
Ragesh Jaiswal

CSE, IIT Delhi

CSL759: Cryptography and Computer

Security

 Definition ((𝑡, 𝜖)-indistinguishable PRG): A function 𝐺: 0,1 𝑘 → 0,1 𝑛 is
said to be (𝑡, 𝜖)-secure Pseudorandom Generator if for all algorithms that run
in time at most 𝑡, we have:

𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 ≤ 𝜖

 Definition ((𝑡, 𝜖)-unpredictable PRG): A function 𝐺: 0,1 𝑘 → 0,1 𝑛 is
called 𝑡, 𝜖 -unpredictable pseudorandom generator of for all algorithms 𝐴 that
run in time at most 𝑡 and for all 𝑖 ∈ {1, … , 𝑛 − 1}, we have:

Pr 𝐴 𝐺 𝐾 1… 𝑖 = 𝐺 𝐾 𝑖 + 1 ≤
1

2
+ 𝜖.

Stream Ciphers: Indistinguishability Vs Unpredictability

 Theorem(indistinguishability implies unpredictability): Let
𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡 + 1, 𝜖)-indistinguishable PRG,
then 𝐺 is also a (𝑡, 𝜖)-unpredictable PRG.

 Proof: We show the contrapositive.
 Suppose 𝐴 is an algorithm that runs in time at most 𝑡 and 𝑖 be the

index such that

Pr 𝐴 𝐺 𝐾 1… 𝑖 = 𝐺 𝐾 𝑖 + 1 >
1

2
+ 𝜖.

 Consider algorithm 𝐵(𝑥): If (𝐴(𝑥[1… 𝑖]) = 𝑥[𝑖 + 1]), then
output 1 else 0.

Stream Ciphers: Indistinguishability Vs Unpredictability

 Theorem(indistinguishability implies unpredictability): Let

𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡, 𝜖)-indistinguishable PRG,

then 𝐺 is also a (𝑡, 𝜖)-unpredictable PRG.

 Proof: We show the contrapositive.

 Suppose 𝐴 is an algorithm that runs in time at most 𝑡 and 𝑖 be

the index such that

Pr 𝐴 𝐺 𝐾 1… 𝑖 = 𝐺 𝐾 𝑖 + 1 >
1

2
+ 𝜖.

 Consider algorithm 𝐵(𝑥): If (𝐴(𝑥[1… 𝑖]) = 𝑥[𝑖 + 1]), then

output 1 else 0.

 Claim 1: 𝐵 runs in time 𝑡 + 1.

 Claim 2: 𝐴𝑑𝑣𝑃𝑅𝐺 𝐵, 𝐺 > 𝜖.

 Claim 2.1: Pr
𝐾← 0,1 𝑘

𝐵 𝐺 𝐾 = 1 >
1

2
+ 𝜖.

 Claim 2.2: Pr
𝑅← 0,1 𝑛

𝐵 𝑅 = 1 =
1

2
.

Stream Ciphers: Indistinguishability Vs Unpredictability

 Theorem(unpredictability implies indistinguishability): Let

𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡′, 𝜖/𝑛)-unpredictable PRG,

then 𝐺 is also a (𝑡, 𝜖)-indistinguishable PRG.

 This is known as Yao’s theorem and is proved using an idea

known as the Hybrid argument. We will discuss this proof in

some time.

Stream Ciphers: Pseudorandom generator

 What are the desirable properties of a pseudorandom

generator 𝐺: 0, 1 𝑘 → 0,1 𝑛 for Cryptographic purposes:

 Stretch: 𝑛 > 𝑘

 Efficient: 𝐺 should be efficiently computable.

 Indistinguishability: No bounded resource algorithm should be

able to distinguish the output of the generator 𝐺 𝑥 (for random

𝑥) from a random 𝑛 bit string.

 Unpredictability: The output of the generator should not be

predictable.

 Suppose there is a generator 𝐺 that is efficient, that stretches

the input, that is (𝑡, 𝜖)-indistinguishable. When can we call it

secure?

Stream Ciphers: Pseudorandom generator

 What are the desirable properties of a pseudorandom
generator 𝐺: 0, 1 𝑘 → 0,1 𝑛 for Cryptographic purposes:

 Stretch: 𝑛 > 𝑘
 Efficient: 𝐺 should be efficient

 Indistinguishability: No bounded resource algorithm should be
able to distinguish the output of the generator 𝐺 𝑥 (for random
𝑥) from a random 𝑛 bit string.

 Unpredictability: The output of the generator should not be
predictable.

 Suppose there is a generator 𝐺 that is efficient, that stretches
the input, that is (𝑡, 𝜖)-indistinguishable. When can we call it
secure?

 𝑡 is large. How large?

 𝜖 is small. How small?

Stream Ciphers: Pseudorandom generator

 Suppose there is a generator 𝐺 that is efficient, that stretches
the input, that is (𝑡, 𝜖)-indistinguishable. When can we call it
secure?

 𝑡 is large. How large?

 𝜖 is small. How small?

 Example values of 𝑘, 𝑛, 𝑡, and 𝜖:

 𝑘 = 128

 𝑛 = 220

 𝑡 = 280

 𝜖 = 2−40

 Are these figures good enough for all scenarios (present and
future)?

 We will discuss this in sometime.

Stream Ciphers: Security of Stream Ciphers

 Formalizing notion of security:

 When can you say that your protocol has been broken?
 Adversary is able to figure out the secret key.

 Adversary is able to figure out the entire message.

 Think of a security property that implies all other relevant
security properties.

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the
Keyspace.

Stream Ciphers: Security of Stream Ciphers

 Perfect Secrecy (Information Theoretic Security): An

encryption scheme (𝐸, 𝐷) is said to be perfectly secure if for

any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

 Definition ((𝑡, 𝜖)-message indistinguishability): An encryption

scheme (𝐸, 𝐷), is said to be (𝑡, 𝜖)-message indistinguishable

if for any two messages 𝑀0, 𝑀1, and any algorithm 𝐴 that

runs in time at most 𝑡 we have:
Adv𝐼𝑁𝐷 𝐴, 𝐸 = Pr 𝐴 𝐸𝐾 𝑀0 = 1 − Pr 𝐴 𝐸𝐾 𝑀1 = 1 ≤ 𝜖

 The above definition is with respect to one time encryption

only.

Stream Ciphers: Security of Stream Ciphers

 Why is message indistinguishability a strong notion of

security?

 Theorem (informal): If a scheme is secure w.r.t. the message

indistinguishability notion, then it is secure w.r.t. the key

recovery notion.

 Proof: ?

 Theorem (informal): If a scheme is secure w.r.t. the message

indistinguishability notion, then it is secure w.r.t. 100th bit known

notion.

Stream Ciphers: Security of Stream Ciphers

 One Time Pad:

 Let the key space and message space be 0,1 𝑛.

 𝐸𝐾 𝑀 = 𝐾⊕𝑀 and 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶.

 Is the OTP encryption scheme secure w.r.t. notion of message

indistinguishability? What is the advantage of any Algorithm for

this encryption scheme?

 OTP using PRG:

 Let 𝐺: 0, 1 𝑘 → 0,1 𝑛 be PRG.

 𝐸𝐾 𝑀 = 𝐺 𝐾 ⊕𝑀 and 𝐷𝐾 𝐶 = 𝐺 𝐾 ⊕ 𝐶.

 Theorem (informal): If 𝐺 is a secure PRG w.r.t.

indistinguishability notion, then (𝐸, 𝐷) is secure w.r.t. message

indistinguishability.

Stream Ciphers: Security of Stream Ciphers

 OTP using PRG:

 Let 𝐺: 0, 1 𝑘 → 0,1 𝑛 be PRG.

 𝐸𝐾 𝑀 = 𝐺 𝐾 ⊕𝑀 and 𝐷𝐾 𝐶 = 𝐺 𝐾 ⊕ 𝐶.

 Theorem (informal): If 𝐺 is a secure PRG w.r.t.

indistinguishability notion, then (𝐸, 𝐷) is secure w.r.t. message

indistinguishability.

 Theorem: For every algorithm 𝐴 that “attacks” (𝐸, 𝐷) against the

notion of message indistinguishability, there is an algorithm 𝐵
that “attacks” 𝐺 against the notion of indistinguishability such that

𝐴𝑑𝑣𝐼𝑁𝐷 𝐴, 𝐸 ≤ 2 ⋅ 𝐴𝑑𝑣𝑃𝑅𝐺 𝐵, 𝐺
Moreover, if the running time of 𝐵 is at most twice the running

time of 𝐴.

Stream Ciphers: Security of Stream Ciphers

 Theorem: For every algorithm 𝐴 that “attacks” (𝐸, 𝐷) against
the notion of message indistinguishability, there is an algorithm
𝐵 that “attacks” 𝐺 against the notion of indistinguishability such
that

𝐴𝑑𝑣𝐼𝑁𝐷 𝐴, 𝐸 ≤ 2 ⋅ 𝐴𝑑𝑣𝑃𝑅𝐺 𝐵, 𝐺
Moreover, if the running time of 𝐵 is at most twice the running
time of 𝐴.

Pseudorandom world Random world

𝐴

(𝑀0, 𝑀1)

B
𝐺(𝐾)

𝐺(𝐾)⊕𝑀𝑏

𝐴

(𝑀0, 𝑀1)

B
𝑅

𝑅 ⊕𝑀𝑏

𝑏’ 𝑏’

1. Randomly select 𝑏
2. Execute 𝐴
3. Output 1 iff 𝑏 = 𝑏’

1. Randomly select 𝑏
2. Execute 𝐴
3. Output 1 iff 𝑏 = 𝑏’

Stream Ciphers: Security of Stream Ciphers

 𝐴𝑑𝑣𝑃𝑅𝐺 𝐵, 𝐺 = | Pr 𝐵 𝐺 𝐾 = 1 − Pr[𝐵 𝑅 = 1]|

 Lemma 1: Pr 𝐵 𝑅 = 1 =
1

2
.

 Lemma 2: Pr 𝐵 𝐺 𝐾 = 1 =
1

2
± 𝐴𝑑𝑣𝐼𝑁𝐷(𝐴, 𝐸)

Pseudorandom world Random world

𝐴

(𝑀0, 𝑀1)

B
𝐺(𝐾)

𝐺(𝐾)⊕𝑀𝑏

𝐴

(𝑀0, 𝑀1)

B
𝑅

𝑅 ⊕𝑀𝑏

𝑏’ 𝑏’

1. Randomly select 𝑏
2. Execute 𝐴
3. Output 1 iff 𝑏 = 𝑏’

1. Randomly select 𝑏
2. Execute 𝐴
3. Output 1 iff 𝑏 = 𝑏’

Hybrid Argument

Hybrid Argument: Indistinguishability Vs Unpredictability

 Theorem(unpredictability implies indistinguishability): Let

𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡′, 𝜖/𝑛)-unpredictable PRG,

then 𝐺 is also a (𝑡, 𝜖)-indistinguishable PRG.

 Proof: We prove the contrapositive. Let 𝐴 be an algorithm

that runs in time at most 𝑡 such that the following holds:

Pr
𝐾← 0,1 𝑘

𝐴 𝐺 𝐾 = 1 − Pr
𝑅← 0,1 𝑛

𝐴 𝑅 = 1 ≤ 𝜖

we will show that there exists an algorithm 𝐵 that predicts

the output of the generator.

 Let the output of the generator be denoted by 𝑦1𝑦2…𝑦𝑛 and

let 𝑟1𝑟2…𝑟𝑛 denote independent random bits.

Hybrid Argument : Indistinguishability Vs Unpredictability

 Theorem(unpredictability implies indistinguishability): Let
𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡′, 𝜖/𝑛)-unpredictable PRG, then 𝐺 is
also a (𝑡, 𝜖)-indistinguishable PRG.

 Proof: We prove the contrapositive. Let 𝐴 be an algorithm that runs in time

at most 𝑡 such that the following holds:

Pr
𝐾← 0,1 𝑘

𝐴 𝐺 𝐾 = 1 − Pr
𝑅← 0,1 𝑛

𝐴 𝑅 = 1 ≤ 𝜖

we will show that there exists an algorithm 𝐵 that predicts the output of the
generator.

 Let the output of the generator be denoted by 𝑦1𝑦2…𝑦𝑛 and let 𝑟1𝑟2…𝑟𝑛 denote
independent random bits.

 Consider the following distributions on 𝑛 bit strings.

 𝐷0 = 𝑟1𝑟2…𝑟𝑛
 𝐷1 = 𝑦1𝑟2…𝑟𝑛
 𝐷2 = 𝑦1𝑦2𝑟3…𝑟𝑛
 .

 𝐷𝑛 = 𝑦1𝑦2…𝑦𝑛

Hybrid Argument : Indistinguishability Vs Unpredictability

 Theorem(unpredictability implies indistinguishability): Let
𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡′, 𝜖/𝑛)-unpredictable PRG, then 𝐺 is
also a (𝑡, 𝜖)-indistinguishable PRG.

 Proof: We prove the contrapositive. Let 𝐴 be an algorithm that runs in time

at most 𝑡 such that the following holds:

Pr
𝐾← 0,1 𝑘

𝐴 𝐺 𝐾 = 1 − Pr
𝑅← 0,1 𝑛

𝐴 𝑅 = 1 ≤ 𝜖

we will show that there exists an algorithm 𝐵 that predicts the output of the
generator.

 Let the output of the generator be denoted by 𝑦1𝑦2…𝑦𝑛 and let 𝑟1𝑟2…𝑟𝑛 denote
independent random bits.

 Consider the following distributions on 𝑛 bit strings.

 𝐷0 = 𝑟1𝑟2…𝑟𝑛

 𝐷1 = 𝑦1𝑟2…𝑟𝑛
 𝐷2 = 𝑦1𝑦2𝑟3…𝑟𝑛
 .

 𝐷𝑛 = 𝑦1𝑦2…𝑦𝑛

 Claim 1: | Pr
𝑅←𝐷𝑛

𝐴 𝑅 = 1 − Pr
𝑅←𝐷0

𝐴 𝑅 = 1 | ≤ 𝜖

Hybrid Argument : Indistinguishability Vs Unpredictability

 Theorem(unpredictability implies indistinguishability): Let
𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡′, 𝜖/𝑛)-unpredictable PRG, then 𝐺 is
also a (𝑡, 𝜖)-indistinguishable PRG.

 Proof: We prove the contrapositive. Let 𝐴 be an algorithm that runs in time at

most 𝑡 such that the following holds:

Pr
𝐾← 0,1 𝑘

𝐴 𝐺 𝐾 = 1 − Pr
𝑅← 0,1 𝑛

𝐴 𝑅 = 1 > 𝜖

we will show that there exists an algorithm 𝐵 that predicts the output of the
generator.

 Let the output of the generator be denoted by 𝑦1𝑦2…𝑦𝑛 and let 𝑟1𝑟2…𝑟𝑛 denote
independent random bits.

 Consider the following distributions on 𝑛 bit strings.

 𝐷0 = 𝑟1𝑟2…𝑟𝑛

 𝐷1 = 𝑦1𝑟2…𝑟𝑛

 𝐷2 = 𝑦1𝑦2𝑟3…𝑟𝑛
 .

 𝐷𝑛 = 𝑦1𝑦2…𝑦𝑛

 Claim 1: | Pr
𝑅←𝐷𝑛

𝐴 𝑅 = 1 − Pr
𝑅←𝐷0

𝐴 𝑅 = 1 | > 𝜖

 Claim 2: ∃𝑖, Pr
𝑅←𝐷𝑖

𝐴 𝑅 = 1 − Pr
𝑅←𝐷𝑖+1

𝐴 𝑅 = 1 > 𝜖/𝑛

Hybrid Argument : Indistinguishability Vs Unpredictability

 Theorem(unpredictability implies indistinguishability): Let
𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡′, 𝜖/𝑛)-unpredictable PRG, then 𝐺 is
also a (𝑡, 𝜖)-indistinguishable PRG.

 Proof:

 Claim 2: ∃𝑖, Pr
𝑅←𝐷𝑖

𝐴 𝑅 = 1 − Pr
𝑅←𝐷𝑖+1

𝐴 𝑅 = 1 > 𝜖/𝑛

 How do we use the above claim to design an algorithm 𝐵 that predicts the

𝑖 + 1 𝑡ℎ bit of the generator, given the first 𝑖 bits?

Hybrid Argument : Indistinguishability Vs Unpredictability

 Theorem(unpredictability implies indistinguishability): Let
𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡′, 𝜖/𝑛)-unpredictable PRG, then 𝐺 is
also a (𝑡, 𝜖)-indistinguishable PRG.

 Proof:

 Claim 2: ∃𝑖, Pr
𝑅←𝐷𝑖

𝐴 𝑅 = 1 − Pr
𝑅←𝐷𝑖+1

𝐴 𝑅 = 1 > 𝜖/𝑛

 How do we use the above claim to design an algorithm 𝐵 that

predicts the 𝑖 + 1 𝑡ℎ bit of the generator, given the first 𝑖
bits?

 𝐵(𝑦1𝑦2…𝑦𝑖):
 Pick a random bit 𝑟 ← {0,1}.

 Pick independently random bits 𝑟𝑖+2, 𝑟𝑖+3 , … , 𝑟𝑛← {0,1}

 Execute 𝐴 on the input (𝑦1𝑦2…𝑦𝑖𝑟𝑟𝑖+2𝑟𝑖+3…𝑟𝑛), let 𝑏 be the output of 𝐴.

 If (𝑏 = 𝑟), then output 𝑟 else output (1 − 𝑟).

 Claim 3: Pr 𝐵 𝑦1𝑦2…𝑦𝑖 = 𝑦𝑖+1 > 𝜖/𝑛.

Security: Concrete Vs Asymptotic

approach

Asymptotic security: Pseudorandom generator

 Suppose there is a generator 𝐺 that is efficient, that stretches the

input, that is (𝑡, 𝜖)-indistinguishable. When can we call it secure?

 𝑡 is large. How large?

 𝜖 is small. How small?

 Example values of 𝑘, 𝑛, 𝑡, and 𝜖:

 𝑘 = 128, 𝑛 = 220, 𝑡 = 280, 𝜖 = 2−40

 Are these figures good enough for all scenarios (present and

future)?

 Answer: No.

 Solution: Time of the adversary and error probability should

not be concrete numbers but functions of a parameter of

interest. This parameter is called the security parameter.

Asymptotic security: Pseudorandom generator

 Suppose there is a generator 𝐺 that is efficient, that stretches the

input, that is (𝑡, 𝜖)-indistinguishable. When can we call it secure?

 𝑡 is large. How large?

 𝜖 is small. How small?

 Example values of 𝑘, 𝑛, 𝑡, and 𝜖:

 𝑘 = 128, 𝑛 = 220, 𝑡 = 280, 𝜖 = 2−40

 Are these figures good enough for all scenarios (present and

future)?

 Answer: No.

 Solution: Time of the adversary and error probability should

not be concrete numbers but functions of a parameter of

interest. This parameter is called the security parameter.

 How does this help?

Asymptotic security: Pseudorandom generator

 Suppose there is a generator 𝐺 that is efficient, that stretches the input, that is

(𝑡, 𝜖)-indistinguishable. When can we call it secure?

 𝑡 is large. How large?

 𝜖 is small. How small?

 Example values of 𝑘, 𝑛, 𝑡, and 𝜖:

 𝑘 = 128, 𝑛 = 220, 𝑡 = 280, 𝜖 = 2−40

 Are these figures good enough for all scenarios (present and future)?

 Answer: No.

 Solution: Time of the adversary and error probability should

not be concrete numbers but functions of a parameter of

interest. This parameter is called the security parameter.

 How does this help?

 We can define security against all polynomial time adversaries i.e.,

algorithms that run in time polynomial in the security parameter.

Asymptotic security: Pseudorandom generator

 Suppose there is a generator 𝐺 that is efficient, that stretches the input, that is (𝑡, 𝜖)-
indistinguishable. When can we call it secure?

 𝑡 is large. How large?

 𝜖 is small. How small?

 Example values of 𝑘, 𝑛, 𝑡, and 𝜖:

 𝑘 = 128, 𝑛 = 220, 𝑡 = 280, 𝜖 = 2−40

 Are these figures good enough for all scenarios (present and future)?

 Answer: No.

 Solution: Time of the adversary and error probability should not be
concrete numbers but functions of a parameter of interest. This
parameter is called the security parameter.

 How does this help?

 We can define security against all polynomial time adversaries i.e.,
algorithms that run in time polynomial in the security parameter.

 The success probability of such adversaries should be negligible in the
security parameter.

Asymptotic security: Pseudorandom generator

 Solution: Time of the adversary and error probability should not be

concrete numbers but functions of a parameter of interest. This

parameter is called the security parameter.

 How does this help?

 We can define security against all polynomial time adversaries i.e.,

algorithms that run in time polynomial in the security parameter.

 The success probability of such adversaries should be negligible in

the security parameter.

 Definition (Negligible function): A function 𝑛𝑒𝑔𝑙(.) is said to be

negligible if for every polynomial 𝑝(.), there is an integer 𝑁 such that for

all integers 𝑛 > 𝑁, 𝑛𝑒𝑔𝑙 𝑛 <
1

𝑝 𝑛
.

 Examples: 2−𝑛, 2− 𝑛, 𝑛−log(𝑛)

Asymptotic security: Pseudorandom generator

 Solution: Time of the adversary and error probability should not be
concrete numbers but functions of a parameter of interest. This
parameter is called the security parameter.

 How does this help?

 We can define security against all polynomial time adversaries i.e.,
algorithms that run in time polynomial in the security parameter.

 The success probability of such adversaries should be negligible in
the security parameter.
 Definition (Negligible function): A function 𝑛𝑒𝑔𝑙(.) is said to be

negligible if for every polynomial 𝑝(.), there is an integer 𝑁 such that for

all integers k > 𝑁, 𝑛𝑒𝑔𝑙 𝑘 <
1

𝑝 𝑘
.

 Examples: 2−𝑘 , 2− 𝑘 , 𝑘−log(𝑘)

 Properties:

 𝑛𝑒𝑔𝑙1 𝑘 + 𝑛𝑒𝑔𝑙2(𝑘) is also negligible.

 𝑝 𝑘 ⋅ 𝑛𝑒𝑔𝑙(𝑘) is also negligible.

Asymptotic security: Pseudorandom generator

 Solution: Time of the adversary and error probability should
not be concrete numbers but functions of a parameter of
interest. This parameter is called the security parameter.

 Asymptotic Security: A scheme is called secure if every PPT
(Probabilistic Polynomial Time) adversary succeeds in breaking
the scheme with only negligible probability.

 Security parameter: discussion

 Security parameter is very closely related to the key size that is
used. Usually it is the same as the key size. Asymptotic security
implies that the larger the key size the more secure the scheme
will be.

 Example: Consider a PRG 𝐺: 0,1 𝑘 → 0,1 𝑙(𝑘). The
deterministic algorithm 𝐺 stretches arbitrary size seeds to longer
strings.

Stream ciphers and PRGs

Summary

Stream Ciphers: Summary

 Stream ciphers are synonymous with pseudorandom

generators (PRG).

 PRGs are algorithms that map 0,1 𝑘 to 0,1 𝑙(𝑘) with the

following properties:

 ∀𝑘, 𝑙 𝑘 > 𝑘.

 The mapping algorithm 𝐺 is deterministic and efficient.

 Indistinguishability: For every PPT algorithm 𝐴 (𝑘 here is the

security parameter) and every polynomial 𝑝(.), there is some

integer 𝑁 such that

∀𝑘 > 𝑁 , | 𝑃𝑟 𝐴 𝐺 𝐾 = 1 − Pr[𝐴 𝑅 = 1]| ≤
1

𝑝 𝑘
.

In other words the success probability of all PPT algorithms

should be negligible.

Stream Ciphers: Summary

 Stream ciphers are synonymous with pseudorandom

generators (PRG).

 PRGs are algorithms that map 0,1 𝑘 to 0,1 𝑙(𝑘) with the

following properties:

 ∀𝑘, 𝑙 𝑘 > 𝑘.

 The mapping algorithm 𝐺 is deterministic and efficient.

 Indistinguishability: The success probability of all PPT

algorithms should be negligible.

 Question: Suppose we have a secure PRG where 𝑙 𝑘 =
𝑘 + 1, i.e., the PRG stretches the bits by 1. Can we

construct a secure PRG with longer stretch?

Stream Ciphers: Summary

 Question: Suppose we have a secure PRG where 𝑙 𝑘 =
𝑘 + 1, i.e., the PRG stretches the bits by 1. Can we

construct a secure PRG with longer stretch?

𝐺 𝐺 𝐺

𝑅1 𝑅2 𝑅𝑖

 Question: Why does the above construction give a secure
PRG?

 Multiple encryptions using Stream Ciphers.

Stream Ciphers: Summary

𝐺

𝐾

𝐼𝑉

𝑀1 ⊕ 𝐶1 𝑀2 ⊕ 𝐶2 𝑀3 ⊕ 𝐶3

Synchronized mode

𝐺

𝐾

𝐼𝑉1

𝑀1 ⊕ 𝐶1 𝑀2 ⊕ 𝐶2 𝑀3 ⊕ 𝐶3

𝐺
𝐼𝑉2

𝐺
𝐼𝑉3

Asynchronized mode

End

