uf-cma}(A, MA) = 1.$

- Adversary A
	- Make a tag-generation query x and receive the tag T .
	- Make a tag-verfification query $(x|| x \oplus T, T)$.
- This attack is known as the *slicing attack*. The main reason it works is due to the fact that we used this MAC for message of arbitrary size.
- What if we use the authentication scheme for message of fixed size?

ECBC(Encrypted CBC) MAC

• Suppose we have a secure block cipher $E: \{0,1\}^k \times \{0,1\}^n \rightarrow$ $(0,1)^n$. The tag generation algorithm $T: \{0,1\}^{2k} \times \{0,1\}^L \rightarrow$ $[0,1]^n$ is shown in the picture below:

Birthday attack on Chaining based **MACs**

Main Idea: *Internal collision*. Consider message spanning 3 blocks.

Main Idea: *Internal collision*. Consider message spanning 3 blocks.

• If
$$
C_2^i = C_2^j
$$
, then $\forall x, T_K < i > R_i, x$ and $T_K < j > R_j, x$.

- Adversary A
	- For $i = 1$ to q
		- Randomly pick $R_i \in \{0,1\}^n$
		- Make a tag-generation query $(< i > ||R_i|| < 0>)$ and receive the tag T_i .
	- If there exists indices $i \neq j$ such that $T_i = T_j$
		- Make a tag-generation query $(< i > ||R_i|| < 1>)$ and receive the tag T .
		- Make a tag-verification query $(< j > ||R_j|| < 1 >, T)$.
- What is $Adv_{uf-cma}(A,MA)$?

- Adversary A
	- For $i = 1$ to q
		- Randomly pick $R_i \in \{0,1\}^n$
		- Make a tag-generation query $(< i > ||R_i|| < 0>)$ and receive the tag T_i .
	- If there exists indices $i \neq j$ such that $T_i = T_j$
		- Make a tag-generation query $(< i > ||R_i|| < 1>)$ and receive the tag T .
		- Make a tag-verification query $(< j > ||R_j|| < 1 >, T)$.

•
$$
Adv_{uf-cma}(A, MA) = C(q, 2^n)
$$
.

- Adversary A
	- For $i = 1$ to q
		- Randomly pick $R_i \in \{0,1\}^n$
		- Make a tag-generation query $(< i > ||R_i|| < 0>)$ and receive the tag T_i .
	- If there exists indices $i \neq j$ such that $T_i = T_j$
		- Make a tag-generation query $(< i > ||R_i|| < 1>)$ and receive the tag T .
		- Make a tag-verification query $(< j > ||R_j|| < 1 >, T)$.
- $Adv_{uf-cma}(A, MA) = C(q, 2^n)$.
- \bullet Does there exist an adversary that does much better that A ?

- Adversary A
	- For $i = 1$ to q
		- Randomly pick $R_i \in \{0,1\}^n$
		- Make a tag-generation query $(< i > ||R_i|| < 0>)$ and receive the tag T_i .
	- If there exists indices $i \neq j$ such that $T_i = T_j$
		- Make a tag-generation query $(< i > ||R_i|| < 1>)$ and receive the tag T .
		- Make a tag-verification query $(< j > ||R_j|| < 1 >, T)$.
- $Adv_{uf-cma}(A, MA) = C(q, 2^n)$.
- \bullet Does there exist an adversary that does much better that A ? \bullet No.

Security of CBC MAC

• Theorem: Let $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a family of functions. For any integer $m \geq 1$, conside the function family E^m : $\{0,1\}^k \times \{0,1\}^{nm} \rightarrow \{0,1\}^n$ defined as below:

Let A be a PRF adversary against $E^{\bm m}$ that makes q oracle queries and has a running time of t. Then there is a PRF adversary B against \cancel{E} such that $Adv_{PRF}(A, E^m) \leq Adv_{PRF}(B, E) +$ $\delta q^2 m^2$ 2^n and B makes at most qm oracle queries and runs in time t .

Security of ECBC MAC

• Theorem: Let $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a family of functions. Conside the function family $\mathrm{F}\!\!: \{0,\!1\}^{2k} \times$ $[0,1]^{\leq L} \rightarrow \{0,1\}^n$ defined as below:

Let A be a PRF adversary against F that makes q oracle queries totalling σ blocks and has a running time of t. Then there is a PRF adversary B against E such that $Adv_{PRF}(A, F) \leq Adv_{PRF}(B, E) +$ σ 2^n

and B makes at most σ oracle queries and runs in time t.

Case Study: Block Cipher based **MACs**

CMAC

Case Study: CMAC

CMAC Components and Setup

- $E: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a block cipher, in practice AES.
- CBC $_K(M)$ is the basic CBC MAC of a full message M under key $K \in \{0,1\}^n$ and using E.
- $J \in \{0,1\}^n$ is a particular fixed constant.

CMAC uses its key $K \in \{0,1\}^n$ to derive subkeys K_1, K_2 via

- $K_0 \leftarrow E_K(0)$
- if $msb(K_0) = 0$ then $K_1 \leftarrow (K_0 \ll 1)$ else $K_1 \leftarrow (K_0 \ll 1) \oplus J$
- if $msb(K_1) = 0$ then $K_2 \leftarrow (K_1 \ll 1)$ else $K_2 \leftarrow (K_1 \ll 1) \oplus J$

where $x \ll 1$ means x left shifted by 1 bit, so that the msb vanishes and the lsb becomes 0. These bit operations reflect simple finite-field operations.

イロトラ ほう イミトラミト ニミー のんび

Case Study: CMAC

CMAC Algorithm

```
Alg CMAC<sub>K(M)</sub>
M[1] \dots M[m-1]M[m] \leftarrow M // |M[m]| \le n\ell \leftarrow |M[m]| // \ell \leq nif \ell = n then M[m] \leftarrow K_1 \oplus M[m]else M[m] \leftarrow K_2 \oplus (M[m] \| 10^{n-\ell-1})M \leftarrow M[1] \dots M[m-1]M[m]T \leftarrow \text{CBC}_K(M)return T
```
Splicing attack does not work.

• There is a security proof showing that no attack is significantly better than the Birthday attack.

メロトメ ほんえき メモドメ こくりつめい

NIST Standard for Message Authentication.

- Can we construct a secure MAC using collision-resistant hash functions?
	- Issue: Hash functions are *keyless*.
- What if we use $T_K(M) = H(K||M)$? Is this secure?

- Can we construct a secure MAC using collision-resistant hash functions?
	- Issue: Hash functions are *keyless*.
- What if we use $T_K(M) = H(K||M)$? Is this secure?
	- No. There can be an *extension attack.*

- Can we construct a secure MAC using collision-resistant hash functions?
	- Issue: Hash functions are *keyless*.
- What if we use $T_K(M) = H(K||M)$? Is this secure?
	- No. There can be an *extension attack.*

• The tag for $M = M_1 ||M_2|| M_3$ gives the correct tag for $M_1 ||M_2|| M'_3$.

HMAC [BCK96]

Suppose $H: D \to \{0, 1\}^{160}$ is the hash function. HMAC has a 160-bit key K. Let

$$
\mathcal{K}_o = \mathsf{opad} \oplus \mathcal{K} || 0^{352} \text{ and } \mathcal{K}_i = \mathsf{ipad} \oplus \mathcal{K} || 0^{352}
$$

where

$$
opad = 5D
$$
 and $ipad = 36$

in HEX. Then

 $HMAC_K(M) = H(K_o||H(K_i||M))$

HMAC

Features:

- Blackbox use of the hash function, easy to implement
- . East in software

Usage:

- As a MAC for message authentication
- As a PRF for key derivation

Security:

- Subject to a birthday attack
- Security proof shows there is no better attack [BCK96, Be06]

Adoption and Deployment: HMAC is one of the most widely standardized and used cryptographic constructs: SSL/TLS, SSH, IPSec, FIPS 198, IEEE 802.11, IEEE 802.11b, ...

HMAC Security

Theorem: [BCK96] HMAC is a secure PRF assuming

- The compression function is a PRF
- The hash function is collision-resistant (CR)

But recent attacks show MD5 is not CR and SHA1 may not be either.

So are HMAC-MD5 and HMAC-SHA1 secure?

- No attacks so far, but
- · Proof becomes vacuous!

Theorem: [Be06] HMAC is a secure PRF assuming only

• The compression function is a PRF

Current attacks do not contradict this assumption. This new result may explain why HMAC-MD5 is standing even though MD5 is broken with regard to collision resistance.

K 미 시 (한) 사 공 시 사 공 시 - 공 시 - 60 K (b)

イロト 不優 トイ 差 トイ 差 トー

ብላ ው

HMAC Recommendations

- Don't use HMAC-MD5
- No immediate need to remove HMAC-SHA1
- Use HMAC-SHA256 for new applications

MACs using Universal Hash Function Families

Carter-Wegman

Carter-Wegman MACs

- Chain based constructions like ECBC, HMAC are expensive as it involves repeated executions of a block cipher.
- \bullet Definition (δ -almost universal hash function family): A function family H : $keys(H) \times D \rightarrow \{0,1\}^n$ is called δ almost-universal hash function if for all $M_1, \neq M_2 \in D$: $Pr[H_K(M_1) = H_K(M_2)] \leq \delta$

Carter-Wegman MACs

- Chain based constructions like ECBC, HMAC are expensive as it involves repeated executions of a block cipher.
- \bullet Definition (δ -almost universal hash function family): A function family H : $keys(H) \times D \rightarrow \{0,1\}^n$ is called δ almost-universal hash function if for all $M_1, \neq M_2 \in D$: $Pr[H_K(M_1) = H_K(M_2)] \leq \delta$
- Example of almost universal hash function family.
	- Let p be a large prime (say $\geq 2^{128}$)
	- $\bullet K = (a, b) \in \{1 \dots q\} \times \{1 \dots q\}$
	- $H_K(M) = (a^{m+1} + M_m \cdot a^m + \dots + M_1 \cdot a + b) \pmod{p}$

Carter-Wegman MACs

- Carter-Wegman MAC
	- Suppose we have a δ -almost-universal hash function family $H\colon keys(H)\times D \to \{0,1\}^n$ and a secure PRF $E\colon \{0,1\}^k \times$ $[0,1]^n \rightarrow \{0,1\}^n$, consider the following many-time MAC for messages in the domain D :
		- $T_K(M) = (r, E_{K_1}(r) \oplus H_{K_2}(M))$, where $K \in keys(H) \times \{0,1\}^k$.
	- Theorem(informal): The above MAC is UF-CMA secure assuming that E is a secure PRF and H is almost-universal.
	- Examples:
		- \bullet <u>UMAC</u>: (NH + HMAC-SHA1)
		- Poly127-AES: $(Poly127 + AES)$
		- <u>Poly1305-AES</u>: (Poly1305 + AES)

End

The following slides have been borrowed from Mihir Bellare's Course on Cryptography: 24, 25, 30, 31, 32, 33.