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Introduction



Introduction: Secure communication

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the 

Keyspace.

 Fact: If 𝑀 > |𝐾|, then no scheme is perfectly secure.

 How do we get around this problem?

 Relax our notion of security: Instead of saying “it is impossible 

to break the scheme”, we would like to say “it is computationally 

infeasible to break the scheme”.



Introduction: Pseudorandom generator

 Suppose there was a generator that stretches random bits.

001101011 00101001001010010100101011

 Idea: 

 Choose a short key 𝐾 randomly.

 Obtain 𝐾’ = 𝐺(𝐾). 

 Use 𝐾’ as key for the one time pad.

 Issue: ?

𝐺
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Introduction: Pseudorandom generator

 Suppose there was a generator that stretches random bits.

001101011 00101001001010010100101011

 Idea: 

 Choose a short key 𝐾 randomly.

 Obtain 𝐾’ = 𝐺(𝐾). 

 Use 𝐾’ as key for the one time pad.

 Issue:

 Such a generator is not possible!

 Any such generator produces a longer string but the string is not 
random.

 What if we can argue that the output of the generator is 
computationally indistinguishable from truly random string.

𝐺



Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Formalizing notion of security:

 When can you say that your protocol has been broken?

 Adversary is able to figure out the secret key.

 Question: Can you say that your protocol is secure if no adversary can 

figure out the secret key?
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Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Formalizing notion of security:

 Think of a strong security property P such that if your protocol 

follows P, then your protocol also satisfies all the security 

properties in the list.



Introduction: Integrity and Authenticity

 Non-tamperable communication: Alice wants to send 

messages to Bob so that Bob can be sure that the message was 

not change in transit.

 This kind of communication has completely different security 

goals and so we will have to come up with an entirely 

different security notion. 

 Note that Alice is not required to encrypt the message. 

 Why doesn’t one time pad scheme work here?



Introduction

 If we have such a nice theoretical framework for constructing 

secure protocols, why are many protocols we see in practice 

insecure?

 Not many designers use these ideas (correctly) when 

designing protocols.

 Not understanding security properties of basic primitives.

 Combining secure primitives in an insecure manner.

 Weakness in implementation.

 Designing their own basic primitives that has not withstood the 

test of time.
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Stream Ciphers: Pseudorandom generators

 A pseudorandom generator (PRG) is a function:

𝐺: 0, 1 𝑠 → 0, 1 𝑛, 𝑛 ≫ 𝑠
such that 𝐺 𝑥 “appears”  to be a random 𝑛 bit string.

 The input to the generator is called the seed.

𝐺
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Stream Ciphers: Pseudorandom generators

 A pseudorandom generator (PRG) is a function:

𝐺: 0, 1 𝑠 → 0, 1 𝑛, 𝑛 ≫ 𝑠
such that 𝐺 𝑥 “appears”  to be a random 𝑛 bit string.

 Let us see if we can rule out some popular random generators 

based on this intuitive understanding of PRG:

 Linear Congruential Generator (LCG): parameters 𝑚, 𝑎, 𝑐:
 𝑅𝑛 = 𝑎 ⋅ 𝑅𝑛−1 + 𝑐 (𝑚𝑜𝑑 𝑚), the seed is 𝑅0 and the output is 

𝑅1𝑅2𝑅3 …

 This has some nice statistical properties but it is “predictable”.

 Never use such “predictable” random number generators for Cryptography.



Stream Ciphers: Pseudorandom generators

 Let us see if we can rule out some popular random generators 
based on this intuitive understanding of PRG:
 Linear Congruential Generator(LCG): 
 RC4: Used in SSL and WEP

𝐾
(128 bits)
Seed used as secret key

 Observations: 
1. Pr 2𝑛𝑑 𝑏𝑦𝑡𝑒 = 0 = 2/256.

2. Pr 1𝑠𝑡 𝑏𝑦𝑡𝑒 = 0 𝑎𝑛𝑑 2𝑛𝑑 𝑏𝑦𝑡𝑒 = 0 =
1

2562 +
1

2563.

3. First few bytes of the output are correlated with the key. Let us see 
an attack based on this idea.



Stream Ciphers: RC4 attack

 What is the issue with this idea?

 What if there are more than one message that you want to 

encrypt?
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 How do we use a stream cipher?
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Stream Ciphers: RC4 attack

 What is the issue with the above protocol?

 The 𝐼𝑉 gets repeated after 224 frames.

 In some 802.11 cards, the 𝐼𝑉 is set to 0 after every power cycle.
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 Another idea: This is actually used in 128 bit WEP where 𝐼𝑉 =
24 and 𝐾 = 104.
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Stream Ciphers: RC4 attack

 What is the issue with the above protocol?

 The 𝐼𝑉 gets repeated after 224 frames.

 In some 802.11 cards, the 𝐼𝑉 is set to 0 after every power cycle.

 Related key attack: 𝐼𝑉 is incremented by 1 for each frame. So, the key 
though different, are very similar and one may use the correlation 
property to attack. 
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Stream Ciphers: RC4 attack

𝑀

𝑅𝐶4(𝐼𝑉||𝐾)

⊕

𝑀 ⊕ 𝑅𝐶4(𝐼𝑉||𝐾)

 How do we use a stream cipher?

 Another idea: This is actually used in 128 bit WEP where 𝐼𝑉 =
24 and 𝐾 = 104.

𝐼𝑉

128 bit WEP is insecure. DO NOT USE!

There are attacks that will figure out your secret 

key in less than a minute. Check out aircrack-ptw.



Stream Ciphers: RC4 attack

𝑀

𝑅𝐶4(𝐼𝑉||𝐾)

⊕

𝑀 ⊕ 𝑅𝐶4(𝐼𝑉||𝐾)

 How do we use a stream cipher?

 Another idea: This is actually used in 128 bit WEP where 𝐼𝑉 =
24 and 𝐾 = 104.

𝐼𝑉

 So what is the fix? How do we use PRGs like RC4?

 Throw away initial few bytes of RC4 output.

 Use unrelated keys.



Stream Ciphers: Pseudorandom generators

 Linear Feedback Shift Registers (LFSR): 

 Fast hardware implementation. 

 Examples: DVD encryption (CSS), GSM encryption (A5/1,2).

 Is this generator predictable?

⊕
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Stream Ciphers: Pseudorandom generators

 Linear Feedback Shift Registers (LFSR): 

 Fast hardware implementation. 

 Examples: DVD encryption (CSS), GSM encryption (A5/1,2).

 Is this generator predictable?

 Yes.

 One solution that is used in practice is to use a combination of multiple 

LFSRs.

⊕

taps

Output

Feedback

Feedback function

Register



Stream Ciphers: Attack on CSS

 CSS: Content Scrambling System is an encryption system for 
encrypting DVDs.

 It uses 40 bit encryption key and 2 LFSRs in the manner shown 
below: 

1

1

First 2 bytes of key

Last 3 bytes of key

+ (𝑚𝑜𝑑 256)

17 bit LFSR

25 bit LFSR

8 bits

8 bits

Movie Data

⊕

Encrypted movie

 How do you attack this protocol?



Stream Ciphers: Attack on CSS

 CSS: Content Scrambling System is an encryption system for 
encrypting DVDs.

 It uses 40 bit encryption key and 2 LFSRs in the manner shown 
below: 

1

1

First 2 bytes of key

Last 3 bytes of key

+ (𝑚𝑜𝑑 256)

17 bit LFSR

25 bit LFSR

8 bits

8 bits

Movie Data

⊕

Encrypted movie

 How do you attack this protocol?

 Try all possibilities for the seed of the first LFSR. 



Stream Ciphers: Pseudorandom generator

 What are the desirable properties of a pseudorandom 

generator 𝐺: 0, 1 𝑘 → 0,1 𝑛 for Cryptographic purposes:

 Stretch: 𝑛 > 𝑘

 Efficient: 𝐺 should be efficient

 Indistinguishability: No bounded resource algorithm should be 

able to distinguish the output of the generator 𝐺 𝑥 (for random 

𝑥) from a random 𝑛 bit string.

 Unpredictability: The output of the generator should not be 

predictable.

 Let us develop these security notions and then study the 

relationship between them.



Stream Ciphers: Indistinguishability

 Indistinguishability:The output of the generator should appear to be 

random:

 Question: To whom?

 Answer: To all efficient algorithms. 

 What does “appear” mean?

 Any efficient statistical testing algorithm should behave similarly when given 

random 𝑛 bit inputs and when given output of the generator for random seed.

 Definition (Advantage): The PRG advantage of an algorithm 𝐴 with respect to a 

generator 𝐺 is denoted by 𝐴𝑑𝑣𝑃𝑅𝐺(𝐴, 𝐺) is defined as

𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 = Pr
𝐾← 0,1 𝑘

𝐴 𝐺 𝐾 = 1 − Pr
𝑅← 0,1 𝑛

𝐴 𝑅 = 1

 Observations: 

 0 ≤ 𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 ≤ 1

 𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 close to 1 means 𝐴 can distinguish 𝐺’s output from 
random.

 𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 close to 0 means 𝐴 cannot distinguish 𝐺’s output 
from random.
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 Definition (Advantage): The PRG advantage of an algorithm 𝐴 with 

respect to a generator 𝐺 is denoted by 𝐴𝑑𝑣𝑃𝑅𝐺(𝐴, 𝐺) is defined as
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random.

 𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 close to 0 means 𝐴 cannot distinguish 𝐺’s output from 
random.

 Let 𝑆 = 𝐺 𝐾 𝐾 ∈ 0,1 𝑘 . Let 𝐴 be an algorithm that 

outputs 1 iff the input belongs to 𝑆.

 Question: Is 𝐴 a good statistical test for 𝐺?

 Question: What is the PRG advantage of 𝐴?



Stream Ciphers: Indistinguishability
 Definition (Advantage): The PRG advantage of an algorithm 𝐴 with 

respect to a generator 𝐺 is denoted by 𝐴𝑑𝑣𝑃𝑅𝐺(𝐴, 𝐺) is defined as

𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 = Pr
𝐾← 0,1 𝑘

𝐴 𝐺 𝐾 = 1 − Pr
𝑅← 0,1 𝑛

𝐴 𝑅 = 1

 Observations: 

 0 ≤ 𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 ≤ 1

 𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 close to 1 means 𝐴 can distinguish 𝐺’s output from 
random.

 𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 close to 0 means 𝐴 cannot distinguish 𝐺’s output from 
random.

 Let 𝐺 be a generator such that the 5th bit of the output is 1 in 

3/4 of the input seeds. Let 𝐴 be an algorithm that outputs 1 iff

the fifth bit of its input string is 1.

 Question: Is 𝐺 a good PRG in the sense of indistinguishability?

 Question: What is the PRG advantage of 𝐴?



 Definition ((𝑡, 𝜖)-indistinguishable PRG): A function 

𝐺: 0,1 𝑘 → 0,1 𝑛 is said to be (𝑡, 𝜖)-indistinguishable 

pseudorandom generator if for all algorithms that run in time 

at most 𝑡, we have:

𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 ≤ 𝜖

Stream Ciphers: Indistinguishability



 Definition ((𝑡, 𝜖)-unpredictable PRG): A function 

𝐺: 0,1 𝑘 → 0,1 𝑛 is called 𝑡, 𝜖 -unpredictable 

pseudorandom generator of for all algorithms 𝐴 that run in 

time at most 𝑡 and for all 𝑖 ∈ {1, … , 𝑛 − 1}, we have:

Pr 𝐴 𝐺 𝐾 1 … 𝑖 = 𝐺 𝐾 𝑖 + 1 ≤
1

2
+ 𝜖.

Stream Ciphers: Unpredictability



 Definition ((𝑡, 𝜖)-indistinguishable PRG): A function 𝐺: 0,1 𝑘 → 0,1 𝑛 is
said to be (𝑡, 𝜖)-secure Pseudorandom Generator if for all algorithms that run 
in time at most 𝑡, we have:

𝐴𝑑𝑣𝑃𝑅𝐺 𝐴, 𝐺 ≤ 𝜖

 Definition ((𝑡, 𝜖)-unpredictable PRG): A function 𝐺: 0,1 𝑘 → 0,1 𝑛 is 
called 𝑡, 𝜖 -unpredictable pseudorandom generator of for all algorithms 𝐴 that 
run in time at most 𝑡 and for all 𝑖 ∈ {1, … , 𝑛 − 1}, we have:

Pr 𝐴 𝐺 𝐾 1 … 𝑖 = 𝐺 𝐾 𝑖 + 1 ≤
1

2
+ 𝜖.

Stream Ciphers: Indistinguishability Vs Unpredictability

 Theorem(indistinguishability implies unpredictability): Let 
𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡 + 1, 𝜖)-indistinguishable PRG, 
then 𝐺 is also a (𝑡, 𝜖)-unpredictable PRG.

 Proof: We show the contrapositive. 
 Suppose 𝐴 is an algorithm that runs in time at most 𝑡 and 𝑖 be the 

index such that

Pr 𝐴 𝐺 𝐾 1 … 𝑖 = 𝐺 𝐾 𝑖 + 1 >
1

2
+ 𝜖.

 Consider algorithm 𝐵(𝑥): If (𝐴(𝑥[1 … 𝑖]) = 𝑥[𝑖 + 1]), then 
output 1 else 0.



Stream Ciphers: Indistinguishability Vs Unpredictability

 Theorem(indistinguishability implies unpredictability): Let 

𝐺: 0,1 𝑘 → 0,1 𝑛. If 𝐺 is a (𝑡, 𝜖)-indistinguishable PRG, 

then 𝐺 is also a (𝑡, 𝜖)-unpredictable PRG.

 Proof: We show the contrapositive. 

 Suppose 𝐴 is an algorithm that runs in time at most 𝑡 and 𝑖 be 

the index such that

Pr 𝐴 𝐺 𝐾 1 … 𝑖 = 𝐺 𝐾 𝑖 + 1 >
1

2
+ 𝜖.

 Consider algorithm 𝐵(𝑥): If (𝐴(𝑥[1 … 𝑖]) = 𝑥[𝑖 + 1]), then 

output 1 else 0.

 Claim 1: 𝐵 runs in time 𝑡 + 1.

 Claim 2: 𝐴𝑑𝑣𝑃𝑅𝐺 𝐵, 𝐺 > 𝜖.

 Claim 2.1: Pr
𝐾← 0,1 𝑘

𝐵 𝐺 𝐾 = 1 >
1

2
+ 𝜖.

 Claim 2.2: Pr
𝑅← 0,1 𝑛

𝐵 𝑅 = 1 =
1

2
.
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