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CPA Security

 Until now, we have seen encryption schemes that are secure in 
some limited sense:

 One-time encryption

 Ciphertext-only adversary.

 We would now like to transition to stronger notions of security 
for symmetric encryption schemes that allows multiple 
encryptions and where the adversary can obtain encryptions of its 
choice (CPA security).

 Pseudorandom function (PRF) and Pseudorandom Permutation 
(PRP) are Cryptographic primitives that help us to design such 
schemes that are “CPA-secure”. 



Pseudorandom Function (PRF)



Pseudorandom Function
 We consider functions of the form 𝐹: 0,1 𝑘 × 0,1 𝑛 →

0,1 𝑛.

 These are called keyed functions since we have a collection of 

2𝑘 functions, one for each value of the key 𝐾 ∈ 0,1 𝑘. This 

function is denoted by 𝐹𝐾: 0,1
𝑛 → 0,1 𝑛 and is defined 

as 𝐹𝐾 𝑥 = 𝐹 𝐾, 𝑥 .

 This collection of functions is also known as a function family.

 We will use such function families as a primitive in designing 

symmetric encryption schemes that are CPA-secure. 

 Th useful security notion for this primitive is how similar this 

family is to the family of random functions from 0,1 𝑛 to 

0,1 𝑛.



Pseudorandom Function
 Th useful security notion for this primitive is how similar this 

family is to the family of random functions from 0,1 𝑛 to 
0,1 𝑛.

 For this,we define the following two Experiments and then 
compare the bahavior of adversaries in these two 
experiments.

 𝑅𝑒𝑎𝑙𝐴,𝐹
 Randomly pick 𝐾 ← 0,1 𝑘.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝐹𝐾(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

 𝑅𝑎𝑛𝑑𝑜𝑚𝐴

 Pick a random function 𝑓 from 

0,1 𝑛 to 0,1 𝑛.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝑓(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 



Pseudorandom Function
 Th useful security notion for this primitive is how similar this 

family is to the family of random functions from 0,1 𝑛 to 
0,1 𝑛.

 For this,we define the following two Experiments and then compare 
the bahavior of adversaries in these two experiments.

 Why did we not have to define these “experiments” while 
discussing the security of PRGs?

 𝑅𝑒𝑎𝑙𝐴,𝐹
 Randomly pick 𝐾 ← 0,1 𝑘.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝐹𝐾(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

 𝑅𝑎𝑛𝑑𝑜𝑚𝐴

 Pick a random function 𝑓 from 

0,1 𝑛 to 0,1 𝑛.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝑓(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 



Pseudorandom Function
 Th useful security notion for this primitive is how similar the 

family is to the family of random functions from 0,1 𝑛 to 
0,1 𝑛.

 For this,we define the following two Experiments and then 
compare the bahavior of adversaries in these two 
experiments.

 𝑅𝑒𝑎𝑙𝐴,𝐹
 Randomly pick 𝐾 ← 0,1 𝑘.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝐹𝐾(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

 𝑅𝑎𝑛𝑑𝑜𝑚𝐴

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return a random value 

from 0,1 𝑛.

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

The adversary is not allowed to repeat a query.



Pseudorandom Function
 Th useful security notion for this primitive is how similar the 

family is to the family of random functions from 0,1 𝑛 to 

0,1 𝑛.

 The PRF advantage of an adversary 𝐴 is defined as follows:

𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 = Pr 𝑅𝑒𝑎𝑙𝐴,𝐹 = 1 − Pr 𝑅𝑎𝑛𝑑𝑜𝑚𝐴 = 1

 𝑅𝑒𝑎𝑙𝐴,𝐹
 Randomly pick 𝐾 ← 0,1 𝑘.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝐹𝐾(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

 𝑅𝑎𝑛𝑑𝑜𝑚𝐴

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return a random value 

from 0,1 𝑛.

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

The adversary is not allowed to repeat a query.



Pseudorandom Function
 The PRF advantage of an adversary 𝐴 is defined as follows:

𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 = Pr 𝑅𝑒𝑎𝑙𝐴,𝐹 = 1 − Pr 𝑅𝑎𝑛𝑑𝑜𝑚𝐴 = 1

 A function 𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛 is called 

(𝑡, 𝑞, 𝜖)-secure PRF if for every adversary 𝐴 that runs in 

time ≤ 𝑡 and asks ≤ 𝑞 queries, 𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 ≤ 𝜖.

 𝑅𝑒𝑎𝑙𝐴,𝐹
 Randomly pick 𝐾 ← 0,1 𝑘.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝐹𝐾(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

 𝑅𝑎𝑛𝑑𝑜𝑚𝐴

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return a random value 

from 0,1 𝑛.

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

The adversary is not allowed to repeat a query.



Pseudorandom Function
 The PRF advantage of an adversary 𝐴 is defined as follows:

𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 = Pr 𝑅𝑒𝑎𝑙𝐴,𝐹 = 1 − Pr 𝑅𝑎𝑛𝑑𝑜𝑚𝐴 = 1

 A function 𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛 is called 

(𝑡, 𝑞, 𝜖)-secure PRF if for every adversary 𝐴 that runs in 

time ≤ 𝑡 and asks ≤ 𝑞 queries, 𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 ≤ 𝜖.

 We can define asymptotic security for length-preserving 

functions, 𝐹: 0,1 ∗ × 0,1 ∗ → 0,1 ∗, where the length of 

the key, input, and output are the same.

 Such a function is called a secure pseudorandom function (or 

just PRF) if for every adversary 𝐴 that runs in polynomial time, 

and makes polynomial number of queries, there is a negligible 

function 𝑛𝑒𝑔𝑙 such that 𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 ≤ 𝑛𝑒𝑔𝑙(𝑘).



CPA security for Encryption 

Schemes



CPA Security for Encryption Schemes

 Borrowing ideas from one-time, ciphertext-only attack 

scenario, we can try to use message-indistinguishability as 

our notion of security.

 What is the main issue with this idea?



 Borrowing ideas from one-time, ciphertext-only attack 

scenario, we can try to use message-indistinguishability as 

our notion of security.

 What is the main issue with this idea?

 In CPA, the adversary is allowed multiple encryptions of 

messages of its choice.

CPA Security for Encryption Schemes



 Borrowing ideas from one-time, ciphertext-only attack 

scenario, we can try to use message-indistinguishability as 

our notion of security.

 What is the main issue with this idea?

 In CPA, the adversary is allowed multiple encryptions of 

messages of its choice.

 How do we define security then?

CPA Security for Encryption Schemes



 Borrowing ideas from one-time, ciphertext-only attack scenario, we can 
try to use message-indistinguishability as our notion of security.

 A symmetric encryption scheme 𝑆𝐸 = (𝐸, 𝐷) is said to be IND-CPA 
insecure if an efficient adversary is able to figure out which world it is in. 

CPA Security for Encryption Schemes

 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸(𝑀0
𝑖 ) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸𝐾(𝑀1
𝑖) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.



 Borrowing ideas from one-time, ciphertext-only attack scenario, we can 
try to use message-indistinguishability as our notion of security.

 A symmetric encryption scheme 𝑆𝐸 = (𝐸, 𝐷) is said to be IND-CPA 
insecure if an efficient adversary is able to figure out which world it is in. 

CPA Security for Encryption Schemes

 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸𝐾(𝑀1
𝑖) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 The IND-CPA advantage of an adversary 𝐴 is defined as follows:

𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴 = 1



CPA Security for Encryption Schemes

 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸𝐾(𝑀1
𝑖) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 The IND-CPA advantage of an adversary 𝐴 is defined as 

follows:
𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴 = 1

 A symmetric encryption scheme 𝑆𝐸 = 𝐸,𝐷 is called 𝑡, 𝑞, 𝜖 -

ind-cpa secure if for every adversary 𝐴 that runs in time ≤ 𝑡 and 

asks ≤ 𝑞 quesries, 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝜖.



CPA Security for Encryption Schemes

 The IND-CPA advantage of an adversary 𝐴 is defined as 

follows:
𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴 = 1

 A symmetric encryption scheme 𝑆𝐸 = 𝐸,𝐷 is called 𝑡, 𝑞, 𝜖 -

ind-cpa secure if for every adversary 𝐴 that runs in time ≤ 𝑡 and 

asks ≤ 𝑞 queries, 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝜖.

 A symmetric encryption scheme 𝑆𝐸 = 𝐸,𝐷 is said to be ind-

cpa secure if for every adversary 𝐴 that runs in polynomial time 

and makes polynomial number of queries, there exist a negligible 

function 𝑛𝑒𝑔𝑙 such that 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝑛𝑒𝑔𝑙 𝑘 .



CPA Security for Encryption Schemes

 IND-CPA allows adversaries to make multiple queries. 

 How much advantage do adversaries who is allowed to ask 𝑞 > 1
queries, have over adversaries who can only make 1 “left/right” 

query?



CPA Security for Encryption Schemes

 IND-CPA allows adversaries to make multiple queries. 

 How much advantage do adversaries who is allowed to ask 𝑞 > 1
queries, have over adversaries who can only make 1 query?

 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴
′

 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries challenge message pair 
(𝑀0, 𝑀1) return 𝐸𝐾(𝑀0) to 𝐴.

 When 𝐴 queries a message 𝑀𝑗, then 
return 𝐸𝐾(𝑀

𝑗) to 𝐴
 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴
′

 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries challenge message pair 
(𝑀0, 𝑀1) return 𝐸𝐾(𝑀1) to 𝐴.

 When 𝐴 queries a message 𝑀𝑗, then 
return 𝐸𝐾(𝑀

𝑗) to 𝐴

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 The FTG-CPA advantage of an adversary 𝐴 is defined as follows:
𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴

′ = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴
′ = 1

 A symmetric encryption scheme 𝑆𝐸 = 𝐸, 𝐷 is called 𝑡, 𝑞, 𝜖 -ftg-cpa secure if for 
every adversary 𝐴 that runs in time ≤ 𝑡 and asks ≤ 𝑞 quesries, 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤
𝜖.



CPA Security for Encryption Schemes

 IND-CPA allows adversaries to make multiple queries. 

 How much advantage do adversaries who is allowed to ask 𝑞 > 1
queries, have over adversaries who can only make 1 query?

 Theorem: If a symmetric encryption scheme 𝑆𝐸 = (𝐸, 𝐷) is 

𝑡, 𝑞, 𝜖 -ftg-cpa secure, then 𝑆𝐸 is also (𝑡, 𝑞, 𝜖 ⋅ 𝑞)-ind-cpa 

secure.

 We prove the following: Let 𝐴 be any ind-cpa adversary that runs in 

time 𝑡 and makes 𝑞 queries, then there exists an ftg-cpa adversary 

that runs in time 𝑡 and makes 𝑞 queries such that

𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝑞 ⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐵, 𝑆𝐸 .



CPA Security for Encryption Schemes
 Theorem: Let 𝐴 be any ind-cpa adversary that runs in time 𝑡 and makes 
𝑞 queries, then there exists an ftg-cpa adversary that runs in time 𝑡 and 
makes 𝑞 queries such that

𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝑞 ⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐵, 𝑆𝐸 .

 To prove this, we define hybrid experiments.

𝐺𝑆𝐸,𝐴
0

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 0), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐺𝑆𝐸,𝐴
1

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 1), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐺𝑆𝐸,𝐴
𝑞

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 𝑞), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴



CPA Security for Encryption Schemes
 Theorem: Let 𝐴 be any ind-cpa adversary that runs in time 𝑡 and makes 𝑞 queries, 

then there exists an ftg-cpa adversary that runs in time 𝑡 and makes 𝑞 queries such 
that

𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝑞 ⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐵, 𝑆𝐸 .

𝐺𝑆𝐸,𝐴
0

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 0), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐺𝑆𝐸,𝐴
1

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 1), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐺𝑆𝐸,𝐴
𝑞

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 𝑞), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴

 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴 = 1

= Pr 𝐺𝑆𝐸,𝐴
0 = 1 − Pr 𝐺𝑆𝐸,𝐴

𝑞
= 1

 Let 𝑃0 = Pr[𝐺𝑆𝐸,𝐴
0 = 1], 𝑃1 = Pr[𝐺𝑆𝐸,𝐴

1 = 1], …, 𝑃𝑞 = Pr[𝐺𝑆𝐸,𝐴
𝑞

= 1]



CPA Security for Encryption Schemes
 Theorem: Let 𝐴 be any ind-cpa adversary that runs in time 𝑡 and makes 𝑞 queries, 
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1 = 1], …, 𝑃𝑞 = Pr[𝐺𝑆𝐸,𝐴
𝑞

= 1]

𝐴

𝐵
- Pick 𝑔 ← [𝑞] randomly

- When 𝐴 makes its 𝑖𝑡ℎ query (𝑀0
𝑖 , 𝑀1

𝑖):

- If (𝑖 < 𝑔) make a query with 𝑀0
𝑖

and return the value to 𝐴

- If (𝑖 > 𝑔) make a query with 𝑀1
𝑖

and return the value to 𝐴

- If (𝑖 = 𝑔) make a query 𝑀0
𝑖 , 𝑀1

𝑖

and return the value to 𝐴
- Output 𝐴’s result

(𝑀0
𝑖 , 𝑀1

𝑖)
(𝑀0

𝑖 , 𝑀1
𝑖) if 𝑖 = 𝑔

𝑀0
𝑖 if 𝑖 < 𝑔

𝑀1
𝑖 if 𝑖 > 𝑔



CPA Security for Encryption Schemes
 Theorem: Let 𝐴 be any ind-cpa adversary that runs in time 𝑡 and makes 𝑞 queries, 

then there exists an ftg-cpa adversary that runs in time 𝑡 and makes 𝑞 queries such 
that

𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝑞 ⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐵, 𝑆𝐸 .

 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴 = 1

= Pr 𝐺𝑆𝐸,𝐴
0 = 1 − Pr 𝐺𝑆𝐸,𝐴

𝑞
= 1

 Let 𝑃0 = Pr[𝐺𝑆𝐸,𝐴
0 = 1], 𝑃1 = Pr[𝐺𝑆𝐸,𝐴

1 = 1], …, 𝑃𝑞 = Pr[𝐺𝑆𝐸,𝐴
𝑞

= 1]

 Pr[𝐿𝑒𝑓𝑡𝑆𝐸,𝐵
′ = 1] = ?

 Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐵
′ = 1 = ?



CPA Security for Encryption Schemes
 Theorem: Let 𝐴 be any ind-cpa adversary that runs in time 𝑡 and makes 𝑞 queries, 

then there exists an ftg-cpa adversary that runs in time 𝑡 and makes 𝑞 queries such 
that

𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝑞 ⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐵, 𝑆𝐸 .

 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴 = 1

= Pr 𝐺𝑆𝐸,𝐴
0 = 1 − Pr 𝐺𝑆𝐸,𝐴

𝑞
= 1

 Let 𝑃0 = Pr[𝐺𝑆𝐸,𝐴
0 = 1], 𝑃1 = Pr[𝐺𝑆𝐸,𝐴

1 = 1], …, 𝑃𝑞 = Pr[𝐺𝑆𝐸,𝐴
𝑞

= 1]

 Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐵
′ = 1 =

1

𝑞
⋅ (𝑃0 + 𝑃1 +⋯+ 𝑃𝑞−1)

 Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐵
′ = 1 =

1

𝑞
⋅ (𝑃1 + 𝑃2 + …+ 𝑃𝑞)

 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐵, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐵
′ = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐵

′ = 1

=
1

𝑞
⋅ (𝑃0−𝑃𝑞

=
1

𝑞
⋅ 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎(𝐴, 𝑆𝐸)



CPA-Security for Encryption Schemes

 Alternate definition of FTG-CPA security.

 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴
 Randomly pick a key 𝐾 ← 0,1 𝑛.

 Pick a random bit 𝑏 ← {0,1}

 When 𝐴 makes a encryption query 𝑀𝑖, return the value 

𝐸𝐾(𝑀
𝑖).

 When 𝐴 makes the challenge query (𝑀0, 𝑀1), return the value 

𝐸𝐾(𝑀𝑏).

 Finally, 𝐴 outputs a bit 𝑏′

 If (𝑏 = 𝑏′) output 1 else output 0

 Theorem: Pr 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴 = 1 =
1

2
±

1

2
⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎(𝐴, 𝑆𝐸)
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 Theorem: Pr 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴 = 1 =
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±

1

2
⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎(𝐴, 𝑆𝐸)

 So, summing up all the discussion until now, for CPA-security of 

an encryption scheme, we just need to analyse the performance of 

an adversary in the experiment 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴.



CPA-Security for Encryption Schemes

 Suppose we have a secure pseudorandom permutation family 

𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛.

 We saw a few examples(AES,3DES etc.) in the last lecture.

 Consider the following encryption scheme 𝑆𝐸 = (𝐸, 𝐷)
that encrypts messages of length 𝑛.

 𝐸𝐾 𝑀 = 𝐹𝐾(𝑀) and 𝐷𝐾 𝐶 = 𝐹𝐾
−1 𝐶

 Is 𝑆𝐸 ind-cpa secure?

 Is 𝑆𝐸 ftg-cpa secure?

 Is 𝑆𝐸 “GuessLR” secure?
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 No

 Adversary 𝐴
 Query the message 0𝑛 and get back 𝐶 = 𝐸𝐾(0

𝑛).

 Make the challenge query 0𝑛, 1𝑛 and get back 𝐶′.

 If (𝐶 == 𝐶′), then output 0 else output 1

 Pr 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴 = 1 =?
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CPA-Security for Encryption Schemes

 Suppose we have a secure pseudorandom permutation family 

𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛.

 We saw a few examples(AES,3DES etc.) in the last lecture.

 Consider the following encryption scheme 𝑆𝐸 = (𝐸, 𝐷)
that encrypts messages of length 𝑛.

 𝐸𝐾 𝑀 = 𝐹𝐾(𝑀) and 𝐷𝐾 𝐶 = 𝐹𝐾
−1 𝐶

 In fact, any deterministic encryption scheme cannot be IND-

CPA secure!

 For 𝑆𝐸 to be IND-CPA secure, everytime you encrypt a 

message 𝑀, you should get a different ciphertext!
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 Suppose we have a secure pseudorandom permutation family 

𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛.

 We saw a few examples(AES,3DES etc.) in the last lecture.

 Consider the following encryption scheme 𝑆𝐸 = (𝐸, 𝐷)
that encrypts messages of length 𝑛.

 𝐸𝐾 𝑀
 Pick a random 𝑟 ← 0,1 𝑛

 Output C = < 𝑟, 𝐹𝐾 𝑟 ⊕𝑀 >

 𝐷𝐾 𝐶
 Parse 𝐶 as < 𝑟, 𝑠 >

 Output 𝑀 = 𝐹𝐾 𝑟 ⊕ 𝑠

 Theorem: If 𝐹 is 2𝑡, 𝑞,
𝜖

2
−

𝑞

2𝑛
-secure PRF, then 𝑆𝐸 is 

(𝑡, 𝑞, 𝜖)-ftg-cpa secure symmetric encryption scheme.



CPA-Security for Encryption Schemes
 Theorem: Consider an adversary 𝐴 that runs in time 𝑡, makes 𝑞

queries such that Pr 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴 = 1 >
1

2
+ 𝜖, then there is 

an adversary 𝐵 that runs in time at most 2𝑡, makes (𝑞 + 1)
queries such that 𝐴𝑑𝑣𝑃𝑅𝐹 𝐵, 𝐹 > 𝜖 −

q

2n
.

𝐴

𝑅𝑒𝑎𝑙𝐵,𝐹 𝑅𝑎𝑛𝑑𝑜𝑚𝐵

𝐵
- Pick a random bit 𝑏
- Return A’s queries as 

shown

- If (b=b’) output 1 

else 0

𝑏’

𝑀

𝑟 𝐹𝐾(𝑟)

𝑀⊕𝐹𝐾(𝑟)

(𝑀0,𝑀1)

𝑟 𝐹𝐾(𝑟)

𝑀𝑏 ⊕𝐹𝐾(𝑟)

𝐴

𝐵
- Pick a random bit 𝑏
- Return A’s queries as 

shown

- If (b=b’) output 1 

else 0

𝑏’

𝑀

𝑟 f(𝑟)

𝑀⊕ 𝑓(𝑟)

(𝑀0,𝑀1)

𝑟 f(𝑟)

𝑀𝑏 ⊕𝑓(𝑟)

 Pr 𝑅𝑒𝑎𝑙𝐵,𝐹 = 1 =?
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+

q
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