CSL759: Cryptography and Computer Security

Ragesh Jaiswal

CSE, IIT Delhi

Block Ciphers

- Block ciphers work on "blocks" of message bits rather than a "stream" of message bits.
- Main Idea:
 - Suppose we encrypt in blocks of size n.
 - Let $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a function.
 - For a message block M of n bits, and key K, the ciphertext is given by C = E(K, M).

- Block ciphers work on "blocks" of message bits rather than a "stream" of message bits.
- Main Idea:
 - Suppose we encrypt in blocks of size n.
 - Let $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a function.
 - For a message block M of n bits, and key K, the ciphertext is given by C = E(K, M).
- What are properties that E should satisfy?

- Block ciphers work on "blocks" of message bits rather than a "stream" of message bits.
- Main Idea:
 - Suppose we encrypt in blocks of size n.
 - Let $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a function.
 - For a message block M of n bits, and key K, the ciphertext is given by C = E(K, M).
- What are properties that E should satisfy?
 - For all $K \in \{0,1\}^k$, the function $E_K: \{0,1\}^n \to \{0,1\}^n$ defined as $E_K(M) = E(K, M)$ is a one-one function. In other words, E_K is a permutation.

- Block ciphers work on "blocks" of message bits rather than a "stream" of message bits.
- Main Idea:
 - Suppose we encrypt in blocks of size *n*.
 - Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a function.
 - For a message block M of n bits, and key K, the ciphertext is given by C = E(K, M).
- What are properties that E should satisfy?
 - For all $K \in \{0,1\}^k$, the function $E_K: \{0,1\}^n \to \{0,1\}^n$ defined as $E_K(M) = E(K, M)$ is a one-one function. In other words, E_K is a permutation.
 - Both E_K (encryption function) and E_K^{-1} (decryption function) are efficient.
 - Security Properties: To be discussed.

• Block ciphers work on "blocks" of message bits rather than a "stream" of message bits.

• Main Idea:

- Suppose we encrypt in blocks of size *n*.
- Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a function.
- For a message block M of n bits, and key K, the ciphertext is given by C = E(K, M).
- What are properties that E should satisfy?
 - For all $K \in \{0,1\}^k$, the function $E_K: \{0,1\}^n \to \{0,1\}^n$ defined as $E_K(M) = E(K, M)$ is a one-one function. In other words, E_K is a permutation.
 - Both E_K (encryption function) and E_K^{-1} (decryption function) are efficient.
 - Security Properties: To be discussed.

 $M = D_K(C) = E_K^{-1}(C)$

М

 $C = E_K(M)$

· **K**

Key exchange protocol

- <u>Block ciphers</u>: Examples:
 - DES: $\{0,1\}^{56} \times \{0,1\}^{64} \to \{0,1\}^{64}$
 - 3DES: $\{0,1\}^{168} \times \{0,1\}^{64} \to \{0,1\}^{64}$
 - AES: $\{0,1\}^k \times \{0,1\}^{128} \rightarrow \{0,1\}^{128}, k = 128, 192, 256.$
- Data Encryption Standard (DES):
 - <u>Early 1970's</u>: Horst Feistel designs a block cipher *Lucifer* at IBM.
 - <u>1973</u>: NBS (now NIST) asks for a block cipher for standardization. IBM submits a variant of *Lucifer*.
 - <u>1976</u>: NBS adopts DES as a Federal standard.
 - <u>1997</u>: DES broken by exhaustive search.
 - <u>2000</u>: NIST adopts *Rijndael* as AES to replace DES.

DES Construction

function $DES_{K}(M)$ // |K| = 56 and |M| = 64 $(K_{1}, ..., K_{16}) \leftarrow KeySchedule(K)$ // $|K_{i}| = 48$ for $1 \le i \le 16$ $M \leftarrow IP(M)$ Parse M as $L_{0} \parallel R_{0}$ // $|L_{0}| = |R_{0}| = 32$ for i = 1 to 16 do $L_{i} \leftarrow R_{i-1}$; $R_{i} \leftarrow f(K_{i}, R_{i-1}) \oplus L_{i-1}$ $C \leftarrow IP^{-1}(L_{16} \parallel R_{16})$ return C

Feistel Network

Feistel Network

Encryption circuit

Decryption circuit

DES Construction

function $DES_K(M)$ // |K| = 56 and |M| = 64 $(K_1, \ldots, K_{16}) \leftarrow KeySchedule(K) \quad // |K_i| = 48 \text{ for } 1 \le i \le 16$ $M \leftarrow IP(M)$ Parse *M* as $L_0 || R_0 // |L_0| = |R_0| = 32$ for i = 1 to 16 do $L_i \leftarrow R_{i-1}$; $R_i \leftarrow f(K_i, R_{i-1}) \oplus L_{i-1}$ $C \leftarrow IP^{-1}(L_{16} \parallel R_{16})$ return C function $DES_{K}^{-1}(C)$ // |K| = 56 and |M| = 64 $(K_1, \ldots, K_{16}) \leftarrow KeySchedule(K)$ // $|K_i| = 48$ for $1 \le i \le 16$ $C \leftarrow IP(C)$ Parse *C* as $L_{16} \parallel R_{16}$ for i = 16 downto 1 do $R_{i-1} \leftarrow L_i$; $L_{i-1} \leftarrow f(K_i, R_{i-1}) \oplus R_i$ $M \leftarrow IP^{-1}(L_0 \parallel R_0)$ ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�� return M12/44

DES Construction

function $DES_{K}(M) // |K| = 56$ and |M| = 64 $(K_{1}, ..., K_{16}) \leftarrow KeySchedule(K) // |K_{i}| = 48$ for $1 \le i \le 16$ $M \leftarrow IP(M)$ Parse M as $L_{0} \parallel R_{0} // |L_{0}| = |R_{0}| = 32$ for i = 1 to 16 do $L_{i} \leftarrow R_{i-1}$; $R_{i} \leftarrow f(K_{i}, R_{i-1}) \oplus L_{i-1}$ $C \leftarrow IP^{-1}(L_{16} \parallel R_{16})$ return C

IP

 IP^{-1}

			34 36							48 47					
			38							46					
64	56	48	40	32	24	16	8	3	75	45	13	53	21	61	29
57	49	41	33	25	17	9	1	30	54	44	12	52	20	60	28
59	51	43	35	27	19	11	3	3	53	43	11	51	19	59	27
61	53	45	37	29	21	13	5	34	12	42	10	50	18	58	26
63	55	47	39	31	23	15	7	33		41					
										< □ ▶	< ⊡ >	- < ≡ >			୍ରର୍ତ

13/44

DES Construction

function f(J, R) // |J| = 48 and |R| = 32 $R \leftarrow E(R)$; $R \leftarrow R \oplus J$ Parse R as $R_1 || R_2 || R_3 || R_4 || R_5 || R_6 || R_7 || R_8 // |R_i| = 6$ for $1 \le i$ for i = 1, ..., 8 do $R_i \leftarrow \mathbf{S}_i(R_i) //$ Each S-box returns 4 bits $R \leftarrow R_1 || R_2 || R_3 || R_4 || R_5 || R_6 || R_7 || R_8 // |R| = 32$ bits $R \leftarrow P(R)$ return R

		E					ŀ	D				
4 8 12 16 20 24	1 5 9 13 17 21 25 29	6 10 14 18 22 26	7 11 15 19 23 27	8 12 16 20 24 28	9 13 17 21 25 29	29 1 5 2 32	18 8 27	28 23 31 24 3	17 26 10 14 9	<	144	ত্র 14/44

• The S boxes map {0,1}⁶ to {0,1}⁴

6								Midd	le 4 bi	its of	input						
S ₅		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
Outer bits		1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits		0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

• How do we choose S boxes?

• The S boxes map {0,1}⁶ to {0,1}⁴

6								Midd	le 4 bi	its of	input						
S ₅		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
Outer bite		1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

- How do we choose S boxes?
- Supose we use S boxes of the following kind:
 - $S_i(x_1, x_2, \dots, x_6) = (x_2 \oplus x_3, x_1 \oplus x_4 \oplus x_5, x_1 \oplus x_6, x_2 \oplus x_3 \oplus x_6)$
- Do you see a problem using such S boxes?

• The S boxes map {0,1}⁶ to {0,1}⁴

6								Midd	le 4 bi	its of	input						
S ₅		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
Outer bits		1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

- How do we choose S boxes?
- Supose we use S boxes of the following kind:
 - $S_i(x_1, x_2, \dots, x_6) = (x_2 \oplus x_3, x_1 \oplus x_4 \oplus x_5, x_1 \oplus x_6, x_2 \oplus x_3 \oplus x_6)$
- Do you see a problem using such S boxes?
 - The cipher would be linear.

- How do we choose S boxes?
- Supose we use S boxes of the following kind:
 - $S_i(x_1, x_2, \dots, x_6) = (x_2 \oplus x_3, x_1 \oplus x_4 \oplus x_5, x_1 \oplus x_6, x_2 \oplus x_3 \oplus x_6)$
- Do you see a problem using such S boxes?
 - The cipher would be linear.

• $DES(K, m_1) \bigoplus DES(K, m_2) \bigoplus DES(K, m_3) =?$

- How do we choose S boxes?
- Supose we use S boxes of the following kind:
 - $S_i(x_1, x_2, \dots, x_6) = (x_2 \oplus x_3, x_1 \oplus x_4 \oplus x_5, x_1 \oplus x_6, x_2 \oplus x_3 \oplus x_6)$
- Do you see a problem using such S boxes?
 - The cipher would be linear.

• $DES(K, m_1) \oplus DES(K, m_2) \oplus DES(K, m_3) = DES(K, m_1 \oplus m_2 \oplus m_3)$

- How do we choose S boxes?
- There are several rules for choosing an S box. Here are a few examples:
 - Should not be chosen randomly.
 - No output bit should be close to a linear function of the input bits.
 - They should be 4-to-1 map.

Key Recovery(KR) Attacks on Block Ciphers

- <u>Known Plaintext Attack(KPA)</u>: The adversary knows a few pairs $(m_1, c_1), \dots, (m_q, c_q)$ such that $\forall i, c_i = E(K, m_i)$. The goal is to find K.
- <u>Chosen Plaintext Attack(CPA)</u>: Adversary can pick messages m_1, \ldots, m_q such that it knows their corresponding ciphertexts $c_i = E(K, m_i)$. The goal is to find K.
- The most bruteforce way to find the value of *K* is to do an Exhaustive Key Search (EKS).
 - *EKS*(*m*, *c*)
 - For K = 0 to 2^{k-1}
 - If E(K, m) = c, then output K
 - Is this guaranteed to give the correct key?

- <u>Known Plaintext Attack(KPA)</u>: The adversary knows a few pairs $(m_1, c_1), \dots, (m_q, c_q)$ such that $\forall i, c_i = E(K, m_i)$. The goal is to find K.
- <u>Chosen Plaintext Attack(CPA)</u>: Adversary can pick messages m_1, \ldots, m_q such that it knows their corresponding ciphertexts $c_i = E(K, m_i)$. The goal is to find K.
- The most bruteforce way to find the value of *K* is to do an Exhaustive Key Search (EKS).
 - *EKS*(*m*, *c*)
 - For K = 0 to 2^{k-1}
 - If E(K, m) = c, then output K
 - Is this guaranteed to give the correct key?
 - No but usually it does.

- The most bruteforce way to find the value of K is to do an Exhaustive Key Search (EKS).
 - *EKS*(*m*, *c*)

• For
$$K = 0$$
 to 2^{k-1}

• If E(K, m) = c, then output K

How long does exhaustive key search take?

DES can be computed at 1.6 Gbits/sec in hardware.

DES plaintext = 64 bits

Chip can perform $(1.6\times 10^9)/64=2.5\times 10^7$ DES computations per second

Expect EKS to succeed in 2^{55} DES computations, so it takes time

$$\frac{2^{55}}{2.5 \times 10^7} \approx 1.4 \times 10^9 \text{ seconds}$$

 \approx 45 years!

Key Complementation \Rightarrow 22.5 years

But this is prohibitive.

Does this mean DES is secure?

- The most bruteforce way to find the value of K is to do an Exhaustive Key Search (EKS).
 - *EKS*(*m*, *c*)

• For
$$K = 0$$
 to 2^{k-1}

• If E(K, m) = c, then output K

Differential and linear cryptanalysis

Exhaustive key search is a generic attack: Did not attempt to "look inside" DES and find/exploit weaknesses.

	Method	when	q	Type of attack
	Differential cryptanalysis Linear cryptanalysis	1992	2 ⁴⁷	Chosen-message
	Linear cryptanalysis	1993	2 ⁴⁴	Known-message
But m	erely storing 2 ⁴⁴ input-outp	out pairs	requi	res 281 Tera-bytes.
In pra	ctice these attacks are proh	ibitively	exper	nsive.
			<	□ ▶ < @ ▶ < 분 ▶ < 분 ▶ 분 - 키익 관 28 / 44

- The most bruteforce way to find the value of K is to do an Exhaustive Key Search (EKS).
 - *EKS*(*m*, *c*)

• For
$$K = 0$$
 to 2^{k-1}

- If E(K, m) = c, then output K
- History of attacks on DES:
 - 1992: Biham and Shamir report the first theoretical attack with less complexity than brute force: <u>differential cryptanalysis</u>. However, it requires an unrealistic 2⁴⁷ <u>chosen plaintexts</u>.
 - 1997: The <u>DESCHALL Project</u> breaks a message encrypted with DES for the first time in public. (**Time: 3 months**)
 - 1998: The <u>EFF</u>'s <u>DES cracker</u> (Deep Crack) breaks a DES key. (Time: 56 Hours)
 - 1999: Together, <u>Deep Crack</u> and <u>distributed.net</u> break a DES key. (Time:22 hours and 15 minutes)

- The most bruteforce way to find the value of K is to do an Exhaustive Key Search (EKS).
 - *EKS*(*m*, *c*)

• For
$$K = 0$$
 to 2^{k-1}

- If E(K, m) = c, then output K
- History of attacks on DES:
 - 1992: Biham and Shamir report the first theoretical attack with less complexity than brute force: <u>differential cryptanalysis</u>. However, it requires an unrealistic 2⁴⁷ <u>chosen plaintexts</u>.
 - 1997: The <u>DESCHALL Project</u> breaks a message encrypted with DES for the first time in public. (**Time: 3 months**)
 - 1998: The EFF's DES cracker (Deep Crack) breaks a DES key. (Time: 56 Hours)
 - 1999: Together, <u>Deep Crack</u> and <u>distributed.net</u> break a DES key. (Time:22 hours and 15 minutes)
 - 2006: The <u>FPGA</u> based parallel machine <u>COPACOBANA</u> of the Universities of Bochum and Kiel, Germany, breaks DES in 9 days at \$10,000 hardware cost.^[19] Within a year software improvements reduced the average time to 6.4 days.
 - 2008: The successor of <u>COPACOBANA</u>, the RIVYERA machine reduced the average time to less than one single day.
- Verdict: The key length is too small even for EKS.
- History: AES becomes effective from 2002.

• 2DES: $\{0,1\}^{112} \times \{0,1\}^{64} \to \{0,1\}^{64}$ defined by $2DES_{K_1K_2}(m) = DES_{K_2}(DES_{K_1}(m))$

- EKS will take 2¹¹² DES computations.
- Is there a better way to mount a Key Recovery attack?

<i>K</i> ₂	$DES_{K_2}^{-1}(c)$		<i>K</i> ₁	$DES_{K_1}(m)$
00 0	x ₀	Match x from the left table to a y in the right table	00 0	<i>y</i> ₀
00 1	<i>x</i> ₁		00 1	<i>y</i> ₁
•				
11 1	$x_{2^{n}-1}$		11 1	$y_{2^{n}-1}$

• 2DES:
$$\{0,1\}^{112} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$$
 defined by
 $2DES_{K_1K_2}(m) = DES_{K_2}(DES_{K_1}(m))$

- EKS will take 2¹¹² DES computations.
- Is there a better way to mount a Key Recovery attack?
- This attack takes 2⁵⁷ DES/DES⁻¹ computations.
- So the "ëffective" key length for 2DES is 57.

<i>K</i> ₂	$DES_{K_2}^{-1}(c)$		<i>K</i> ₁	$DES_{K_1}(m)$
00 0			00 0	<i>y</i> ₀
00 1	<i>x</i> ₁	Match x from the left table to a y in the right table	00 1	<i>y</i> ₁
11 1	$x_{2^{n}-1}$		11 1	$y_{2^{n}-1}$

• $3DES3: \{0,1\}^{168} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$ defined by $3DES3_{K_1K_2K_3}(m) = DES_{K_3}\left(DES_{K_2}^{-1}(DES_{K_1}(m))\right)$

• What is "effective" key length with respect to the Meet-in-the-middle attack?

• $3DES3: \{0,1\}^{168} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$ defined by $3DES3_{K_1K_2K_3}(m) = DES_{K_3}\left(DES_{K_2}^{-1}(DES_{K_1}(m))\right)$

- What is "effective" key length with respect to the Meet-in-the-middle attack?
 - 113

- DESX: $\{0,1\}^{184} \times \{0,1\}^{64} \to \{0,1\}^{64}$ defined by $DESX_{KK_1K_2}(m) = K_2 \bigoplus DES_K(K_1 \bigoplus m)$
- Key length = 56 + 64 + 64 = 184
- What is "effective" key length with respect to the Meet-in-the-middle attack?
 - 121

- AES history:
 - 1998: NIST announces competition for a new block cipher.
 - Requirement:
 - Key length: 128
 - Block length: 128
 - Faster than DES in software.
 - There were15 submissions.
 - 2001: NIST selects Rijndael to be AES.

Side Channel Attacks on Block Ciphers

- Side channel attacks are attacks on the implementation of block ciphers.
- Examples:
 - Analysing time/power/acoustics of encryption/decryption to figure out the secret key.
 - Introducing faults while computation.

• Never design and implement your own block cipher unless you have adequate experience.

End

Acknowledgements:

- Slides 13,14,15,25, and 26 have been borrowed from Mihir Bellare's slides on Cryptography.
- Slides 10,11,12,16,17,18, 19, 20 are taken from lectures slides of Dan Boneh's Cryptography course.