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Hash Functions



Hash Functions: Introduction

 A hash function is a map ℎ: 𝐷 → 0,1 𝑛 that is compressing, 

i.e., 𝐷 > 2𝑛.

 Usually 𝐷 ≫ 2𝑛 and 𝑛 is small.

 Example:

 𝐷 = 0,1 ≤264 i.e., all binary strings of length at most 264.

 𝑛 = 128, 160, 256 etc.

 Examples of Cryptographic Hash Functions: 

ℎ 𝒏

MD4 128

MD5 128

SHA1 160

SHA-256 256

SHA-512 512

WHIRLPOOL 512



Hash Functions: Collision

𝐷
2𝑛

𝑥1

𝑥2

Pigeonhole Principle: ℎ(𝑥1) = ℎ(𝑥2), 𝑥1 ≠ 𝑥2

ℎ



Hash Functions: Applications

1. Password Authentication:

Bob Server

Bob, <pass>

Pass/fail

• Problem: If Eve hacks into the server or if the communication channel is 

not secure, then Eve knows the password of Bob.

S stores Bob’s password



Hash Functions: Applications

1. Password Authentication:

Bob Server

Bob, ℎ(<pass>)

Pass/fail

• Eve can only get access to ℎ(<pass>). 

S stores ℎ(Bob’s password)



Hash Functions: Applications

2. Comparing files by hashing:

Server B

Yes/No

• Problem: Files are usually very large and we would like to save 

communication costs/delays.

S has FB

Server A

S has FA 𝐹𝐴



Hash Functions: Applications

2. Comparing files by hashing:

Server B

S has FB

Server A

S has FA ℎ(𝐹𝐴)

ℎ 𝐹𝐴 =? ℎ(𝐹𝐵)



Hash Functions: Applications

3. Downloading new software

Mirror Site

Give me software 𝑋

𝑋′

• Problem: 𝑋′ could be a virus-infected version of 𝑋.

Stores 𝑋′



Hash Functions: Applications

3. Downloading new software

Mirror site

Give me software 𝑋

𝑋′

Software site
Stores ℎ(𝑋) in read-only mode

ℎ(𝑋)

Stores 𝑋′



Collision Resistance

 Password Authentication: If Eve is able to find a string 𝑆 (perhaps 
different from < 𝑝𝑎𝑠𝑠 >) such that 

ℎ(𝑆) = ℎ(< 𝑝𝑎𝑠𝑠 >)
then the scheme breaks.

 Comparing files: If there is a different file 𝐹𝑆 such that 
ℎ(𝐹𝑆) = ℎ(𝐹𝐵)

the servers may agree incorrectly.

 Downloading software: If Eve can find 𝑋′ ≠ 𝑋 such that ℎ 𝑋 =
ℎ(𝑋′), then software might cause problems.

 Collision Resistance: It is computationally infeasible to find a pair 
(𝑥1, 𝑥2) such that 𝑥1 ≠ 𝑥2 and 

ℎ(𝑥1) = ℎ(𝑥2)

 If a hash function ℎ is collision resistant, then the above two 
problems are avoided.



Collision Resistance: Discussion

 Are there functions that are collision resistant?

 Fortunately, there are functions for which no one has been able to find a 

collision!

 Example: 𝑆𝐻𝐴 − 1: 0,1 𝐷 → {0,1}160

 Is the world drastically going to change if someone finds one or few 

collision for SHA-1?

 Not really. Suppose the collision has some very specific structure, then 

we may avoid such structures in the strings on which the hash function is 

applied.

 On the other hand, if no one finds a collision then that is a very strong 

notion of security and we may sleep peacefully without worrying about 

maintaining complicated structures in the strings.

 We are once again going for a very strong definition of security for our 

new primitive similar to Block Ciphers and Symmetric Encryption.



Collision Resistance

CR-security



CR-Security
 For a hash function ℎ: 𝐷 → 0, 1 𝑛, CR-security is defined 

using the following experiment.

 𝐶𝑅𝐴,ℎ
 Let the adversary 𝐴 return 𝑋0, 𝑋1 .

 If ((ℎ 𝑋0 = ℎ 𝑋1) ∧ (𝑋0≠ 𝑋1)), output 1 else output 0

 𝐴𝑑𝑣𝐶𝑅 𝐴, ℎ = Pr[𝐶𝑅𝐴,ℎ = 1]



CR-Security
 For a hash function ℎ:𝐷 → 0, 1 𝑛, CR-security is defined using the 

following experiment.

 𝐶𝑅𝐴,ℎ
 Let the adversary 𝐴 return 𝑋0, 𝑋1 .
 If (ℎ 𝑋0 = ℎ(𝑋1)) and (𝑋0 ≠ 𝑋1), output 1 else output 0

 𝐴𝑑𝑣𝐶𝑅 𝐴, ℎ = Pr[𝐶𝑅𝐴,ℎ = 1]

 Let ℎ: 0,1 256 → 0,1 128 defined as

ℎ 𝑋 = ℎ 𝑋1 𝑋2 = 𝐴𝐸𝑆𝐾 𝑋1 ⊕𝐴𝐸𝑆𝐾 𝑋2
where 𝐾 ∈ 0,1 128 is a fixed constant.

 Can you design an adversary that has a high CR-advantage?



CR-Security
 For a hash function ℎ:𝐷 → 0, 1 𝑛, CR-security is defined using the 

following experiment.

 𝐶𝑅𝐴,ℎ
 Let the adversary 𝐴 return 𝑋0, 𝑋1 .
 If (ℎ 𝑋0 = ℎ(𝑋1)) and (𝑋0 ≠ 𝑋1), output 1 else output 0

 𝐴𝑑𝑣𝐶𝑅 𝐴, ℎ = Pr[𝐶𝑅𝐴,ℎ = 1]

 Let ℎ: 0,1 256 → 0,1 128 defined as

ℎ 𝑋 = ℎ 𝑋1 𝑋2 = 𝐴𝐸𝑆𝐾 𝑋1 ⊕𝐴𝐸𝑆𝐾 𝑋2
where 𝐾 ∈ 0,1 128 is a fixed constant.

 Can you design an adversary that has a high CR-advantage?

 Yes. Adversary sends (01281128, 11280128).

 𝐴𝑑𝑣𝐶𝑅 𝐴, ℎ = 1.



Merkel Damgard (MD) Transform



MD Transform
 Let us break down designing a CR-secure hash function that 

maps arbitrarily large bit strings to small strings, into the 

following two parts:

1. Design a CR-secure hash function ℎ for short, fixed-size 

messages.

2. Use ℎ in a standard construction to obtain a hash 

function 𝐻 that hashes arbitrary long messages. Show that if ℎ
is CR-secure, then so is 𝐻.



MD Transform
 Let us break down designing a CR-secure hash function that 

maps arbitrarily large bit strings to small strings, into the 

following two parts:

1. Design a CR-secure hash function ℎ for short, fixed-size 

messages.

2. Use ℎ in a standard construction to obtain a hash 

function 𝐻 that hashes arbitrary long messages. Show that if ℎ
is CR-secure, then so is 𝐻.

 One such standard construction of part 2 is the Merkel-

Damgard (MD) Transform.



MD Transform
 Suppose we have a collision-resistant hash function for short 

strings ℎ: 0,1 𝑏+𝑛 → 0,1 𝑛 (e.g. SHA-1: 𝑏 = 512, 𝑛 =
160), consider a hash function 𝐻: 0,1 ≤264−1 → 0,1 𝑛 for 
longer strings constructed in the following manner:

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ ℎ

Where the padding block is a string of all 0’s

𝐻



MD Transform
 Suppose we have a collision-resistant hash function for short 

strings ℎ: 0,1 𝑏+𝑛 → 0,1 𝑛, consider a hash function 

𝐻: 0,1 ≤264−1 → 0,1 𝑛 for longer strings constructed in the 
following manner:

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ ℎ

Where the padding block is a string of all 0’s

𝐻

 Is 𝐻 a collision-resistant hash function?



MD Transform
 Suppose we have a collision-resistant hash function for short 

strings ℎ: 0,1 𝑏+𝑛 → 0,1 𝑛, consider a hash function 

𝐻: 0,1 ≤264−1 → 0,1 𝑛 for longer strings constructed in the 
following manner:

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ ℎ

Where the padding block is a string of all 0’s

𝐻

 Is 𝐻 a collision-resistant hash function?
 No since 𝐻 1 = 𝐻(100…0).



MD Transform
 Suppose we have a collision-resistant hash function for short 

strings ℎ: 0,1 𝑏+𝑛 → 0,1 𝑛, consider a hash function 

𝐻: 0,1 ≤264−1 → 0,1 𝑛 for longer strings constructed in the 
following manner:

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ ℎ

𝐻

 Is 𝐻 a collision-resistant hash function?

100…0||msg len



MD Transform
 Suppose we have a collision-resistant hash function for short 

strings ℎ: 0,1 𝑏+𝑛 → 0,1 𝑛, consider a hash function 

𝐻: 0,1 ≤264−1 → 0,1 𝑛 for longer strings constructed in the 
following manner:

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ ℎ

𝐻

 Is 𝐻 a collision-resistant hash function?

 Yes as long as ℎ is a collision-resistant.

100…0||msg len



MD Transform
 Suppose there are two strings:

 𝑆 = 𝑆1 𝑆2 … ||𝑆𝑝

 𝑇 = 𝑇1 𝑇2 … ||𝑇𝑞

such that 𝐻 𝑆 = 𝐻(𝑇).

𝑆1 𝑆2 𝑆3 𝑆4
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ

𝐻

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ ℎ

𝐻



MD Transform
 If 𝑥 ≠ 𝑥′, then we have found a collision for ℎ.

𝑆1 𝑆2 𝑆3 𝑆4
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ

𝐻

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ ℎ

𝐻

𝑦

𝑦

𝑥

𝑥′



MD Transform
 If 𝑥1 ≠ 𝑥1

′ , then we have found a collision for ℎ.

 If 𝑥1 = 𝑥1
′ , then this means that the messages are of equal length.

𝑆1 𝑆2 𝑆3 𝑆4
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ

𝐻

𝑇1 𝑇2 𝑇3 𝑇4
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ

𝐻

𝑦1

𝑦1

𝑥1

𝑥1
′



MD Transform
 Again, if 𝑥2 ≠ 𝑥2

′ , then we have found a collision for ℎ.

 If 𝑥2 = 𝑥2
′ , then shift the analysis to the previous application of ℎ.

𝑆1 𝑆2 𝑆3 𝑆4
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ

𝐻

𝑇1 𝑇2 𝑇3 𝑇4
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ

𝐻

𝑦2

𝑦2

𝑥2

𝑥2
′



MD Transform
 Again, if 𝑥3 ≠ 𝑥3

′ , then we have found a collision for ℎ.

 If 𝑥3 = 𝑥3
′ , then shift the analysis to the previous application of ℎ.

𝑆1 𝑆2 𝑆3 𝑆4
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ

𝐻

𝑇1 𝑇2 𝑇3 𝑇4
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ

𝐻

𝑦3

𝑦3

𝑥3

𝑥3
′



MD Transform
 Now 𝑥4 ≠ 𝑥4

′ , since 𝑆 ≠ 𝑇 and we have found a collision.

𝑆1 𝑆2 𝑆3 𝑆4
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ

𝐻

𝑇1 𝑇2 𝑇3 𝑇4
′

Fixed 𝐼𝑉 ℎ ℎ ℎ ℎ

𝐻

𝑦4

𝑦4

𝑥4

𝑥4
′



Hash Function for short strings



Collision-resistant Compression Functions

 Suppose we have a block cipher 𝐹: 0,1 𝑘 × 0,1 𝑛 →
0,1 𝑛. Consider the following candidate for a compression 

function ℎ: 0,1 𝑘+𝑛 → 0,1 𝑛 defined as:

ℎ(𝑥| 𝑣 = 𝐸𝑥(𝑣)

 Is ℎ collision resistant?



Collision-resistant Compression Functions

 Suppose we have a block cipher 𝐹: 0,1 𝑘 × 0,1 𝑛 →
0,1 𝑛. Consider the following candidate for a compression 

function ℎ: 0,1 𝑘+𝑛 → 0,1 𝑛 defined as:

ℎ(𝑥| 𝑣 = 𝐸𝑥(𝑣)

 Is ℎ collision resistant?

 No.

 How do we prove this?



Collision-resistant Compression Functions

 Suppose we have a block cipher 𝐹: 0,1 𝑘 × 0,1 𝑛 →
0,1 𝑛. Consider the following candidate for a compression 

function ℎ: 0,1 𝑘+𝑛 → 0,1 𝑛 defined as:

ℎ(𝑥| 𝑣 = 𝐸𝑥(𝑣)

 Is ℎ collision resistant?

 No.

 How do we prove this?

 Give a collision.



Collision-resistant Compression Functions

 Suppose we have a block cipher 𝐹: 0,1 𝑘 × 0,1 𝑛 →
0,1 𝑛. Consider the following candidate for a compression 

function ℎ: 0,1 𝑘+𝑛 → 0,1 𝑛 defined as:

ℎ(𝑥| 𝑣 = 𝐸𝑥(𝑣)

 Is ℎ collision resistant?

 No.

 How do we prove this?

 Give a collision.

 Pick any 𝑠1 = 𝑥||𝑣, then pick 𝑥′ ≠ 𝑥, compute 𝑣′ =

𝐸𝑥′
−1(𝐸𝑥(𝑣)) and let 𝑠2 = 𝑥′||𝑣′.



Collision-resistant Compression Functions

 Suppose we have a block cipher 𝐹: 0,1 𝑘 × 0,1 𝑛 →
0,1 𝑛. Consider the following candidate for a compression 

function ℎ: 0,1 𝑘+𝑛 → 0,1 𝑛 defined as:

ℎ(𝑥| 𝑣 = 𝐸𝑥(𝑣)

 Is ℎ collision resistant?

 No.

 How do we prove this?

 Give a collision.

 Pick any 𝑠1 = 𝑥||𝑣, then pick 𝑥′ ≠ 𝑥, compute 𝑣′ =

𝐸𝑥′
−1(𝐸𝑥(𝑣)) and let 𝑠2 = 𝑥′||𝑣′.

 Claim: ℎ 𝑠1 = ℎ(𝑠2) and 𝑠1 ≠ 𝑠2.



Collision-resistant Compression Functions

 Here are some examples of constructions based on clock 

ciphers that are believed to be collision resistant.

 Davies-Meyer: Given a block cipher 𝐹: 0,1 𝑘 × 0,1 𝑛 →
0,1 𝑛, the hash function ℎ: 0,1 𝑘+𝑛 → 0,1 𝑛 is defined as 

follows:

ℎ(𝑥| 𝑣 = 𝐹𝑥 𝑣 ⊕ 𝑣
This is used in SHA-1, SHA-2.

 Miyaguchi-Preneel: Given a block cipher 𝐹: 0,1 𝑛 ×
0,1 𝑛 → 0,1 𝑛, the hash function ℎ: 0,1 𝑛+𝑛 → 0,1 𝑛 is 

defined as follows:

ℎ(𝑥| 𝑣 = 𝐹𝑥 𝑣 ⊕ 𝑣 ⊕ 𝑥 and other variants. This is used in 

WHIRLPOOL hash function.



Hash Function Examples



Hash Function: Examples

 SHA-256: 0,1 ≤264−1 → 0,1 256

 Compression function: Uses Davies-Meyer construction using 
the SHACAL-2: 0,1 512 × 0,1 256 → 0,1 256 block 
cipher.

 Uses MD transform for longer strings.

 Uses padding as shown below:

64 bits448 bits

Message length 

in bits

Last few bits 

of the message

1000…………….0



Birthday attack on Hash Functions



Birthday attack on hash functions

 Here is an extremely simple attack on a hash function 

𝐻:𝐷 → 0, 1 𝑛.

 Adversary 𝐴
 For 𝑖 = 1 to 𝑞

 Let 𝑥𝑖 ← 𝐷 and 𝑦𝑖 ← 𝐻(𝑥𝑖)

 If there exists 𝑖, 𝑗 ∈ [𝑞], such that 𝑥𝑖 ≠ 𝑥𝑗 and 𝑦𝑖 = 𝑦𝑗, then output 

(𝑥1, 𝑥2).

 What is 𝐴𝑑𝑣𝐶𝑅(𝐴, 𝐻)?



Birthday attack on hash functions

 Here is an extremely simple attack on a hash function 

𝐻:𝐷 → 0, 1 𝑛.

 Adversary 𝐴
 For 𝑖 = 1 to 𝑞

 Let 𝑥𝑖 ← 𝐷 and 𝑦𝑖 ← 𝐻(𝑥𝑖)

 If there exists 𝑖, 𝑗 ∈ [𝑞], such that 𝑥𝑖 ≠ 𝑥𝑗 and 𝑦𝑖 = 𝑦𝑗, then output 

(𝑥1, 𝑥2).

 What is 𝐴𝑑𝑣𝐶𝑅(𝐴, 𝐻)?

 Is 𝐴𝑑𝑣𝐶𝑅 𝐴,𝐻 = 𝐶(𝑞, 2𝑛)?



Birthday attack on hash functions

 Here is an extremely simple attack on a hash function 

𝐻:𝐷 → 0, 1 𝑛.

 Adversary 𝐴
 For 𝑖 = 1 to 𝑞

 Let 𝑥𝑖 ← 𝐷 and 𝑦𝑖 ← 𝐻(𝑥𝑖)

 If there exists 𝑖, 𝑗 ∈ [𝑞], such that 𝑥𝑖 ≠ 𝑥𝑗 and 𝑦𝑖 = 𝑦𝑗, then output 

(𝑥1, 𝑥2).

 What is 𝐴𝑑𝑣𝐶𝑅(𝐴, 𝐻)?

 Is 𝐴𝑑𝑣𝐶𝑅 𝐴,𝐻 = 𝐶(𝑞, 2𝑛)?
 No since 𝑦𝑖’s are not randomly chosen strings from 0,1 𝑛.



Birthday attack on hash functions

 Here is an extremely simple attack on a hash function 
𝐻:𝐷 → 0, 1 𝑛.

 Adversary 𝐴
 For 𝑖 = 1 to 𝑞

 Let 𝑥𝑖 ← 𝐷 and 𝑦𝑖 ← 𝐻(𝑥𝑖)

 If there exists 𝑖, 𝑗 ∈ [𝑞], such that 𝑥𝑖 ≠ 𝑥𝑗 and 𝑦𝑖 = 𝑦𝑗, then output 
(𝑥1, 𝑥2).

 What is 𝐴𝑑𝑣𝐶𝑅(𝐴, 𝐻)?
 Is 𝐴𝑑𝑣𝐶𝑅 𝐴,𝐻 = 𝐶(𝑞, 2𝑛)?

 No since 𝑦𝑖’s are not randomly chosen strings from 0,1 𝑛.

 Suppose that the hash function 𝐻 is a regular.This means that 

∀𝑦 ∈ 0,1 𝑛, 𝑥 ∈ 𝐷:𝐻 𝑥 = 𝑦 =
𝐷

2𝑛
, then 

𝐴𝑑𝑣𝐶𝑅 𝐴,𝐻 = 𝐶(𝑞, 2𝑛).



Birthday attack on hash functions

 Here is an extremely simple attack on a hash function 

𝐻:𝐷 → 0, 1 𝑛.

 Suppose that the hash function 𝐻 is a regular.This means that 

∀𝑦 ∈ 0,1 𝑛, 𝑥 ∈ 𝐷:𝐻 𝑥 = 𝑦 =
𝐷

2𝑛
, then 

𝐴𝑑𝑣𝐶𝑅 𝐴,𝐻 = 𝐶(𝑞, 2𝑛).

 Theorem: Let 𝐻:𝐷 → 0, 1 𝑛 be a regular hash function, 

then the birthday attack finds a collision in about 2𝑛/2 trials.



Birthday attack on hash functions

 Here is an extremely simple attack on a hash function 

𝐻:𝐷 → 0, 1 𝑛.

 Suppose that the hash function 𝐻 is a regular.This means that 

∀𝑦 ∈ 0,1 𝑛, 𝑥 ∈ 𝐷:𝐻 𝑥 = 𝑦 =
𝐷

2𝑛
, then 

𝐴𝑑𝑣𝐶𝑅 𝐴,𝐻 = 𝐶(𝑞, 2𝑛).

 Theorem: Let 𝐻:𝐷 → 0, 1 𝑛 be a regular hash function, 

then the birthday attack finds a collision in about 2𝑛/2 trials.

 What if 𝐻 is not regular? How does the birthday attack 

behave?



Birthday attack on hash functions

 Here is an extremely simple attack on a hash function 
𝐻:𝐷 → 0, 1 𝑛.

 Suppose that the hash function 𝐻 is a regular.This means that 

∀𝑦 ∈ 0,1 𝑛, 𝑥 ∈ 𝐷:𝐻 𝑥 = 𝑦 =
𝐷

2𝑛
, then 

𝐴𝑑𝑣𝐶𝑅 𝐴,𝐻 = 𝐶(𝑞, 2𝑛).

 Theorem: Let 𝐻:𝐷 → 0, 1 𝑛 be a regular hash function, 
then the birthday attack finds a collision in about 2𝑛/2 trials.

 What if 𝐻 is not regular? How does the birthday attack 
behave?

 The attack may succeed sooner.

 So, hash functions should be close to regular which seems to 
be the case for most popular hash functions.



Attacks against Hash Functions



Attacks on Hash Functions

Name Output 

size

Birthday 

attack 

time

Best attack 

time

Best 

attack 

year

MD5 128 264 220 2009

RIPEMD 160 280 218 2004

SHA-1 160 280 252 2009

SHA-256 256 2128 No collisions 

yet



End


