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CPA Security

 Until now, we have seen encryption schemes that are secure in 
some limited sense:

 One-time encryption

 Ciphertext-only adversary.

 We would now like to transition to stronger notions of security 
for symmetric encryption schemes that allows multiple 
encryptions and where the adversary can obtain encryptions of its 
choice (CPA security).

 Pseudorandom function (PRF) and Pseudorandom Permutation 
(PRP) are Cryptographic primitives that help us to design such 
schemes that are “CPA-secure”. 



Pseudorandom Function (PRF)



Pseudorandom Function
 We consider functions of the form 𝐹: 0,1 𝑘 × 0,1 𝑛 →

0,1 𝑛.

 These are called keyed functions since we have a collection of 

2𝑘 functions, one for each value of the key 𝐾 ∈ 0,1 𝑘. This 

function is denoted by 𝐹𝐾: 0,1
𝑛 → 0,1 𝑛 and is defined 

as 𝐹𝐾 𝑥 = 𝐹 𝐾, 𝑥 .

 This collection of functions is also known as a function family.

 We will use such function families as a primitive in designing 

symmetric encryption schemes that are CPA-secure. 

 Th useful security notion for this primitive is how similar this 

family is to the family of random functions from 0,1 𝑛 to 

0,1 𝑛.



Pseudorandom Function
 Th useful security notion for this primitive is how similar this 

family is to the family of random functions from 0,1 𝑛 to 
0,1 𝑛.

 For this,we define the following two Experiments and then 
compare the bahavior of adversaries in these two 
experiments.

 𝑅𝑒𝑎𝑙𝐴,𝐹
 Randomly pick 𝐾 ← 0,1 𝑘.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝐹𝐾(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

 𝑅𝑎𝑛𝑑𝑜𝑚𝐴

 Pick a random function 𝑓 from 

0,1 𝑛 to 0,1 𝑛.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝑓(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 



Pseudorandom Function
 Th useful security notion for this primitive is how similar this 

family is to the family of random functions from 0,1 𝑛 to 
0,1 𝑛.

 For this,we define the following two Experiments and then compare 
the bahavior of adversaries in these two experiments.

 Why did we not have to define these “experiments” while 
discussing the security of PRGs?

 𝑅𝑒𝑎𝑙𝐴,𝐹
 Randomly pick 𝐾 ← 0,1 𝑘.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝐹𝐾(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

 𝑅𝑎𝑛𝑑𝑜𝑚𝐴

 Pick a random function 𝑓 from 

0,1 𝑛 to 0,1 𝑛.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝑓(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 



Pseudorandom Function
 Th useful security notion for this primitive is how similar the 

family is to the family of random functions from 0,1 𝑛 to 
0,1 𝑛.

 For this,we define the following two Experiments and then 
compare the bahavior of adversaries in these two 
experiments.

 𝑅𝑒𝑎𝑙𝐴,𝐹
 Randomly pick 𝐾 ← 0,1 𝑘.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝐹𝐾(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

 𝑅𝑎𝑛𝑑𝑜𝑚𝐴

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return a random value 

from 0,1 𝑛.

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

The adversary is not allowed to repeat a query.



Pseudorandom Function
 Th useful security notion for this primitive is how similar the 

family is to the family of random functions from 0,1 𝑛 to 

0,1 𝑛.

 The PRF advantage of an adversary 𝐴 is defined as follows:

𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 = Pr 𝑅𝑒𝑎𝑙𝐴,𝐹 = 1 − Pr 𝑅𝑎𝑛𝑑𝑜𝑚𝐴 = 1

 𝑅𝑒𝑎𝑙𝐴,𝐹
 Randomly pick 𝐾 ← 0,1 𝑘.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝐹𝐾(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

 𝑅𝑎𝑛𝑑𝑜𝑚𝐴

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return a random value 

from 0,1 𝑛.

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

The adversary is not allowed to repeat a query.



Pseudorandom Function
 The PRF advantage of an adversary 𝐴 is defined as follows:

𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 = Pr 𝑅𝑒𝑎𝑙𝐴,𝐹 = 1 − Pr 𝑅𝑎𝑛𝑑𝑜𝑚𝐴 = 1

 A function 𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛 is called 

(𝑡, 𝑞, 𝜖)-secure PRF if for every adversary 𝐴 that runs in 

time ≤ 𝑡 and asks ≤ 𝑞 queries, 𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 ≤ 𝜖.

 𝑅𝑒𝑎𝑙𝐴,𝐹
 Randomly pick 𝐾 ← 0,1 𝑘.

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return 𝐹𝐾(𝑥).

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

 𝑅𝑎𝑛𝑑𝑜𝑚𝐴

 When 𝐴 queries with an input 𝑥 ∈
0,1 𝑛, return a random value 

from 0,1 𝑛.

 Finally 𝐴 outputs a bit 𝑏.

 Output 𝑏. 

The adversary is not allowed to repeat a query.



Pseudorandom Function
 The PRF advantage of an adversary 𝐴 is defined as follows:

𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 = Pr 𝑅𝑒𝑎𝑙𝐴,𝐹 = 1 − Pr 𝑅𝑎𝑛𝑑𝑜𝑚𝐴 = 1

 A function 𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛 is called 

(𝑡, 𝑞, 𝜖)-secure PRF if for every adversary 𝐴 that runs in 

time ≤ 𝑡 and asks ≤ 𝑞 queries, 𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 ≤ 𝜖.

 We can define asymptotic security for length-preserving 

functions, 𝐹: 0,1 ∗ × 0,1 ∗ → 0,1 ∗, where the length of 

the key, input, and output are the same.

 Such a function is called a secure pseudorandom function (or 

just PRF) if for every adversary 𝐴 that runs in polynomial time, 

and makes polynomial number of queries, there is a negligible 

function 𝑛𝑒𝑔𝑙 such that 𝐴𝑑𝑣𝑃𝑅𝐹 𝐴, 𝐹 ≤ 𝑛𝑒𝑔𝑙(𝑘).



CPA security for Encryption 

Schemes



CPA Security for Encryption Schemes

 Borrowing ideas from one-time, ciphertext-only attack 

scenario, we can try to use message-indistinguishability as 

our notion of security.

 What is the main issue with this idea?



 Borrowing ideas from one-time, ciphertext-only attack 

scenario, we can try to use message-indistinguishability as 

our notion of security.

 What is the main issue with this idea?

 In CPA, the adversary is allowed multiple encryptions of 

messages of its choice.

CPA Security for Encryption Schemes



 Borrowing ideas from one-time, ciphertext-only attack 

scenario, we can try to use message-indistinguishability as 

our notion of security.

 What is the main issue with this idea?

 In CPA, the adversary is allowed multiple encryptions of 

messages of its choice.

 How do we define security then?

CPA Security for Encryption Schemes



 Borrowing ideas from one-time, ciphertext-only attack scenario, we can 
try to use message-indistinguishability as our notion of security.

 A symmetric encryption scheme 𝑆𝐸 = (𝐸, 𝐷) is said to be IND-CPA 
insecure if an efficient adversary is able to figure out which world it is in. 

CPA Security for Encryption Schemes

 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸(𝑀0
𝑖 ) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸𝐾(𝑀1
𝑖) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.



 Borrowing ideas from one-time, ciphertext-only attack scenario, we can 
try to use message-indistinguishability as our notion of security.

 A symmetric encryption scheme 𝑆𝐸 = (𝐸, 𝐷) is said to be IND-CPA 
insecure if an efficient adversary is able to figure out which world it is in. 

CPA Security for Encryption Schemes

 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸𝐾(𝑀1
𝑖) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 The IND-CPA advantage of an adversary 𝐴 is defined as follows:

𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴 = 1



CPA Security for Encryption Schemes

 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴
 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries message pair 

(𝑀0
𝑖 , 𝑀1

𝑖) return 𝐸𝐾(𝑀1
𝑖) to 𝐴.

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 The IND-CPA advantage of an adversary 𝐴 is defined as 

follows:
𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴 = 1

 A symmetric encryption scheme 𝑆𝐸 = 𝐸,𝐷 is called 𝑡, 𝑞, 𝜖 -

ind-cpa secure if for every adversary 𝐴 that runs in time ≤ 𝑡 and 

asks ≤ 𝑞 quesries, 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝜖.



CPA Security for Encryption Schemes

 The IND-CPA advantage of an adversary 𝐴 is defined as 

follows:
𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴 = 1

 A symmetric encryption scheme 𝑆𝐸 = 𝐸,𝐷 is called 𝑡, 𝑞, 𝜖 -

ind-cpa secure if for every adversary 𝐴 that runs in time ≤ 𝑡 and 

asks ≤ 𝑞 queries, 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝜖.

 A symmetric encryption scheme 𝑆𝐸 = 𝐸,𝐷 is said to be ind-

cpa secure if for every adversary 𝐴 that runs in polynomial time 

and makes polynomial number of queries, there exist a negligible 

function 𝑛𝑒𝑔𝑙 such that 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝑛𝑒𝑔𝑙 𝑘 .



CPA Security for Encryption Schemes

 IND-CPA allows adversaries to make multiple queries. 

 How much advantage do adversaries who is allowed to ask 𝑞 > 1
queries, have over adversaries who can only make 1 “left/right” 

query?



CPA Security for Encryption Schemes

 IND-CPA allows adversaries to make multiple queries. 

 How much advantage do adversaries who is allowed to ask 𝑞 > 1
queries, have over adversaries who can only make 1 query?

 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴
′

 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries challenge message pair 
(𝑀0, 𝑀1) return 𝐸𝐾(𝑀0) to 𝐴.

 When 𝐴 queries a message 𝑀𝑗, then 
return 𝐸𝐾(𝑀

𝑗) to 𝐴
 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴
′

 Randomly pick key 𝐾 ← 0,1 𝑘.

 When 𝐴 queries challenge message pair 
(𝑀0, 𝑀1) return 𝐸𝐾(𝑀1) to 𝐴.

 When 𝐴 queries a message 𝑀𝑗, then 
return 𝐸𝐾(𝑀

𝑗) to 𝐴

 Finally 𝐴 outputs 𝑏.

 Output 𝑏.

 The FTG-CPA advantage of an adversary 𝐴 is defined as follows:
𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴

′ = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴
′ = 1

 A symmetric encryption scheme 𝑆𝐸 = 𝐸, 𝐷 is called 𝑡, 𝑞, 𝜖 -ftg-cpa secure if for 
every adversary 𝐴 that runs in time ≤ 𝑡 and asks ≤ 𝑞 quesries, 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤
𝜖.



CPA Security for Encryption Schemes

 IND-CPA allows adversaries to make multiple queries. 

 How much advantage do adversaries who is allowed to ask 𝑞 > 1
queries, have over adversaries who can only make 1 query?

 Theorem: If a symmetric encryption scheme 𝑆𝐸 = (𝐸, 𝐷) is 

𝑡, 𝑞, 𝜖 -ftg-cpa secure, then 𝑆𝐸 is also (𝑡, 𝑞, 𝜖 ⋅ 𝑞)-ind-cpa 

secure.

 We prove the following: Let 𝐴 be any ind-cpa adversary that runs in 

time 𝑡 and makes 𝑞 queries, then there exists an ftg-cpa adversary 

that runs in time 𝑡 and makes 𝑞 queries such that

𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝑞 ⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐵, 𝑆𝐸 .



CPA Security for Encryption Schemes
 Theorem: Let 𝐴 be any ind-cpa adversary that runs in time 𝑡 and makes 
𝑞 queries, then there exists an ftg-cpa adversary that runs in time 𝑡 and 
makes 𝑞 queries such that

𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝑞 ⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐵, 𝑆𝐸 .

 To prove this, we define hybrid experiments.

𝐺𝑆𝐸,𝐴
0

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 0), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐺𝑆𝐸,𝐴
1

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 1), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐺𝑆𝐸,𝐴
𝑞

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 𝑞), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴



CPA Security for Encryption Schemes
 Theorem: Let 𝐴 be any ind-cpa adversary that runs in time 𝑡 and makes 𝑞 queries, 

then there exists an ftg-cpa adversary that runs in time 𝑡 and makes 𝑞 queries such 
that

𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 ≤ 𝑞 ⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐵, 𝑆𝐸 .

𝐺𝑆𝐸,𝐴
0

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 0), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐺𝑆𝐸,𝐴
1

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 1), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐺𝑆𝐸,𝐴
𝑞

- Randomly pick 𝐾 ← 0,1 𝑘.

- For 𝐴’s 𝑖th query (𝑀0
𝑖 ,𝑀1

𝑖),

if (𝑖 ≤ 𝑞 − 𝑞), then 

return 𝐸𝐾(𝑀0
𝑖 ) to 𝐴

else return 𝐸𝐾(𝑀1
𝑖) to 𝐴

- Finally 𝐴 outputs 𝑏.

- Output 𝑏.

𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴

 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎 𝐴, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐴 = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐴 = 1

= Pr 𝐺𝑆𝐸,𝐴
0 = 1 − Pr 𝐺𝑆𝐸,𝐴

𝑞
= 1

 Let 𝑃0 = Pr[𝐺𝑆𝐸,𝐴
0 = 1], 𝑃1 = Pr[𝐺𝑆𝐸,𝐴

1 = 1], …, 𝑃𝑞 = Pr[𝐺𝑆𝐸,𝐴
𝑞

= 1]
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= 1
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1 = 1], …, 𝑃𝑞 = Pr[𝐺𝑆𝐸,𝐴
𝑞

= 1]

𝐴

𝐵
- Pick 𝑔 ← [𝑞] randomly

- When 𝐴 makes its 𝑖𝑡ℎ query (𝑀0
𝑖 , 𝑀1

𝑖):

- If (𝑖 < 𝑔) make a query with 𝑀0
𝑖

and return the value to 𝐴

- If (𝑖 > 𝑔) make a query with 𝑀1
𝑖

and return the value to 𝐴

- If (𝑖 = 𝑔) make a query 𝑀0
𝑖 , 𝑀1

𝑖

and return the value to 𝐴
- Output 𝐴’s result

(𝑀0
𝑖 , 𝑀1

𝑖)
(𝑀0

𝑖 , 𝑀1
𝑖) if 𝑖 = 𝑔

𝑀0
𝑖 if 𝑖 < 𝑔

𝑀1
𝑖 if 𝑖 > 𝑔
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= Pr 𝐺𝑆𝐸,𝐴
0 = 1 − Pr 𝐺𝑆𝐸,𝐴

𝑞
= 1

 Let 𝑃0 = Pr[𝐺𝑆𝐸,𝐴
0 = 1], 𝑃1 = Pr[𝐺𝑆𝐸,𝐴

1 = 1], …, 𝑃𝑞 = Pr[𝐺𝑆𝐸,𝐴
𝑞

= 1]

 Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐵
′ = 1 =

1

𝑞
⋅ (𝑃0 + 𝑃1 +⋯+ 𝑃𝑞−1)

 Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐵
′ = 1 =

1

𝑞
⋅ (𝑃1 + 𝑃2 + …+ 𝑃𝑞)

 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎 𝐵, 𝑆𝐸 = Pr 𝐿𝑒𝑓𝑡𝑆𝐸,𝐵
′ = 1 − Pr 𝑅𝑖𝑔ℎ𝑡𝑆𝐸,𝐵

′ = 1

=
1

𝑞
⋅ (𝑃0−𝑃𝑞

=
1

𝑞
⋅ 𝐴𝑑𝑣𝑖𝑛𝑑−𝑐𝑝𝑎(𝐴, 𝑆𝐸)



CPA-Security for Encryption Schemes

 Alternate definition of FTG-CPA security.

 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴
 Randomly pick a key 𝐾 ← 0,1 𝑛.

 Pick a random bit 𝑏 ← {0,1}

 When 𝐴 makes a encryption query 𝑀𝑖, return the value 

𝐸𝐾(𝑀
𝑖).

 When 𝐴 makes the challenge query (𝑀0, 𝑀1), return the value 

𝐸𝐾(𝑀𝑏).

 Finally, 𝐴 outputs a bit 𝑏′

 If (𝑏 = 𝑏′) output 1 else output 0

 Theorem: Pr 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴 = 1 =
1

2
±

1

2
⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎(𝐴, 𝑆𝐸)
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 Alternate definition of FTG-CPA security.

 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴
 Randomly pick a key 𝐾 ← 0,1 𝑛.

 Pick a random bit 𝑏 ← {0,1}

 When 𝐴 makes a encryption query 𝑀𝑖, return the value 𝐸𝐾(𝑀
𝑖).

 When 𝐴 makes the challenge query (𝑀0, 𝑀1), return the value 

𝐸𝐾(𝑀𝑏).

 Finally, 𝐴 outputs a bit 𝑏′

 If (𝑏 = 𝑏′) output 1 else output 0

 Theorem: Pr 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴 = 1 =
1

2
±

1

2
⋅ 𝐴𝑑𝑣𝑓𝑡𝑔−𝑐𝑝𝑎(𝐴, 𝑆𝐸)

 So, summing up all the discussion until now, for CPA-security of 

an encryption scheme, we just need to analyse the performance of 

an adversary in the experiment 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴.



CPA-Security for Encryption Schemes

 Suppose we have a secure pseudorandom permutation family 

𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛.

 We saw a few examples(AES,3DES etc.) in the last lecture.

 Consider the following encryption scheme 𝑆𝐸 = (𝐸, 𝐷)
that encrypts messages of length 𝑛.

 𝐸𝐾 𝑀 = 𝐹𝐾(𝑀) and 𝐷𝐾 𝐶 = 𝐹𝐾
−1 𝐶

 Is 𝑆𝐸 ind-cpa secure?

 Is 𝑆𝐸 ftg-cpa secure?

 Is 𝑆𝐸 “GuessLR” secure?
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 Suppose we have a secure pseudorandom permutation family 

𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛.

 We saw a few examples(AES,3DES etc.) in the last lecture.

 Consider the following encryption scheme 𝑆𝐸 = (𝐸, 𝐷)
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 𝐸𝐾 𝑀 = 𝐹𝐾(𝑀) and 𝐷𝐾 𝐶 = 𝐹𝐾
−1 𝐶

 Is 𝑆𝐸 “GuessLR” secure?

 No

 Adversary 𝐴
 Query the message 0𝑛 and get back 𝐶 = 𝐸𝐾(0

𝑛).

 Make the challenge query 0𝑛, 1𝑛 and get back 𝐶′.

 If (𝐶 == 𝐶′), then output 0 else output 1

 Pr 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴 = 1 =?
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CPA-Security for Encryption Schemes

 Suppose we have a secure pseudorandom permutation family 

𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛.

 We saw a few examples(AES,3DES etc.) in the last lecture.

 Consider the following encryption scheme 𝑆𝐸 = (𝐸, 𝐷)
that encrypts messages of length 𝑛.

 𝐸𝐾 𝑀 = 𝐹𝐾(𝑀) and 𝐷𝐾 𝐶 = 𝐹𝐾
−1 𝐶

 In fact, any deterministic encryption scheme cannot be IND-

CPA secure!

 For 𝑆𝐸 to be IND-CPA secure, everytime you encrypt a 

message 𝑀, you should get a different ciphertext!
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 Suppose we have a secure pseudorandom permutation family 

𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛.

 We saw a few examples(AES,3DES etc.) in the last lecture.

 Consider the following encryption scheme 𝑆𝐸 = (𝐸, 𝐷)
that encrypts messages of length 𝑛.

 𝐸𝐾 𝑀
 Pick a random 𝑟 ← 0,1 𝑛

 Output C = < 𝑟, 𝐹𝐾 𝑟 ⊕𝑀 >

 𝐷𝐾 𝐶
 Parse 𝐶 as < 𝑟, 𝑠 >

 Output 𝑀 = 𝐹𝐾 𝑟 ⊕ 𝑠

 Theorem: If 𝐹 is 2𝑡, 𝑞,
𝜖

2
−

𝑞

2𝑛
-secure PRF, then 𝑆𝐸 is 

(𝑡, 𝑞, 𝜖)-ftg-cpa secure symmetric encryption scheme.
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 Theorem: Consider an adversary 𝐴 that runs in time 𝑡, makes 𝑞

queries such that Pr 𝐺𝑢𝑒𝑠𝑠𝐿𝑅𝑆𝐸,𝐴 = 1 >
1

2
+ 𝜖, then there is 

an adversary 𝐵 that runs in time at most 2𝑡, makes (𝑞 + 1)
queries such that 𝐴𝑑𝑣𝑃𝑅𝐹 𝐵, 𝐹 > 𝜖 −

q

2n
.

𝐴

𝑅𝑒𝑎𝑙𝐵,𝐹 𝑅𝑎𝑛𝑑𝑜𝑚𝐵

𝐵
- Pick a random bit 𝑏
- Return A’s queries as 

shown

- If (b=b’) output 1 

else 0

𝑏’

𝑀

𝑟 𝐹𝐾(𝑟)

𝑀⊕𝐹𝐾(𝑟)

(𝑀0,𝑀1)

𝑟 𝐹𝐾(𝑟)

𝑀𝑏 ⊕𝐹𝐾(𝑟)

𝐴

𝐵
- Pick a random bit 𝑏
- Return A’s queries as 

shown

- If (b=b’) output 1 

else 0

𝑏’

𝑀

𝑟 f(𝑟)

𝑀⊕ 𝑓(𝑟)

(𝑀0,𝑀1)

𝑟 f(𝑟)

𝑀𝑏 ⊕𝑓(𝑟)

 Pr 𝑅𝑒𝑎𝑙𝐵,𝐹 = 1 =?
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𝐴

𝐵
- Pick a random bit 𝑏
- Return A’s queries as 

shown

- If (b=b’) output 1 

else 0

𝑏’

𝑀

𝑟 f(𝑟)

𝑀⊕ 𝑓(𝑟)

(𝑀0,𝑀1)

𝑟 f(𝑟)
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𝑞
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𝐵
- Pick a random bit 𝑏
- Return A’s queries as 

shown
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𝑏’

𝑀
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2
+

q

2𝑛

𝐴

𝐵
- Pick a random bit 𝑏
- Return A’s queries as 

shown

- If (b=b’) output 1 

else 0

𝑏’

𝑀

𝑟 f(𝑟)

𝑀⊕ 𝑓(𝑟)
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