CSL759: Cryptography and Computer Security

Ragesh Jaiswal

CSE, IIT Delhi

Recap.

CPA Security for Encryption Schemes

- $Left_{SE,A}$
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_0^i)$ to A.
 - Finally *A* outputs *b*.
 - Output *b*.

- Right_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_1^i)$ to A.
 - Finally *A* outputs *b*.
 - Output *b*.
- The IND-CPA advantage of an adversary *A* is defined as follows:

 $Adv_{ind-cpa}(A,SE) = \left| \Pr[Left_{SE,A} = 1] - \Pr[Right_{SE,A} = 1] \right|$

• A symmetric encryption scheme SE = (E, D) is called (t, q, ϵ) ind-cpa secure if for every adversary A that runs in time $\leq t$ and asks $\leq q$ quesries, $Adv_{ind-cpa}(A, SE) \leq \epsilon$.

Pseudorandom Function

- The PRF advantage of an adversary A is defined as follows: $Adv_{PRF}(A,F) = |\Pr[Real_{A,F} = 1] - \Pr[Random_A = 1]|$
- A function F: {0,1}^k × {0,1}ⁿ → {0,1}ⁿ is called (t, q, ε)-secure PRF if for every adversary A that runs in time ≤ t and asks ≤ q queries, Adv_{PRF}(A, F) ≤ ε.
- Real_{A,F}
 - Randomly pick $K \leftarrow \{0,1\}^k$.
 - When A queries with an input $x \in \{0,1\}^n$, return $F_K(x)$.
 - Finally *A* outputs a bit *b*.
 - Output *b*.

• Random_A

- When A queries with an input $x \in \{0,1\}^n$, return a random value from $\{0,1\}^n$.
- Finally *A* outputs a bit *b*.
- Output *b*.

The adversary is not allowed to repeat a query.

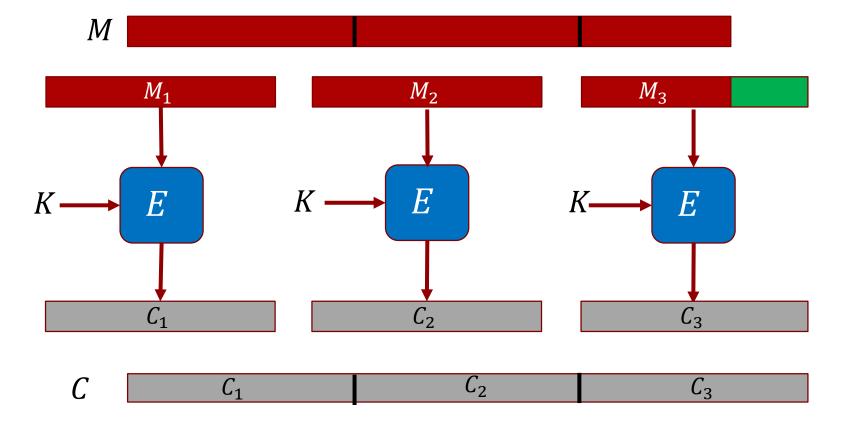
CPA-Security for Encryption Schemes

- Suppose we have a *secure* pseudorandom permutation family $F: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$.
 - We saw a few examples(AES, 3DES etc.) in the last lecture.
- Consider the following encryption scheme SE = (E, D) that encrypts messages of length n.
 - $E_K(M)$
 - Pick a random $r \leftarrow \{0,1\}^n$
 - Output $C = \langle r, F_K(r) \bigoplus M \rangle$
 - $D_K(C)$
 - Parse C as < r, s >
 - Output $M = F_K(r) \bigoplus s$
- <u>Theorem (informal)</u>: If F is a secure PRF, then SE is ind-cpa secure symmetric encryption scheme.

Modes of Operation

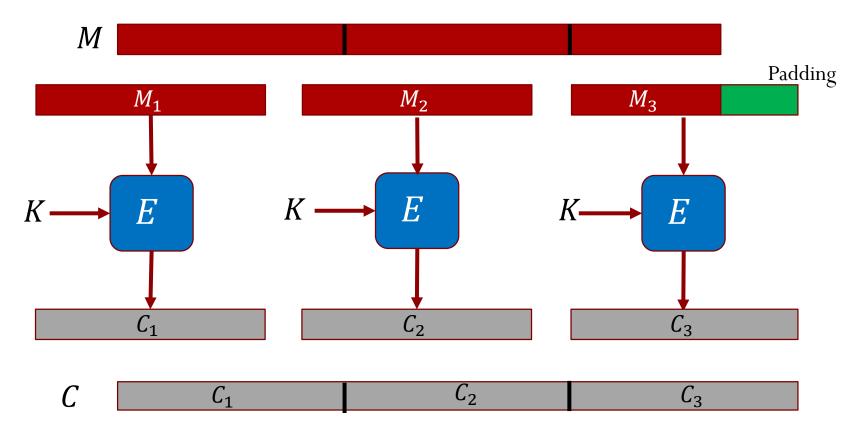
Using PRPs to design IND-CPA secure encryption schemes.

ECB Mode: Electronic Codebook Mode



• Is the encryption scheme using the ECM mode IND-CPA secure?

ECB Mode: Electronic Codebook Mode

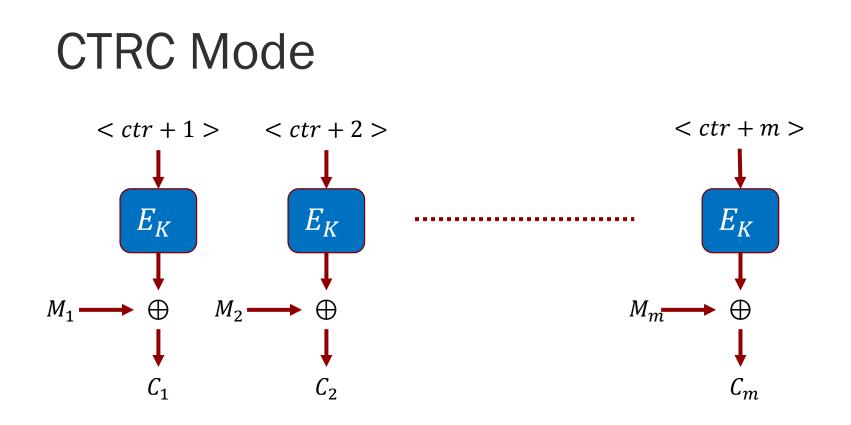


- Is the encryption scheme using the ECM mode IND-CPA secure?
 - No. Adversary queries $(0^n, 1^n)$ and then $(1^n, 1^n)$.

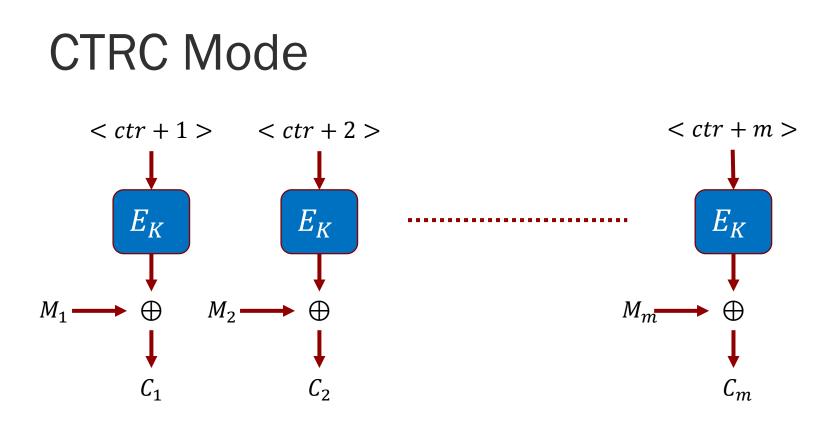
ECB Mode: Electronic Codebook Mode

- Is the encryption scheme using the ECM mode IND-CPA secure?
 - No. Adversary queries $(0^n, 1^n)$ and then $(1^n, 1^n)$.
- No deterministic (same ciphertext for same message) encryption scheme can be IND-CPA secure.
 - This means that a IND-CPA secure encryption scheme should output different ciphertexts for the same message.
 - There are two ways to achieve this:
 - <u>Randomized encryption (CBC\$)</u>: The encryption algorithm is randomized.
 - <u>Stateful encryption (CTRC)</u>: The encryption algorithm maintains a state and the encryption depends on this state.

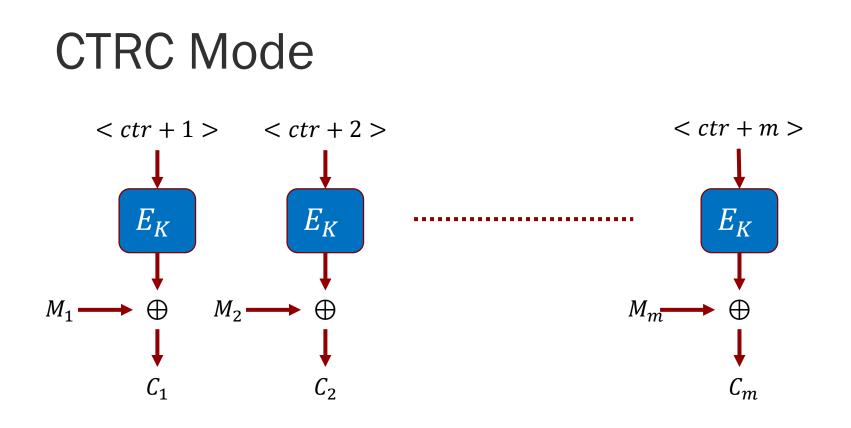
CTRC mode: Counter mode



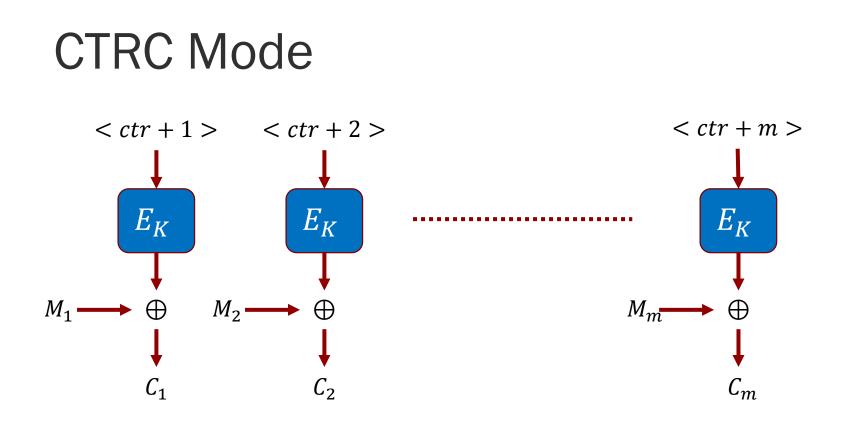
- The encryption algorithm maintains a counter ctr that is initialized to 0.
- For a m block message M_1, \ldots, M_m the ciphertext C_0, C_1, \ldots, C_m is sent where $C_0 = ctr$.



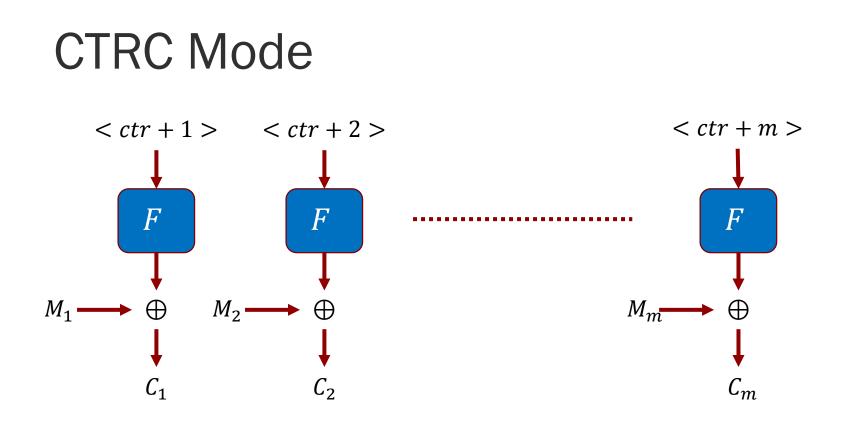
- The encryption algorithm maintains a counter ctr that is initialized to 0.
- For a *m* block message M_1, \ldots, M_m the ciphertext C_0, C_1, \ldots, C_m is sent where $C_0 = ctr$.
- Few observations:
 - Decryptor does not need to maintain a counter.
 - Decryptor does not need E_K^{-1} .
 - Encryption decryption are parallalizable.



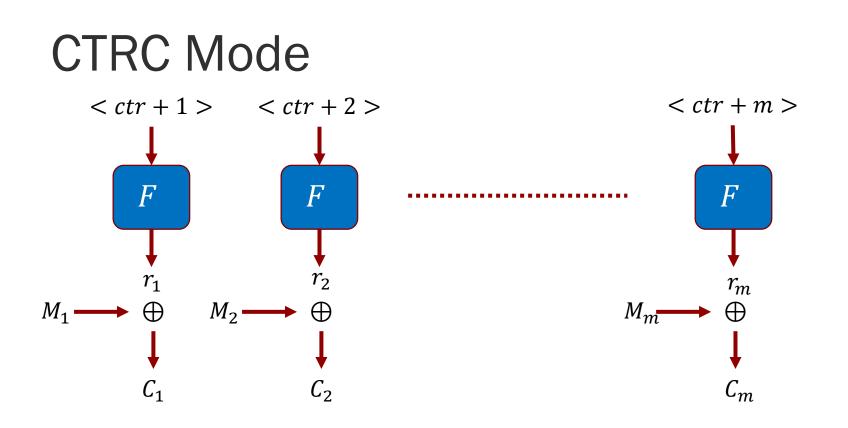
• Is this encryption scheme IND-CPA secure?



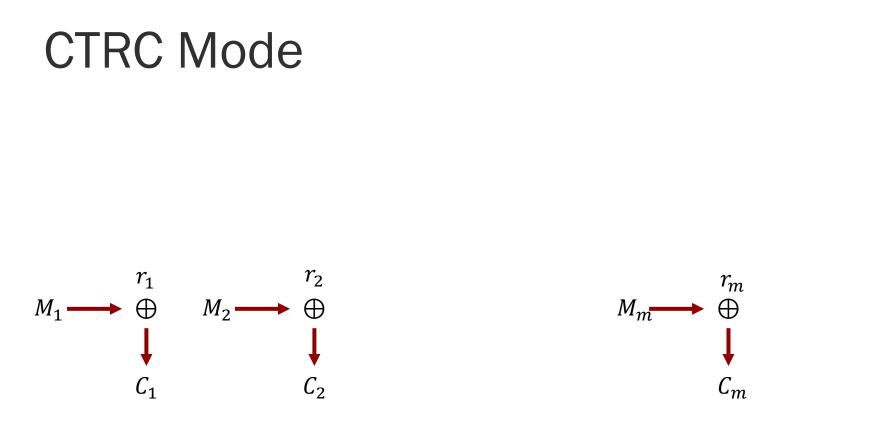
- Is this encryption scheme IND-CPA secure?
 - Yes if *E* is a secure PRF.
 - <u>Intuition</u>: What if instead of *E*, we use a purely random function.



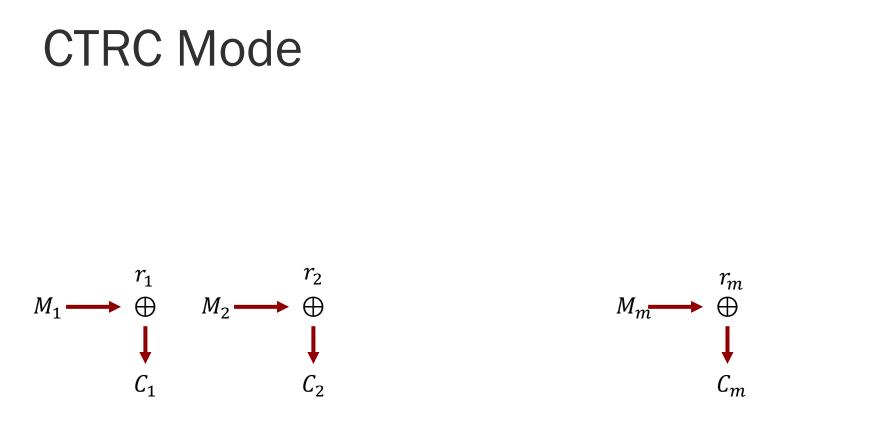
- Is this encryption scheme IND-CPA secure?
 - Yes if *E* is a secure PRF.
 - <u>Intuition</u>: What if instead of E, we use a purely random function.



- Is this encryption scheme IND-CPA secure?
 - Yes if *E* is a secure PRF.
 - <u>Intuition</u>: What if instead of *E*, we use a purely random function.



- Is this encryption scheme IND-CPA secure?
 - Yes if *E* is a secure PRF.
 - <u>Intuition</u>: What if instead of E, we use a purely random function.
 - This is just One Time Pad. This reveals no information about the message and hence will be IND-CPA secure.

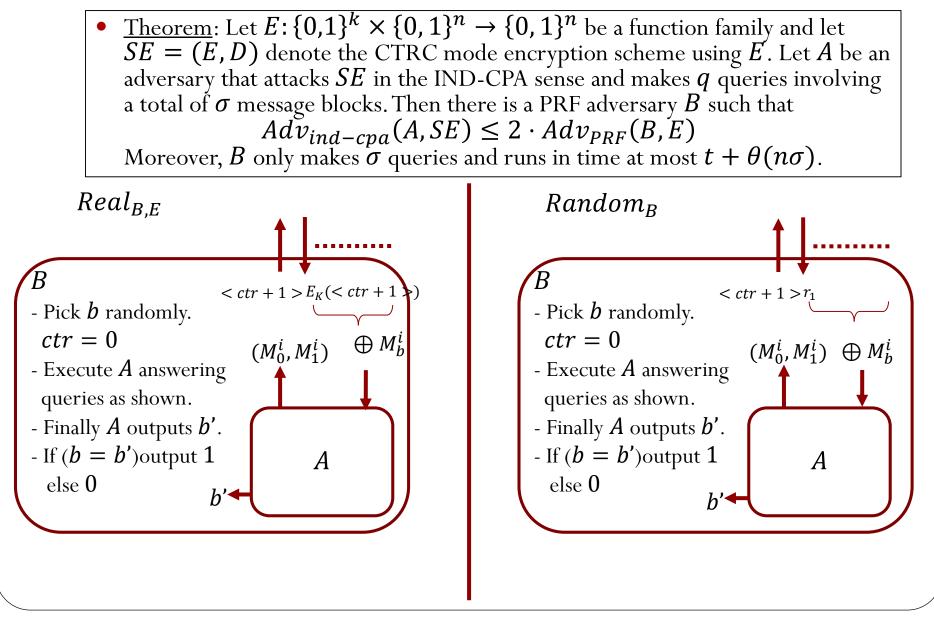


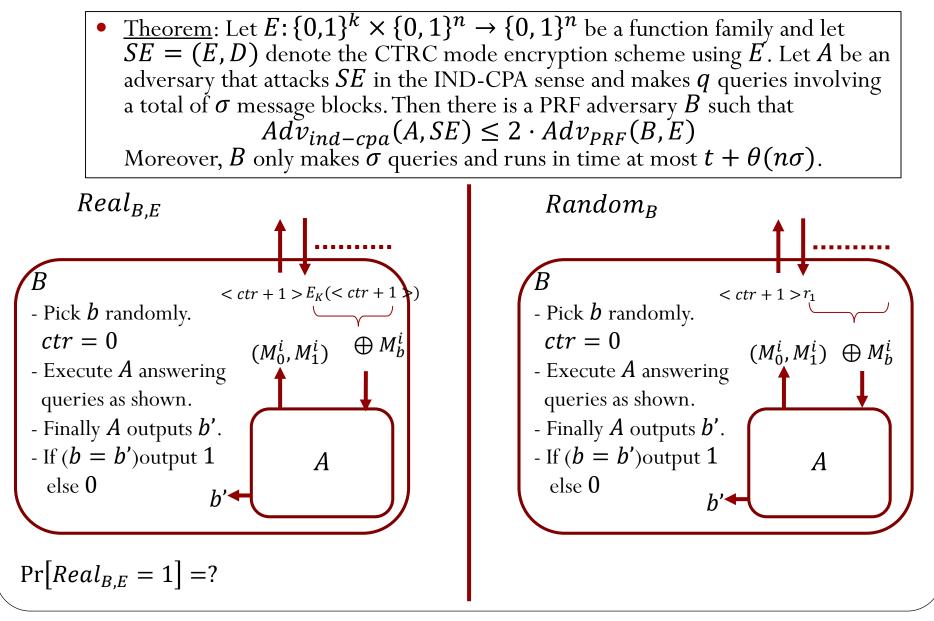
- Is this encryption scheme IND-CPA secure?
 - Yes if *E* is a secure PRF.
 - Intuition: What if instead of E, we use a purely random function.
 - This is just One Time Pad. This reveals no information about the message and hence will be IND-CPA secure.
 - But then, *E behaves* like a random function so should also be IND-CPA secure.

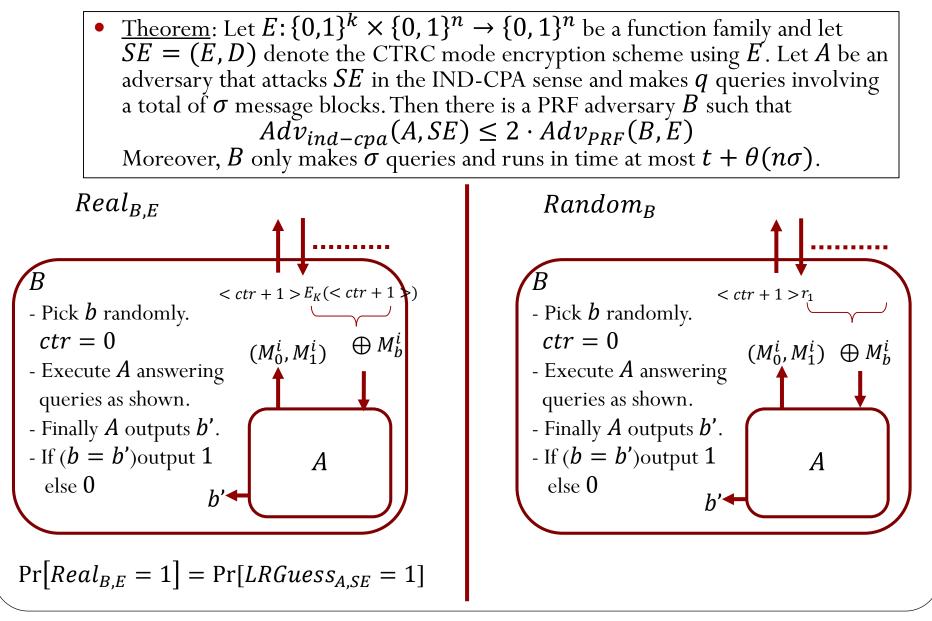
• <u>Theorem</u>: Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a function family and let SE = (E,D) denote the CTRC mode encryption scheme using E. Let A be an adversary that attacks SE in the IND-CPA sense thatruns in time t and makes q queries involving a total of σ message blocks. Then there is a PRF adversary B such that

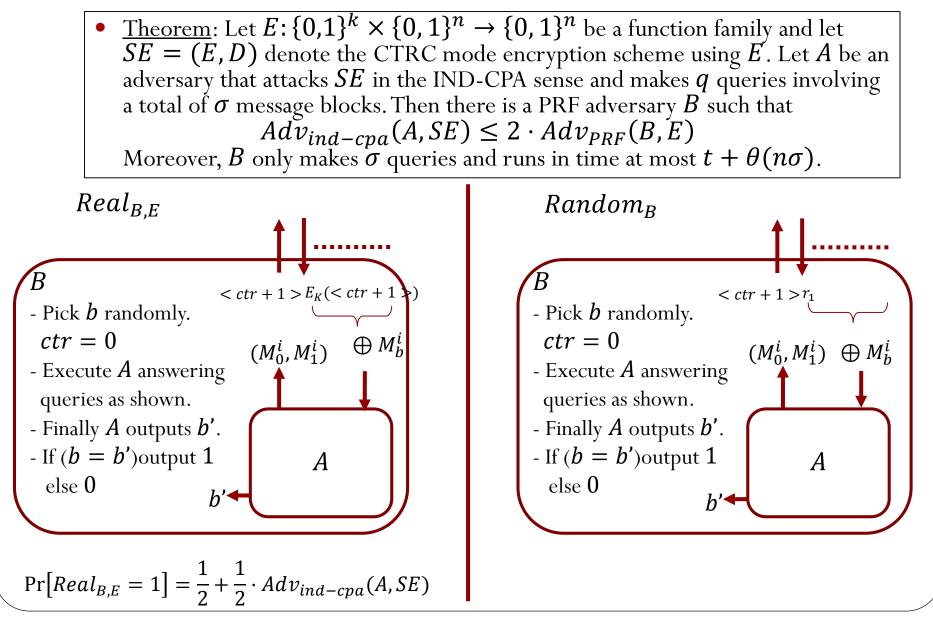
 $Adv_{ind-cpa}(A,SE) \leq 2 \cdot Adv_{PRF}(B,E)$ Moreover, *B* only makes σ queries and runs in time at most $t + \theta(n\sigma)$.

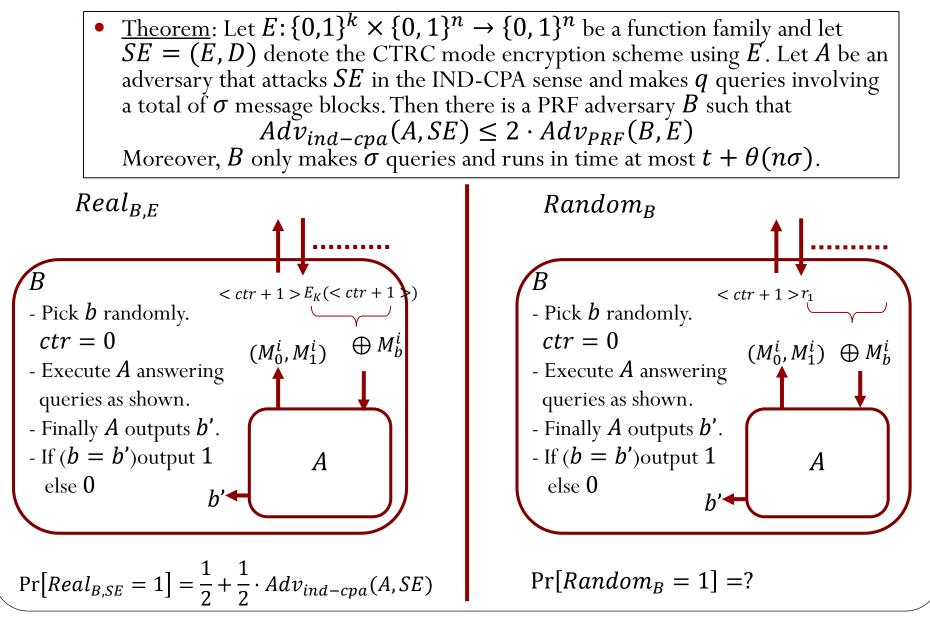
- <u>Theorem</u>: Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a function family and let SE = (E,D) denote the CTRC mode encryption scheme using E. Let A be an adversary that attacks SE in the IND-CPA sense and makes q queries involving a total of σ message blocks. Then there is a PRF adversary B such that $Adv_{ind-cpa}(A,SE) \leq 2 \cdot Adv_{PRF}(B,E)$ Moreover, B only makes σ queries and runs in time at most $t + \theta(n\sigma)$.
- First, we define an experiment that captures IND-CPA.
- LRGuess_{SE,A}
 - Randomly pick a key $K \leftarrow \{0,1\}^n$.
 - Pick a random bit $b \leftarrow \{0,1\}$
 - When A makes query (M_0^i, M_1^i) , return the value $E_K(M_b^i)$.
 - Finally, A outputs a bit b'
 - If (b = b') output 1 else output 0
- <u>Claim 1</u>: $\Pr[LRGuess_{SE,A} = 1] = \frac{1}{2} + \frac{1}{2} \cdot Adv_{ind-cpa}(A, SE).$

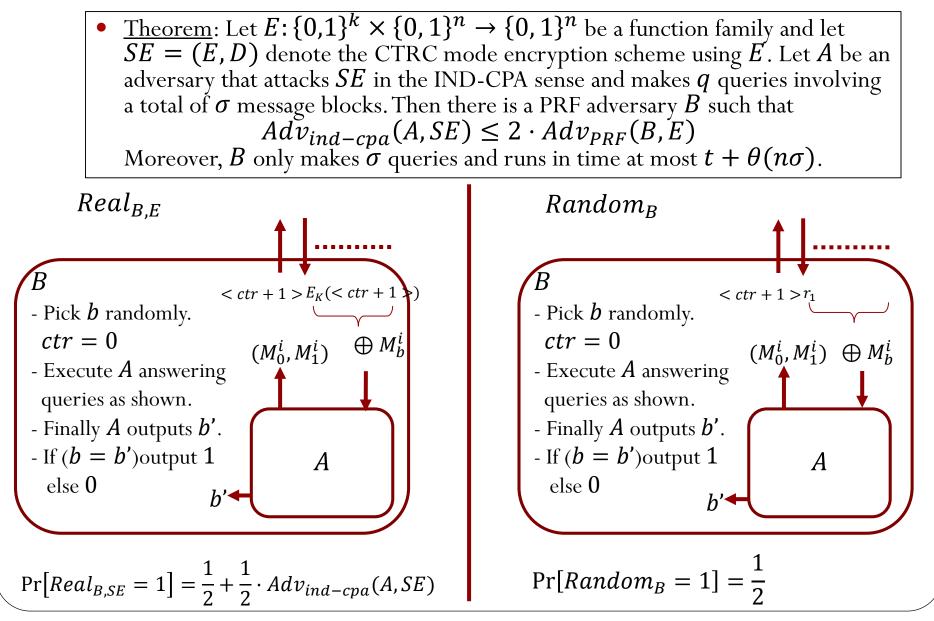




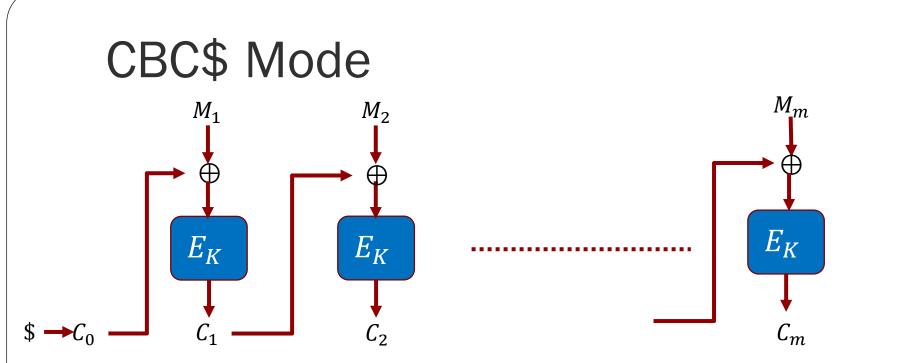




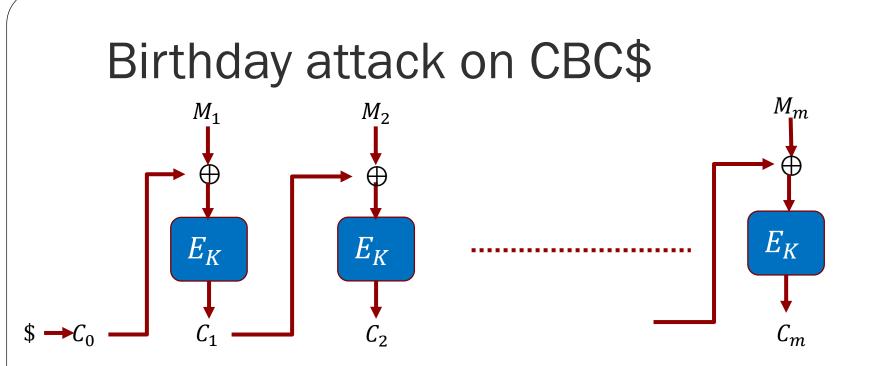




CBC\$ Mode: Cipher Block Chaining



- C_0 is chosen randomly from $\{0,1\}^n$.
- The ciphertext corresponding to M_1, \ldots, M_m is C_0, C_1, \ldots, C_m .
- E_K needs to be a block cipher (i.e., it should be invertible).



- Consider the following adversary that attacks this encryption scheme in the IND-CPA sense:
- A
 - For i = 1 to q
 - Make a query ($\langle i \rangle, \langle 0 \rangle$) and let $C_0^i C_1^i$ be the reply.
 - If there exists $i \neq j$ s.t. $C_0^i = C_0^j$,
 - then if $C_1^i = C_1^j$, then output 1
 - Output 0

Birthday attack on CBC\$

• Consider the following adversary that attacks this encryption scheme in the IND-CPA sense:

• A

- For i = 1 to q
 - Make a query (< i >, < 0 >) and let $C_0^i C_1^i$ be the reply.
- If there exists $i \neq j$ s.t. $C_0^i = C_0^j$,
 - then if $C_1^i = C_1^j$, then output 1
- Output 0
- What is $\Pr[Left_{A,SE} = 1] = ?$

Birthday attack on CBC\$

• Consider the following adversary that attacks this encryption scheme in the IND-CPA sense:

• A

- For i = 1 to q
 - Make a query (< i >, < 0 >) and let $C_0^i C_1^i$ be the reply.
- If there exists $i \neq j$ s.t. $C_0^i = C_0^j$,
 - then if $C_1^i = C_1^j$, then output 1
- Output 0
- What is $\Pr[Left_{A,SE} = 1] = 0$.
- What is $\Pr[Right_{A,SE} = 1] = ?$

Birthday attack on CBC\$

• Consider the following adversary that attacks this encryption scheme in the IND-CPA sense:

• A

- For i = 1 to q
 - Make a query ($\langle i \rangle, \langle 0 \rangle$) and let $C_0^i C_1^i$ be the reply.
- If there exists $i \neq j$ s.t. $C_0^i = C_0^j$,
 - then if $C_1^i = C_1^j$, then output 1
- Output 0
- What is $\Pr[Left_{A,SE} = 1] = 0$.
- What is $\Pr[Right_{A,SE} = 1] = C(q, 2^n)$.
 - *C*(*i*, *N*): This is defined to be the probability that a "collision" happens when *i* elements are chosen independently and randomly from the set {1, ..., *N*}.

Digression

Birthday Problem: The value of C(i, N)

Birthday Problem

- <u>Birthday Problem</u>: You uniformly sample i items with replacement from a collection of N items. What is the probability that two items are the same?
- <u>Birthday Problem(popular version)</u>: There are *i* people in a room. What is the value of *i* such that the probability of two people having the same birthday is at least ½. Each person's birthday is assumed to be a random day in the year.

Birthday Problem

- <u>Birthday Problem</u>: You uniformly sample i items with replacement from a collection of N items. What is the probability that two items are the same?
- <u>Question</u>: Can we get a closed form expression for C(i, N), the probability of collision?
- <u>Balls and bins</u>: We throw *i* balls into *N* bins randomly.
 What is the probability that there is a bin that has more than one ball?
 - This is the same problem. The probability is C(i, N).

Birthday Problem

- <u>Balls and bins</u>: We throw *i* balls into *N* bins randomly. What is the probability that there is a bin that has more than one ball?
- <u>Claim 1</u>: $C(i, N) \leq \frac{i(i-1)}{2N}$.
 - <u>Proof</u>:
 - Let C_i be the event that the i^{th} ball collides with one of the previous balls.
 - <u>Lemma</u>: $\Pr[C_i] \leq (i-1)/N$.
 - $C(i,N) = \Pr[C_1 \cup C_2 \cup \cdots \cup C_i]$ $\leq \Pr[C_1] + \Pr[C_2] + \dots + \Pr[C_i].$ $\leq 0 + \frac{1}{N} + \dots + \frac{i-1}{N}$ $= \frac{i(i-1)}{2N}.$

Birthday Problem

• <u>Balls and bins</u>: We throw *i* balls into *N* bins randomly. What is the probability that there is a bin that has more than one ball?

• Claim 2:
$$C(i, N) \ge 1 - e^{-\frac{i(i-1)}{2N}}$$
.

- <u>Proof</u>:
 - Let D_i be the event there are no collisions after i balls are thrown.
 - <u>Lemma</u>: $\Pr[D_{i+1}|D_i] = 1 \frac{i}{n}$ and $\Pr[D_1] = 1$.

•
$$1 - C(i, N) = \Pr[D_i] = \Pr[D_i|D_{i-1}].\Pr[D_{i-1}]$$

 $= \prod \Pr[D_{j+1}|D_j]$
 $= \prod \left(1 - \frac{j}{n}\right) \le e^{-\frac{\sum j}{N}}$
 $= e^{-\frac{i(i-1)}{2N}}.$

Birthday Problem

• <u>Balls and bins</u>: We throw *i* balls into *N* bins randomly. What is the probability that there is a bin that has more than one ball?

• Claim 2:
$$C(i, N) \geq 1 - e^{-\frac{i(i-1)}{2N}}$$

- <u>Corollary</u>: If $1 \le i \le \sqrt{2n}$, then $C(i,N) \ge (1-\frac{1}{e}).i(i-1)/2N$.
 - <u>Proof</u>:
 - Use the fact that for $0 < x \leq 1, 1 e^{-x} \geq (1 \frac{1}{e}) \cdot x$.

Birthday attack on CBC\$

• A

- For i = 1 to q
 - Make a query (< i >, < 0 >) and let $C_0^i C_1^i$ be the reply.
- If there exists $i \neq j$ s.t. $C_0^i = C_0^j$,
 - then if $C_1^i = C_1^j$, then output 1
- Output 0
- What is $\Pr[Left_{A,SE} = 1] = 0$.
- What is $\Pr[Right_{A,SE} = 1] = C(q, 2^n)$.
 - *C*(*i*, *N*): This is defined to be the probability that a "collision" happens when *i* elements are chosen independently and randomly from the set {1, ..., *N*}.
- $Adv_{ind-cpa}(A,SE) \ge 0.3 \cdot \frac{q \cdot (q-1)}{2^{n+1}}.$
- The advantage is large if $q > 2^{n/2}$

Birthday attack on CBC\$

• A

- For i = 1 to q
 - Make a query (< i >, < 0 >) and let $C_0^i C_1^i$ be the reply.
- If there exists $i \neq j$ s.t. $C_0^i = C_0^j$,
 - then if $C_1^i = C_1^j$, then output 1
- Output 0
- What is $\Pr[Left_{A,SE} = 1] = 0$.
- What is $\Pr[Right_{A,SE} = 1] = C(q, 2^n)$.
- $1 \le q \le 2^{\frac{n+1}{2}}, Adv_{ind-cpa}(A, SE) \ge 0.3 \cdot \frac{q \cdot (q-1)}{2^{n+1}}.$
- The advantage is large (constant) if $q > 2^{n/2}$.
- We should not encrypt more than $2^{n/2}$ blocks for a key.

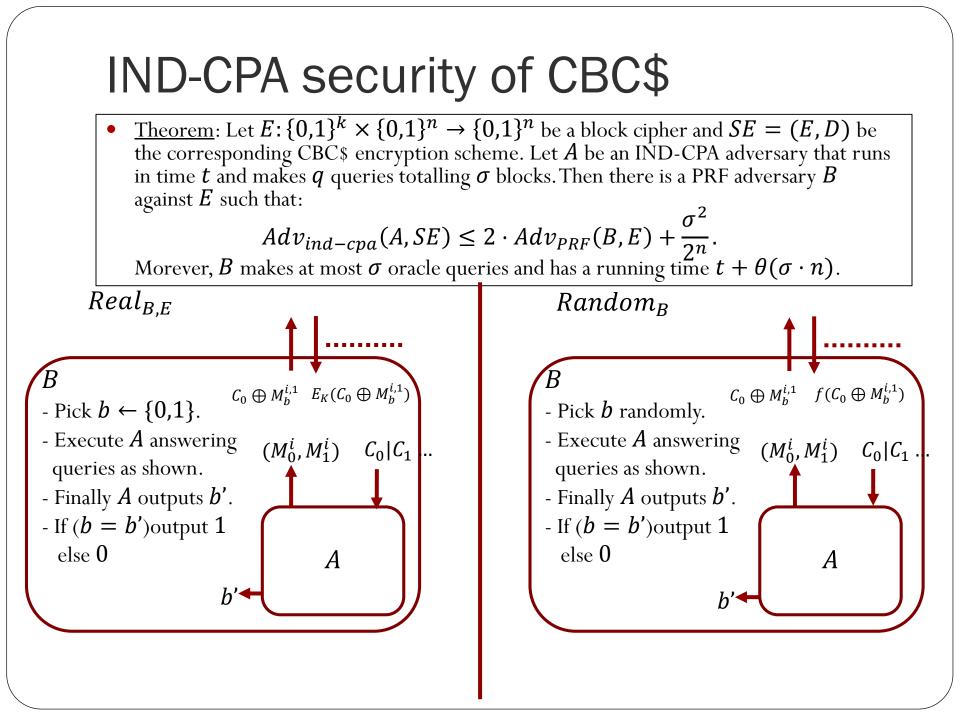
Birthday attack on CBC\$

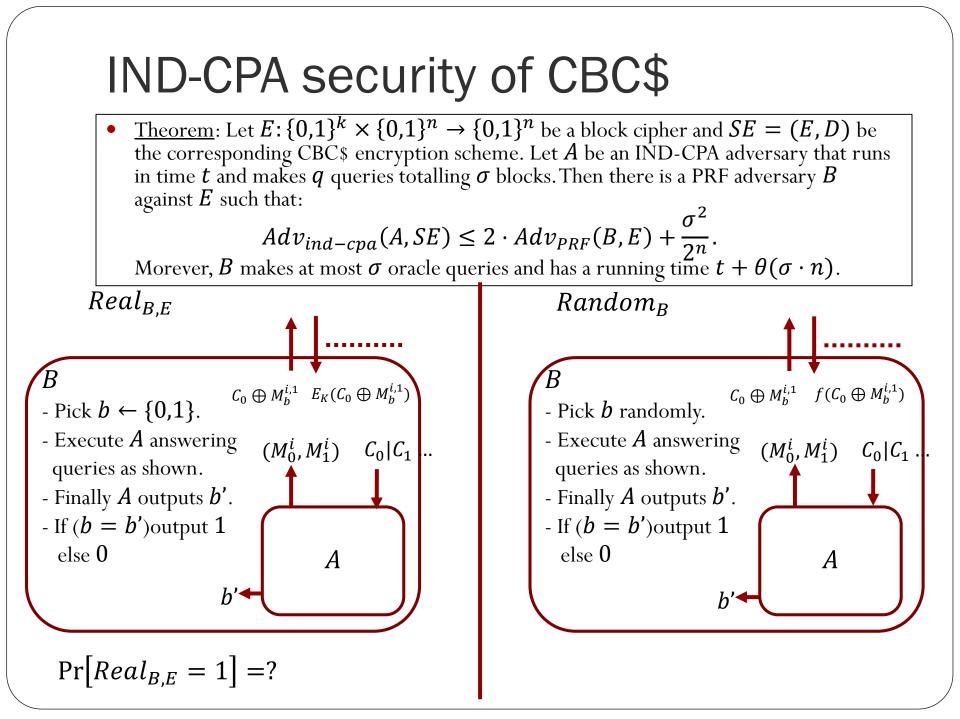
- We should not encrypt more than $2^{n/2}$ blocks for a key.
- Block size is important!
 - Examples:
 - <u>DES</u>: n = 64, so $2^{n/2} = 2^{32}$ which is not a large number.
 - <u>AES</u>: n = 128, so $2^{n/2} = 2^{64}$. This is sufficiently large for practical purposes.
- We saw a q-query adversary that has an advantage (in the IND-CPA sense) $\approx q^2/2^{n+1}$. Is there a better adversary?
 - No if the block cipher is a secure PRP.

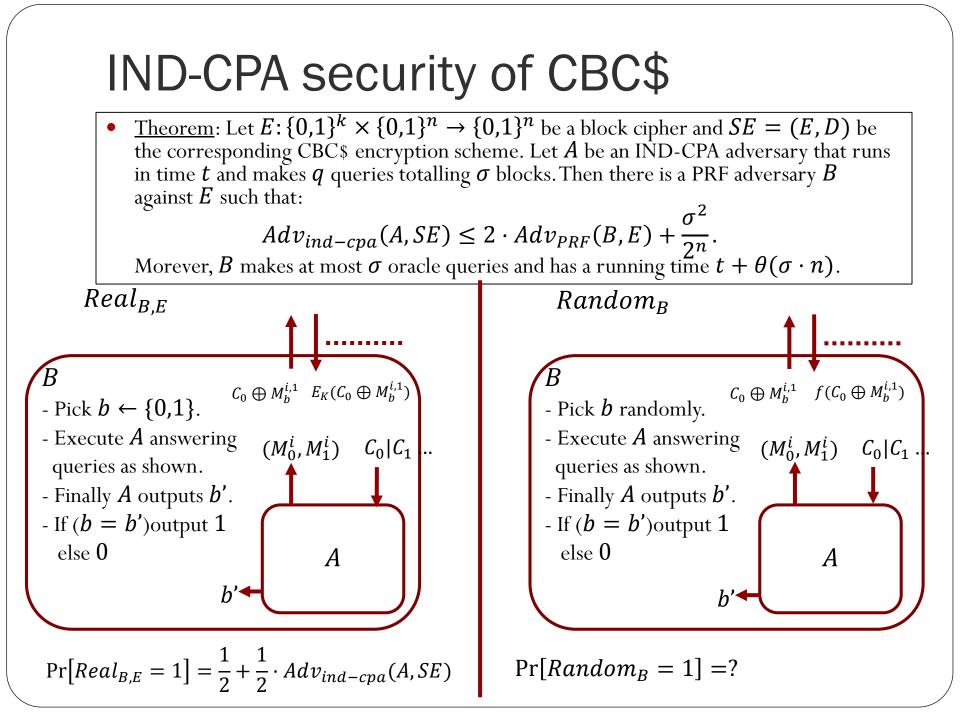
IND-CPA security of CBC\$

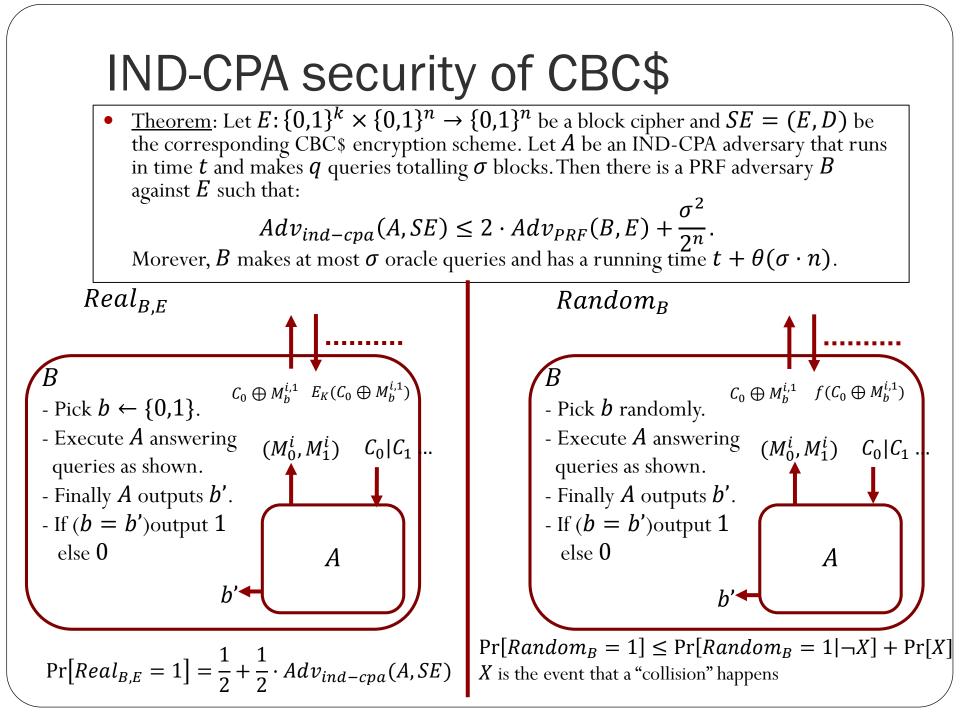
• <u>Theorem</u>: Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher and SE = (E, D) be the corresponding CBC\$ encryption scheme. Let A be an IND-CPA adversary that runs in time t and makes q queries totalling σ blocks. Then there is a PRF adversary B against E such that:

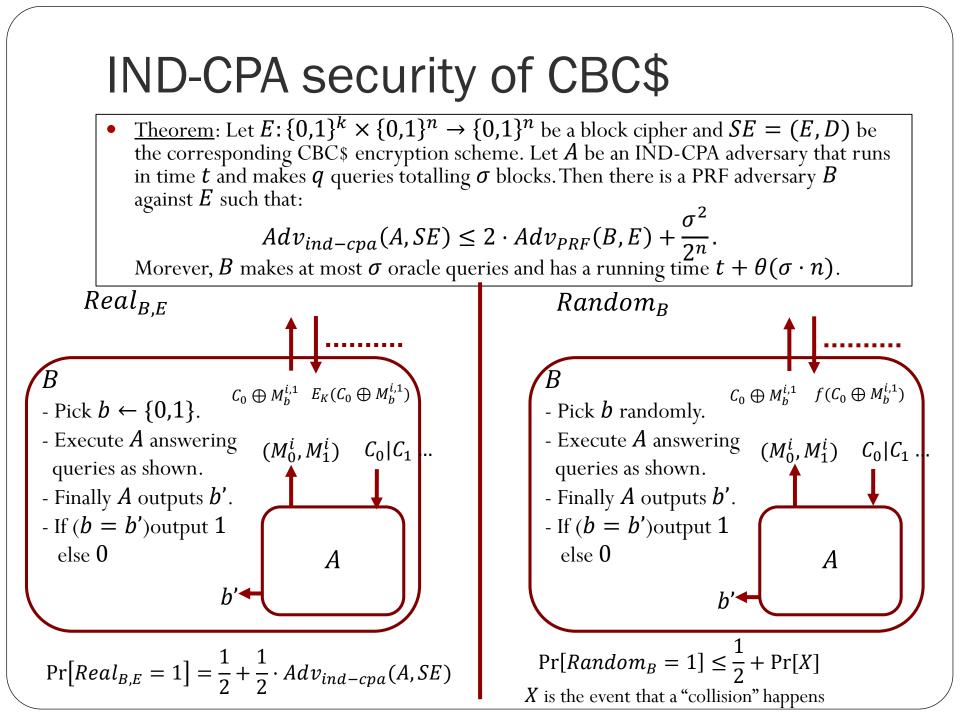
 $Adv_{ind-cpa}(A,SE) \leq 2 \cdot Adv_{PRF}(B,E) + \frac{\sigma^2}{2^n}.$ Morever, *B* makes at most σ oracle queries and has a running time $t + \theta(\sigma \cdot n)$.

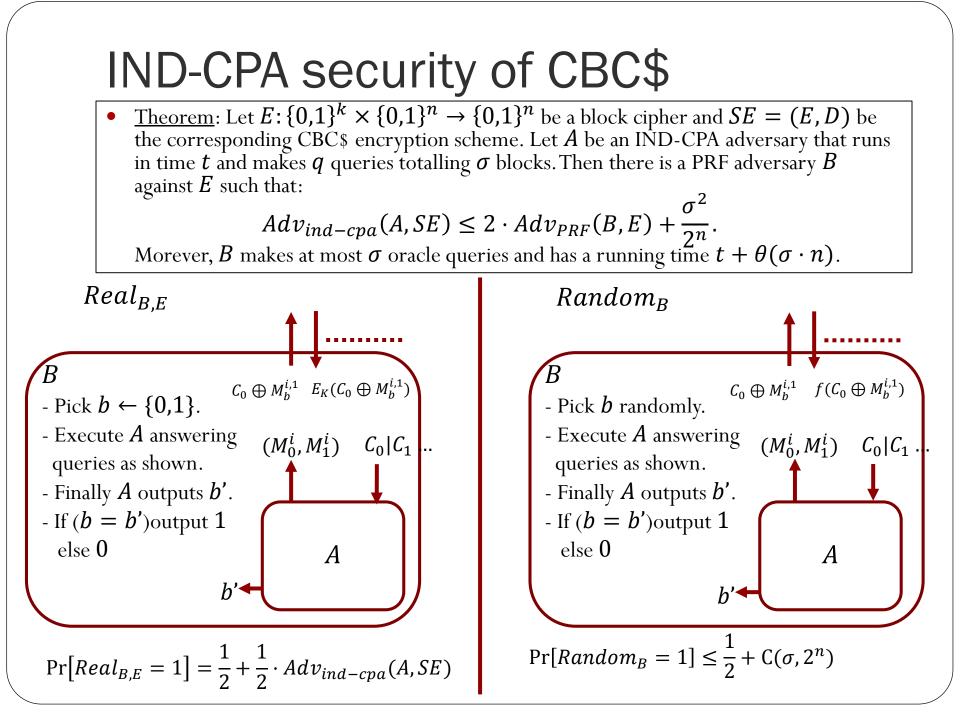


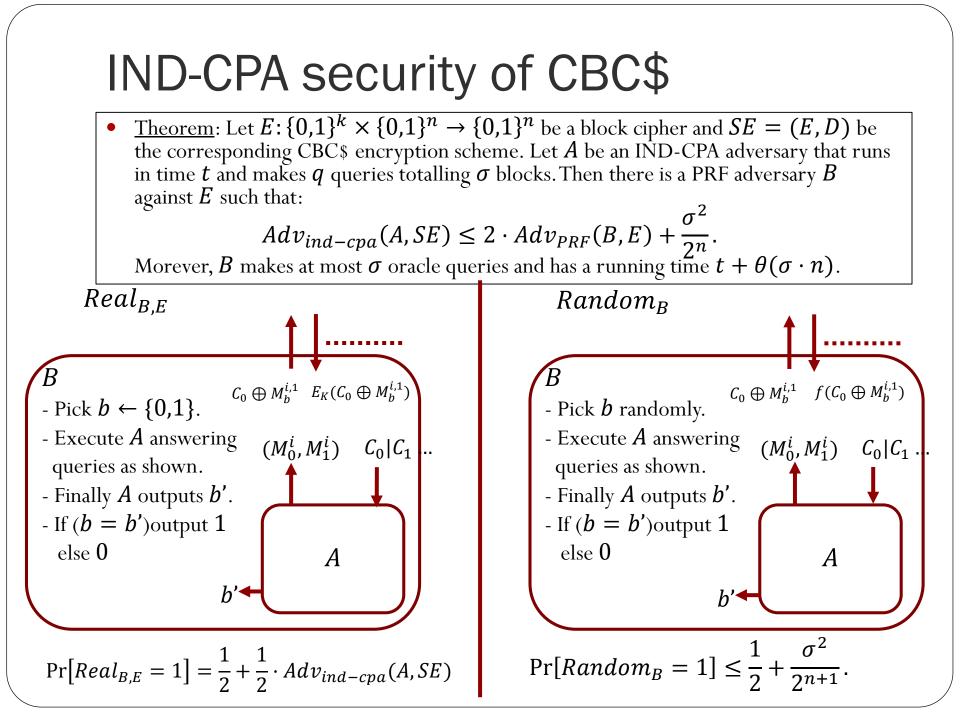






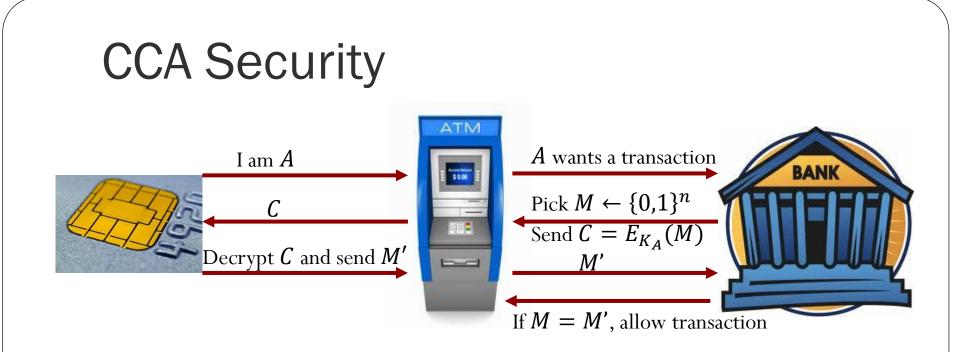




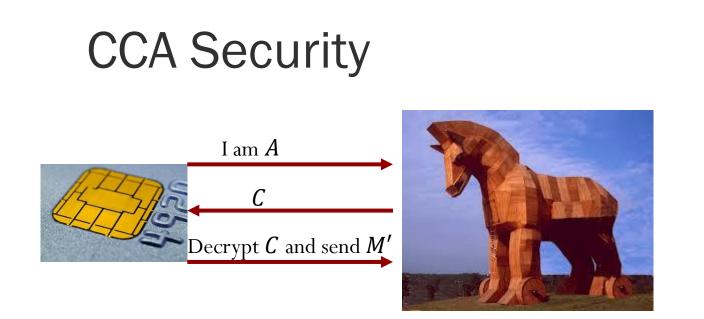


CCA Security

Chosen Ciphertext Attack



• Chosen Ciphertext Attack scenario.



• Chosen Ciphertext Attack scenario.

- Left_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_0^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.

- Right_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_1^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.
- The IND-CCA advantage of an adversary *A* is defined as follows:

 $Adv_{ind-cca}(A,SE) = \left| \Pr[Left_{SE,A} = 1] - \Pr[Right_{SE,A} = 1] \right|$

• A symmetric encryption scheme SE = (E, D) is called (t, q, ϵ) ind-cca secure if for every adversary A that runs in time $\leq t$ and asks $\leq q$ quesries, $Adv_{ind-cca}(A, SE) \leq \epsilon$.

- Left_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_0^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.

- Right_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_1^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.
- The IND-CCA advantage of an adversary *A* is defined as follows:

 $Adv_{ind-cca}(A,SE) = \left| \Pr[Left_{SE,A} = 1] - \Pr[Right_{SE,A} = 1] \right|$

• Is there an issue with this definition?

- Left_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_0^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.

- Right_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_1^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.
- The IND-CCA advantage of an adversary *A* is defined as follows:

 $Adv_{ind-cca}(A,SE) = \left| \Pr[Left_{SE,A} = 1] - \Pr[Right_{SE,A} = 1] \right|$

- Is there an issue with this definition?
 - No encryption scheme can be ind-cca secure as per this definition.

- Left_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_0^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.

- Right_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_1^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.
- The IND-CCA advantage of an adversary A is defined as follows: $Adv_{ind-cca}(A, SE) = |\Pr[Left_{SE,A} = 1] - \Pr[Right_{SE,A} = 1]|$
- Is there an issue with this definition?
 - No encryption scheme can be ind-cca secure as per this definition.
- We only consider *valid* adversaries. These adversaries never make a decryption query C such that C is the reply of an earlier LR-query.

- Left_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_0^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.

- Right_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_1^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.
- The IND-CCA advantage of an adversary A is defined as follows: $Adv_{ind-cca}(A, SE) = |\Pr[Left_{SE,A} = 1] - \Pr[Right_{SE,A} = 1]|$
- We only consider *valid* adversaries. These adversaries never make a decryption query C such that C is the reply of an earlier LR-query.
- Is IND-CCA security strictly stronger than IND-CPA?

- Left_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_0^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.

- Right_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_1^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.
- The IND-CCA advantage of an adversary A is defined as follows: $Adv_{ind-cca}(A, SE) = |\Pr[Left_{SE,A} = 1] - \Pr[Right_{SE,A} = 1]|$
- We only consider *valid* adversaries. These adversaries never make a decryption query C such that C is the reply of an earlier LR-query.
- Is IND-CCA security strictly stronger than IND-CPA?
 - Yes. A successful IND-CPA attack is also an IND-CCA attack.

- Left_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_0^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.

- Right_{SE,A}
 - Randomly pick key $K \leftarrow \{0,1\}^k$.
 - When A queries message pair (M_0^i, M_1^i) return $E_K(M_1^i)$ to A.
 - When A makes a decryption query C^{j} return $D_{K}(C^{j})$.
 - Finally *A* outputs *b*.
 - Output *b*.
- The IND-CCA advantage of an adversary A is defined as follows: $Adv_{ind-cca}(A, SE) = |\Pr[Left_{SE,A} = 1] - \Pr[Right_{SE,A} = 1]|$
- We only consider *valid* adversaries. These adversaries never make a decryption query C such that C is the reply of an earlier LR-query.
- IS CBC\$(using a secure PRP) IND-CCA secure?

- IS CBC\$(using a secure PRP) IND-CCA secure?
- Adversary *A*
 - Make an LR query (< 0 >, < 1 >) and let $C_0|C_1$ be the reply.
 - Make a decryption query $C_0 \bigoplus 100 \dots 0 | C_1$ and let M' be the reply.
 - If $(M = 10 \dots 0)$ then output 1 else output 0.
- What is $\Pr[Left_{A,SE} = 1] = ?$
- What is $\Pr[Right_{A,SE} = 1] = ?$

- IS CBC\$ IND-CCA secure?
- Adversary *A*
 - Make an LR query (< 0 >, < 1 >) and let $C_0|C_1$ be the reply.
 - Make a decryption query $C_0 \bigoplus 100 \dots 0 | C_1$ and let M' be the reply.
 - If $(M = 10 \dots 0)$ then output 0 else output 1.
- What is $\Pr[Left_{A,SE} = 1] = 1$.
- What is $\Pr[Right_{A,SE} = 1] = 0$.

• So,
$$Adv_{ind-cca}(A, SE) = 1$$
.

End