CSL759: Cryptography and Computer Security

Ragesh Jaiswal

CSE, IIT Delhi

Message Authentication

PRF as MAC

• Suppose we have a secure PRF $F: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ and suppose we only need to authenticate messages of size n, then consider the MAC associated with F:

•
$$T_K(M) = F_K(M)$$

•
$$V_K(M,\sigma) = 1 \ iff \ \sigma = F_K(M).$$

• <u>Theorem</u>: Consider the function family F above and the associated MAC MA. Let A be a UF-CMA adversary making q_s tag-generation queries and q_v tag-verification queries with $q_v \leq 2^{n-1}$ and having a running time t. There is a PRF adversary B such that:

$$\begin{split} Adv_{uf-cma}(A, MA) &\leq Adv_{PRF}(B, F) + \frac{2q_v}{2^n} \,. \\ \text{Moreover, } B \text{ makes } (q_s + q_v) \text{ queries and runs in time} \\ t + \theta(n(q_s + q_v)). \end{split}$$

PRF as MAC

• <u>Theorem</u>: Consider the function family F above and the associated MAC MA. Let A be a UF-CMA adversary making q_s tag-generation queries and q_v tag-verification queries with $q_v \leq 2^{n-1}$ and having a running time t. There is a PRF adversary B such that: $Adv_{uf-cma}(A, MA) \leq Adv_{PRF}(B, F) + \frac{2q_v}{2^n}$. Moreover, B makes $(q_s + q_v)$ queries and runs in time $t + \theta(n(q_s + q_v))$.

MACs for arbitrary size messages

CBC MAC

Suppose we have a secure block cipher E: {0,1}^k × {0,1}ⁿ → {0,1}ⁿ. The tag generation algorithm is shown in the picture below:

CBC MAC

Suppose we have a secure block cipher E: {0,1}^k × {0,1}ⁿ → {0,1}ⁿ. The tag generation algorithm is shown in the picture below:

CBC MAC

Suppose we have a secure block cipher E: {0,1}^k × {0,1}ⁿ → {0,1}ⁿ. The tag generation algorithm is shown in the picture below:

• Can you give an attack?

- No.
- Can you give an attack?
- Adversary A
 - Make a tag-generation query x and receive the tag T.
 - Make a tag-vertification query $(x || x \oplus T, T)$.

- Is the CBC-MAC secure in the UF-CMA sense?
 - No.
 - Can you give an attack?
- Adversary *A*
 - Make a tag-generation query x and receive the tag T.
 - Make a tag-vertification query $(x || x \oplus T, T)$.
- What is $Adv_{uf-cma}(A, MA)$?

- Is the CBC-MAC secure in the UF-CMA sense?
 - No.
 - Can you give an attack?
- Adversary *A*
 - Make a tag-generation query x and receive the tag T.
 - Make a tag-vertification query $(x || x \oplus T, T)$.
- $Adv_{uf-cma}(A, MA) = 1.$

- Adversary *A*
 - Make a tag-generation query x and receive the tag T.
 - Make a tag-verfification query $(x || x \oplus T, T)$.
- This attack is known as the *slicing attack*. The main reason it works is due to the fact that we used this MAC for message of arbitrary size.
- What if we use the authentication scheme for message of fixed size?

ECBC(Encrypted CBC) MAC

• Suppose we have a secure block cipher $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$. The tag generation algorithm $T: \{0,1\}^{2k} \times \{0,1\}^L \rightarrow \{0,1\}^n$ is shown in the picture below:

Birthday attack on Chaining based MACs

• <u>Main Idea</u>: *Internal collision*. Consider message spanning 3 blocks.

• <u>Main Idea</u>: *Internal collision*. Consider message spanning 3 blocks.

• If
$$C_2^i = C_2^j$$
, then
 $\forall x, T_K (< i >, R_i, x) = T_K (< j >, R_j, x).$

- Adversary *A*
 - For i = 1 to q
 - Randomly pick $R_i \in \{0,1\}^n$
 - Make a tag-generation query (< i > || R_i || < 0 >) and receive the tag T_i .
 - If there exists indices $i \neq j$ such that $T_i = T_j$
 - Make a tag-generation query (< i > $||R_i|| < 1$ >) and receive the tag T.
 - Make a tag-verification query $(\langle j \rangle ||R_j|| \langle 1 \rangle, T)$.
- What is $Adv_{uf-cma}(A, MA)$?

- Adversary *A*
 - For i = 1 to q
 - Randomly pick $R_i \in \{0,1\}^n$
 - Make a tag-generation query (< i > || R_i || < 0 >) and receive the tag T_i .
 - If there exists indices $i \neq j$ such that $T_i = T_j$
 - Make a tag-generation query (< i > $||R_i||$ < 1 >) and receive the tag T.
 - Make a tag-verification query $(\langle j \rangle ||R_j|| \langle 1 \rangle, T)$.

•
$$Adv_{uf-cma}(A, MA) = C(q, 2^n).$$

- Adversary *A*
 - For i = 1 to q
 - Randomly pick $R_i \in \{0,1\}^n$
 - Make a tag-generation query (< i > || R_i || < 0 >) and receive the tag T_i .
 - If there exists indices $i \neq j$ such that $T_i = T_j$
 - Make a tag-generation query (< i > $||R_i||$ < 1 >) and receive the tag T.
 - Make a tag-verification query $(\langle j \rangle ||R_j|| \langle 1 \rangle, T)$.
- $Adv_{uf-cma}(A, MA) = C(q, 2^n).$
- Does there exist an adversary that does much better that A?

- Adversary *A*
 - For i = 1 to q
 - Randomly pick $R_i \in \{0,1\}^n$
 - Make a tag-generation query (< i > || R_i || < 0 >) and receive the tag T_i .
 - If there exists indices $i \neq j$ such that $T_i = T_j$
 - Make a tag-generation query ($\langle i \rangle ||R_i|| \langle 1 \rangle$) and receive the tag T.
 - Make a tag-verification query $(\langle j \rangle ||R_j|| \langle 1 \rangle, T)$.
- $Adv_{uf-cma}(A, MA) = C(q, 2^n).$
- Does there exist an adversary that does much better that A?
 No.

Security of CBC MAC

<u>Theorem</u>: Let E: {0,1}^k × {0,1}ⁿ → {0,1}ⁿ be a family of functions. For any integer m ≥ 1, conside the function family E^m: {0,1}^k × {0,1}^{nm} → {0,1}ⁿ defined as below:

Let A be a PRF adversary against E^m that makes q oracle queries and has a running time of t. Then there is a PRF adversary B against E such that $Adv_{PRF}(A, E^m) \leq Adv_{PRF}(B, E) + \frac{q^2m^2}{2^n}$ and B makes at most qm oracle queries and runs in time t.

Security of ECBC MAC

<u>Theorem</u>: Let E: {0,1}^k × {0,1}ⁿ → {0,1}ⁿ be a family of functions. Conside the function family F: {0,1}^{2k} × {0,1}^{≤L} → {0,1}ⁿ defined as below:

Let *A* be a PRF adversary against *F* that makes *q* oracle queries totalling σ blocks and has a running time of *t*. Then there is a PRF adversary *B* against *E* such that $Adv_{PRF}(A,F) \leq Adv_{PRF}(B,E) + \frac{\sigma^2}{2^n}$

and B makes at most σ oracle queries and runs in time t.

Case Study: Block Cipher based MACs

CMAC

Case Study: CMAC

CMAC Components and Setup

- $E: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a block cipher, in practice AES.
- CBC_K(M) is the basic CBC MAC of a full message M under key K ∈ {0,1}" and using E.
- J ∈ {0,1}ⁿ is a particular fixed constant.

CMAC uses its key $K \in \{0,1\}^n$ to derive subkeys K_1, K_2 via

- K₀ ← E_K(0)
- if $msb(K_0) = 0$ then $K_1 \leftarrow (K_0 \ll 1)$ else $K_1 \leftarrow (K_0 \ll 1) \oplus J$
- if $msb(K_1) = 0$ then $K_2 \leftarrow (K_1 \ll 1)$ else $K_2 \leftarrow (K_1 \ll 1) \oplus J$

where $x \ll 1$ means x left shifted by 1 bit, so that the msb vanishes and the lsb becomes 0. These bit operations reflect simple finite-field operations.

Case Study: CMAC

CMAC Algorithm

```
\begin{array}{l} \textbf{Alg CMAC}_{K}(M) \\ M[1] \dots M[m-1]M[m] \leftarrow M \quad // \mid M[m] \mid \leq n \\ \ell \leftarrow \mid M[m] \mid \quad // \quad \ell \leq n \\ \text{if } \ell = n \text{ then } M[m] \leftarrow K_1 \oplus M[m] \\ \text{else } M[m] \leftarrow K_2 \oplus (M[m] \parallel 10^{n-\ell-1}) \\ M \leftarrow M[1] \dots M[m-1]M[m] \\ T \leftarrow \text{CBC}_{K}(M) \\ \text{return } T \end{array}
```

t morele

イロト (西) イモト (モトーモーの人の

- Splicing attack does not work.
- There is a security proof showing that no attack is significantly better than the Birthday attack.
- NIST Standard for Message Authentication.

- Can we construct a secure MAC using collision-resistant hash functions?
 - <u>Issue</u>: Hash functions are *keyless*.
- What if we use $T_K(M) = H(K||M)$? Is this secure?

- Can we construct a secure MAC using collision-resistant hash functions?
 - <u>Issue</u>: Hash functions are *keyless*.
- What if we use $T_K(M) = H(K||M)$? Is this secure?
 - No. There can be an *extension attack*.

- Can we construct a secure MAC using collision-resistant hash functions?
 - <u>Issue</u>: Hash functions are *keyless*.
- What if we use $T_K(M) = H(K||M)$? Is this secure?
 - No. There can be an *extension attack*.

• The tag for $M = M_1 ||M_2||M_3$ gives the correct tag for $M_1 ||M_2||M_3'$.

HMAC [BCK96]

Suppose $H: D \rightarrow \{0,1\}^{160}$ is the hash function. HMAC has a 160-bit key K. Let

 $K_o = \text{opad} \oplus K || 0^{352}$ and $K_i = \text{ipad} \oplus K || 0^{352}$

where

$$opad = 5D$$
 and $ipad = 36$

in HEX. Then

 $HMAC_{K}(M) = H(K_{o}||H(K_{i}||M))$

HMAC

Features:

- Blackbox use of the hash function, easy to implement
- Fast in software

Usage:

- As a MAC for message authentication
- As a PRF for key derivation

Security:

- Subject to a birthday attack
- Security proof shows there is no better attack [BCK96,Be06]

Adoption and Deployment: HMAC is one of the most widely standardized and used cryptographic constructs: SSL/TLS, SSH, IPSec, FIPS 198, IEEE 802.11, IEEE 802.11b, ...

HMAC Security

Theorem: [BCK96] HMAC is a secure PRF assuming

- The compression function is a PRF
- The hash function is collision-resistant (CR)

But recent attacks show MD5 is not CR and SHA1 may not be either.

So are HMAC-MD5 and HMAC-SHA1 secure?

- No attacks so far, but
- Proof becomes vacuous!

Theorem: [Be06] HMAC is a secure PRF assuming only

The compression function is a PRF

Current attacks do not contradict this assumption. This new result may explain why HMAC-MD5 is standing even though MD5 is broken with regard to collision resistance.

化氯化化酶化 化氯化化氯化物

HMAC Recommendations

- Don't use HMAC-MD5
- No immediate need to remove HMAC-SHA1
- Use HMAC-SHA256 for new applications

MACs using Universal Hash Function Families

Carter-Wegman

Carter-Wegman MACs

- Chain based constructions like ECBC, HMAC are expensive as it involves repeated executions of a block cipher.
- <u>Definition (δ -almost universal hash function family</u>): A function family $H: keys(H) \times D \rightarrow \{0,1\}^n$ is called δ almost-universal hash function if for all $M_1, \neq M_2 \in D$: $\Pr[H_K(M_1) = H_K(M_2)] \leq \delta$

Carter-Wegman MACs

- Chain based constructions like ECBC, HMAC are expensive as it involves repeated executions of a block cipher.
- <u>Definition (δ -almost universal hash function family</u>): A function family $H: keys(H) \times D \rightarrow \{0,1\}^n$ is called δ almost-universal hash function if for all $M_1, \neq M_2 \in D$: $\Pr[H_K(M_1) = H_K(M_2)] \leq \delta$
- Example of almost universal hash function family.
 - Let p be a large prime (say $\geq 2^{128}$)
 - $K = (a, b) \in \{1 \dots q\} \times \{1 \dots q\}$
 - $H_K(M) = (a^{m+1} + M_m \cdot a^m + \dots + M_1 \cdot a + b) \pmod{p}$

Carter-Wegman MACs

- Carter-Wegman MAC
 - Suppose we have a δ -almost-universal hash function family $H: keys(H) \times D \to \{0,1\}^n$ and a secure PRF $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$, consider the following many-time MAC for messages in the domain D:
 - $T_K(M) = (r, E_{K_1}(r) \bigoplus H_{K_2}(M))$, where $K \in keys(H) \times \{0, 1\}^k$.
 - <u>Theorem(informal)</u>: The above MAC is UF-CMA secure assuming that *E* is a secure PRF and *H* is almost-universal.
 - Examples:
 - $\underline{\text{UMAC}}$: (NH + HMAC-SHA1)
 - <u>Poly127-AES</u>: (Poly127 + AES)
 - <u>Poly1305-AES</u>: (Poly1305 + AES)

End

The following slides have been borrowed from Mihir Bellare's Course on Cryptography: 24, 25, 30, 31, 32, 33.