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 Definition ((𝑡, 𝜖)-indistinguishable PRG): A function 𝐺: 0,1 𝑘 → 0,1 𝑛 is
said to be (𝑡, 𝜖)-secure Pseudorandom Generator if for all algorithms that run 
in time at most 𝑡, we have:

𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 ≤ 𝜖

 Definition ((𝑡, 𝜖)-unpredictable PRG): A function 𝐺: 0,1 𝑘 → 0,1 𝑛 is 
called 𝑡, 𝜖 -unpredictable pseudorandom generator of for all algorithms 𝐴 that 
run in time at most 𝑡 and for all 𝑖 ∈ {1, … , 𝑛 − 1}, we have:

Pr 𝐴 𝐺 𝐾 1… 𝑖 = 𝐺 𝐾 𝑖 + 1 ≤
1

2
+ 𝜖.

Stream Ciphers: Indistinguishability Vs Unpredictability

 Theorem(indistinguishability implies unpredictability): Let 
𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡 + 1, 𝜖)-indistinguishable PRG, 
then 𝐺 is also a (𝑡, 𝜖)-unpredictable PRG.

 Proof: We show the contrapositive. 
 Suppose 𝐴 is an algorithm that runs in time at most 𝑡 and 𝑖 be the 

index such that

Pr 𝐴 𝐺 𝐾 1… 𝑖 = 𝐺 𝐾 𝑖 + 1 >
1

2
+ 𝜖.

 Consider algorithm 𝐵(𝑥): If (𝐴(𝑥[1… 𝑖]) = 𝑥[𝑖 + 1]), then 
output 1 else 0.



Stream Ciphers: Indistinguishability Vs Unpredictability

 Theorem(indistinguishability implies unpredictability): Let 

𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡, 𝜖)-indistinguishable PRG, 

then 𝐺 is also a (𝑡, 𝜖)-unpredictable PRG.

 Proof: We show the contrapositive. 

 Suppose 𝐴 is an algorithm that runs in time at most 𝑡 and 𝑖 be 

the index such that

Pr 𝐴 𝐺 𝐾 1… 𝑖 = 𝐺 𝐾 𝑖 + 1 >
1

2
+ 𝜖.

 Consider algorithm 𝐵(𝑥): If (𝐴(𝑥[1… 𝑖]) = 𝑥[𝑖 + 1]), then 

output 1 else 0.

 Claim 1: 𝐵 runs in time 𝑡 + 1.

 Claim 2: 𝐴𝑑𝑣𝑃𝑅𝐺 𝐵, 𝐺 > 𝜖.

 Claim 2.1: Pr
𝐾← 0,1 𝑘

𝐵 𝐺 𝐾 = 1 >
1

2
+ 𝜖.

 Claim 2.2: Pr
𝑅← 0,1 𝑛

𝐵 𝑅 = 1 =
1

2
.



Stream Ciphers: Indistinguishability Vs Unpredictability

 Theorem(unpredictability implies indistinguishability): Let 

𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡′, 𝜖/𝑛)-unpredictable PRG, 

then 𝐺 is also a (𝑡, 𝜖)-indistinguishable PRG.

 This is known as Yao’s theorem and is proved using an idea 

known as the Hybrid argument. We will discuss this proof in 

some time.



Stream Ciphers: Pseudorandom generator

 What are the desirable properties of a pseudorandom 

generator 𝐺: 0, 1 𝑘 → 0,1 𝑛 for Cryptographic purposes:

 Stretch: 𝑛 > 𝑘

 Efficient: 𝐺 should be efficiently computable.

 Indistinguishability: No bounded resource algorithm should be 

able to distinguish the output of the generator 𝐺 𝑥 (for random 

𝑥) from a random 𝑛 bit string.

 Unpredictability: The output of the generator should not be 

predictable.

 Suppose there is a generator 𝐺 that is efficient, that stretches 

the input, that is (𝑡, 𝜖)-indistinguishable. When can we call it 

secure?



Stream Ciphers: Pseudorandom generator

 What are the desirable properties of a pseudorandom 
generator 𝐺: 0, 1 𝑘 → 0,1 𝑛 for Cryptographic purposes:

 Stretch: 𝑛 > 𝑘
 Efficient: 𝐺 should be efficient

 Indistinguishability: No bounded resource algorithm should be 
able to distinguish the output of the generator 𝐺 𝑥 (for random 
𝑥) from a random 𝑛 bit string.

 Unpredictability: The output of the generator should not be 
predictable.

 Suppose there is a generator 𝐺 that is efficient, that stretches 
the input, that is (𝑡, 𝜖)-indistinguishable. When can we call it 
secure?

 𝑡 is large. How large?

 𝜖 is small. How small?



Stream Ciphers: Pseudorandom generator

 Suppose there is a generator 𝐺 that is efficient, that stretches 
the input, that is (𝑡, 𝜖)-indistinguishable. When can we call it 
secure?

 𝑡 is large. How large?

 𝜖 is small. How small?

 Example values of 𝑘, 𝑛, 𝑡, and 𝜖:

 𝑘 = 128

 𝑛 = 220

 𝑡 = 280

 𝜖 = 2−40

 Are these figures good enough for all scenarios (present and 
future)?

 We will discuss this in sometime.



Stream Ciphers: Security of Stream Ciphers

 Formalizing notion of security:

 When can you say that your protocol has been broken?
 Adversary is able to figure out the secret key.

 Adversary is able to figure out the entire message.





 Think of a security property that implies all other relevant 
security properties.

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the 
Keyspace.



Stream Ciphers: Security of Stream Ciphers

 Perfect Secrecy (Information Theoretic Security): An 

encryption scheme (𝐸, 𝐷) is said to be perfectly secure if for 

any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

 Definition ((𝑡, 𝜖)-message indistinguishability): An encryption 

scheme (𝐸, 𝐷), is said to be (𝑡, 𝜖)-message indistinguishable 

if for any two messages 𝑀0, 𝑀1, and any algorithm 𝐴 that 

runs in time at most 𝑡 we have:
Adv𝐼𝑁𝐷 𝐴, 𝐸 = Pr 𝐴 𝐸𝐾 𝑀0 = 1 − Pr 𝐴 𝐸𝐾 𝑀1 = 1 ≤ 𝜖

 The above definition is with respect to one time encryption 

only.



Stream Ciphers: Security of Stream Ciphers

 Why is message indistinguishability a strong notion of 

security?

 Theorem (informal): If a scheme is secure w.r.t. the message 

indistinguishability notion, then it is secure w.r.t. the key 

recovery notion. 

 Proof: ?

 Theorem (informal): If a scheme is secure w.r.t. the message 

indistinguishability notion, then it is secure w.r.t. 100th bit known 

notion.









Stream Ciphers: Security of Stream Ciphers

 One Time Pad:

 Let the key space and message space be 0,1 𝑛.

 𝐸𝐾 𝑀 = 𝐾⊕𝑀 and 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶.

 Is the OTP encryption scheme secure w.r.t. notion of message 

indistinguishability? What is the advantage of any Algorithm for 

this encryption scheme?

 OTP using PRG:

 Let 𝐺: 0, 1 𝑘 → 0,1 𝑛 be PRG.

 𝐸𝐾 𝑀 = 𝐺 𝐾 ⊕𝑀 and 𝐷𝐾 𝐶 = 𝐺 𝐾 ⊕ 𝐶.

 Theorem (informal): If 𝐺 is a secure PRG w.r.t. 

indistinguishability notion, then (𝐸, 𝐷) is secure w.r.t. message 

indistinguishability. 



Stream Ciphers: Security of Stream Ciphers

 OTP using PRG:

 Let 𝐺: 0, 1 𝑘 → 0,1 𝑛 be PRG.

 𝐸𝐾 𝑀 = 𝐺 𝐾 ⊕𝑀 and 𝐷𝐾 𝐶 = 𝐺 𝐾 ⊕ 𝐶.

 Theorem (informal): If 𝐺 is a secure PRG w.r.t. 

indistinguishability notion, then (𝐸, 𝐷) is secure w.r.t. message 

indistinguishability. 

 Theorem: For every algorithm 𝐴 that “attacks” (𝐸, 𝐷) against the 

notion of message indistinguishability, there is an algorithm 𝐵
that “attacks” 𝐺 against the notion of indistinguishability such that

𝐴𝑑𝑣𝐼𝑁𝐷 𝐴, 𝐸 ≤ 2 ⋅ 𝐴𝑑𝑣𝑃𝑅𝐺 𝐵, 𝐺
Moreover, if the running time of 𝐵 is at most twice the running 

time of 𝐴.



Stream Ciphers: Security of Stream Ciphers

 Theorem: For every algorithm 𝐴 that “attacks” (𝐸, 𝐷) against 
the notion of message indistinguishability, there is an algorithm 
𝐵 that “attacks” 𝐺 against the notion of indistinguishability such 
that

𝐴𝑑𝑣𝐼𝑁𝐷 𝐴, 𝐸 ≤ 2 ⋅ 𝐴𝑑𝑣𝑃𝑅𝐺 𝐵, 𝐺
Moreover, if the running time of 𝐵 is at most twice the running 
time of 𝐴.
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Stream Ciphers: Security of Stream Ciphers

 𝐴𝑑𝑣𝑃𝑅𝐺 𝐵, 𝐺 = | Pr 𝐵 𝐺 𝐾 = 1 − Pr[𝐵 𝑅 = 1]|

 Lemma 1: Pr 𝐵 𝑅 = 1 =
1

2
.

 Lemma 2: Pr 𝐵 𝐺 𝐾 = 1 =
1

2
± 𝐴𝑑𝑣𝐼𝑁𝐷(𝐴, 𝐸)
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Hybrid Argument



Hybrid Argument: Indistinguishability Vs Unpredictability

 Theorem(unpredictability implies indistinguishability): Let 

𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡′, 𝜖/𝑛)-unpredictable PRG, 

then 𝐺 is also a (𝑡, 𝜖)-indistinguishable PRG.

 Proof: We prove the contrapositive. Let 𝐴 be an algorithm 

that runs in time at most 𝑡 such that the following holds:

Pr
𝐾← 0,1 𝑘

𝐴 𝐺 𝐾 = 1 − Pr
𝑅← 0,1 𝑛

𝐴 𝑅 = 1 ≤ 𝜖

we will show that there exists an algorithm 𝐵 that predicts 

the output of the generator. 

 Let the output of the generator be denoted by 𝑦1𝑦2…𝑦𝑛 and 

let 𝑟1𝑟2…𝑟𝑛 denote independent random bits.
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𝑖 + 1 𝑡ℎ bit of the generator, given the first 𝑖 bits?



Hybrid Argument : Indistinguishability Vs Unpredictability

 Theorem(unpredictability implies indistinguishability): Let 
𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡′, 𝜖/𝑛)-unpredictable PRG, then 𝐺 is 
also a (𝑡, 𝜖)-indistinguishable PRG.

 Proof: 

 Claim 2: ∃𝑖, Pr
𝑅←𝐷𝑖

𝐴 𝑅 = 1 − Pr
𝑅←𝐷𝑖+1

𝐴 𝑅 = 1 > 𝜖/𝑛

 How do we use the above claim to design an algorithm 𝐵 that 

predicts the 𝑖 + 1 𝑡ℎ bit of the generator, given the first 𝑖
bits?

 𝐵(𝑦1𝑦2…𝑦𝑖):
 Pick a random bit 𝑟 ← {0,1}.

 Pick independently random bits 𝑟𝑖+2, 𝑟𝑖+3 , … , 𝑟𝑛← {0,1}

 Execute 𝐴 on the input (𝑦1𝑦2…𝑦𝑖𝑟𝑟𝑖+2𝑟𝑖+3…𝑟𝑛), let 𝑏 be the output of 𝐴.

 If (𝑏 = 𝑟), then output 𝑟 else output (1 − 𝑟).

 Claim 3: Pr 𝐵 𝑦1𝑦2…𝑦𝑖 = 𝑦𝑖+1 > 𝜖/𝑛.



Security: Concrete Vs Asymptotic 

approach



Asymptotic security: Pseudorandom generator

 Suppose there is a generator 𝐺 that is efficient, that stretches the 

input, that is (𝑡, 𝜖)-indistinguishable. When can we call it secure?

 𝑡 is large. How large?

 𝜖 is small. How small?

 Example values of 𝑘, 𝑛, 𝑡, and 𝜖:

 𝑘 = 128, 𝑛 = 220, 𝑡 = 280, 𝜖 = 2−40

 Are these figures good enough for all scenarios (present and 

future)?

 Answer: No.

 Solution: Time of the adversary and error probability should 

not be concrete numbers but functions of a parameter of 

interest. This parameter is called the security parameter.
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algorithms that run in time polynomial in the security parameter.



Asymptotic security: Pseudorandom generator

 Suppose there is a generator 𝐺 that is efficient, that stretches the input, that is (𝑡, 𝜖)-
indistinguishable. When can we call it secure?

 𝑡 is large. How large?

 𝜖 is small. How small?

 Example values of 𝑘, 𝑛, 𝑡, and 𝜖:

 𝑘 = 128, 𝑛 = 220, 𝑡 = 280, 𝜖 = 2−40

 Are these figures good enough for all scenarios (present and future)?

 Answer: No.

 Solution: Time of the adversary and error probability should not be 
concrete numbers but functions of a parameter of interest. This 
parameter is called the security parameter.

 How does this help?

 We can define security against all polynomial time adversaries i.e., 
algorithms that run in time polynomial in the security parameter.

 The success probability of such adversaries should be negligible in the 
security parameter. 



Asymptotic security: Pseudorandom generator

 Solution: Time of the adversary and error probability should not be 

concrete numbers but functions of a parameter of interest. This 
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Asymptotic security: Pseudorandom generator

 Solution: Time of the adversary and error probability should not be 
concrete numbers but functions of a parameter of interest. This 
parameter is called the security parameter.

 How does this help?

 We can define security against all polynomial time adversaries i.e., 
algorithms that run in time polynomial in the security parameter.

 The success probability of such adversaries should be negligible in 
the security parameter. 
 Definition (Negligible function): A function 𝑛𝑒𝑔𝑙(. ) is said to be 

negligible if for every polynomial 𝑝(. ), there is an integer 𝑁 such that for 

all integers k > 𝑁, 𝑛𝑒𝑔𝑙 𝑘 <
1

𝑝 𝑘
.

 Examples: 2−𝑘 , 2− 𝑘 , 𝑘−log(𝑘)

 Properties: 

 𝑛𝑒𝑔𝑙1 𝑘 + 𝑛𝑒𝑔𝑙2(𝑘) is also negligible. 

 𝑝 𝑘 ⋅ 𝑛𝑒𝑔𝑙(𝑘) is also negligible.



Asymptotic security: Pseudorandom generator

 Solution: Time of the adversary and error probability should 
not be concrete numbers but functions of a parameter of 
interest. This parameter is called the security parameter.

 Asymptotic Security: A scheme is called secure if every PPT 
(Probabilistic Polynomial Time) adversary succeeds in breaking
the scheme with only negligible probability.

 Security parameter: discussion

 Security parameter is very closely related to the key size that is 
used. Usually it is the same as the key size. Asymptotic security 
implies that the larger the key size the more secure the scheme 
will be.

 Example: Consider a PRG 𝐺: 0,1 𝑘 → 0,1 𝑙(𝑘). The 
deterministic algorithm 𝐺 stretches arbitrary size seeds to longer 
strings.
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Stream Ciphers: Summary

 Stream ciphers are synonymous with pseudorandom 

generators (PRG).

 PRGs are algorithms that map 0,1 𝑘 to 0,1 𝑙(𝑘) with the 

following properties:

 ∀𝑘, 𝑙 𝑘 > 𝑘.

 The mapping algorithm 𝐺 is deterministic and efficient.

 Indistinguishability: For every PPT algorithm 𝐴 (𝑘 here is the 

security parameter) and every polynomial 𝑝(. ), there is some 

integer 𝑁 such that

∀𝑘 > 𝑁 , | 𝑃𝑟 𝐴 𝐺 𝐾 = 1 − Pr[𝐴 𝑅 = 1]| ≤
1

𝑝 𝑘
.

In other words the success probability of all PPT algorithms 

should be negligible. 
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Stream Ciphers: Summary

 Question: Suppose we have a secure PRG where 𝑙 𝑘 =
𝑘 + 1, i.e., the PRG stretches the bits by 1. Can we 

construct a secure PRG with longer stretch?

𝐺 𝐺 𝐺

𝑅1 𝑅2 𝑅𝑖

 Question: Why does the above construction give a secure 
PRG?



 Multiple encryptions using Stream Ciphers.

Stream Ciphers: Summary

𝐺

𝐾

𝐼𝑉

𝑀1 ⊕ 𝐶1 𝑀2 ⊕ 𝐶2 𝑀3 ⊕ 𝐶3

Synchronized mode

𝐺

𝐾

𝐼𝑉1

𝑀1 ⊕ 𝐶1 𝑀2 ⊕ 𝐶2 𝑀3 ⊕ 𝐶3

𝐺
𝐼𝑉2

𝐺
𝐼𝑉3

Asynchronized mode



End


