CSL759: Cryptography and Computer Security

Ragesh Jaiswal
CSE, IIT Delhi

Administrative information

- Course webpage:
- www.cse.iitd.ac.in/~rjaiswal/2013/csl759
- Evaluation components:
- Minor 1 and 2 exams: 15% each
- Homework (2-3): 20\%
- Project: 20\%
- Major exam: 20\%
- Reference material:
- Mihir Bellare's slides and notes (available on the web).
- Introduction to Modern Cryptography (Katz and Lindell).
- Foundations of Cryptography (Oded Goldreich).
- Other notes/slides/practice material on the web.

Administrative information

- Pre-requisites:
- Basic probability theory
- Algorithms
- Comfortable in reading/writing rigorous mathematical proofs
- Lecture Timing:
- To be decided.

Introduction

- Throughout most of history:
- Cryptography $=$ art of secret writing
- Secure communication

K

Introduction

- Early history (- early 70s):
- Synonymous with secret communication.
- Restricted to Military and Nobility.
- More of art than rigorous science.

Design protocol

Introduction

- Early history (- early 70s):
- Synonymous with secret communication.
- Restricted to Military and Nobility.
- More of art than rigorous science.

Design protocol

Protocol broken

- Modern Cryptography:
- Digital signatures, e-cash, secure computation, e-voting ...
- Touches most aspects of modern lifestyle.
- Rigorous science:
- Reason about security of protocols.

Introduction: Theme of this course

- Theme: Reason about security of protocols (Provable security)
- Fix security goals and formalize the notion of security.
- Construct a protocol.
- Show that a successful attack as per the security notion results in a successful attack on an underlying problem that is believed to be hard to solve.
- What you should hope to learn in the course:
- Learn basic cryptographic primitives and their interesting properties.
- Reasoning about security of protocols.
- Numerous applications/examples.

Introduction: Provable security

Introduction: Provable security

We would like to argue:

- If the basic primitive/problem is secure/hard, then the constructed protocol is "secure"

Introduction: Provable security

- :If there is an adversary that successfully attacks the protocol, then there is another adversary that successfully attacks/solves at least one of the basic primitives/problems.

Introduction

Secure communication

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Ceaser Cipher): Substitute each letter with the letter that is the α th letter after the letter in the sequence AB...Z
- Example $(\alpha=2)$: SEND TROOPS \rightarrow

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Ceaser Cipher): Substitute each letter with the letter that is the α th letter after the letter in the sequence AB...Z
- Example $(\alpha=2)$: SEND TROOPS \rightarrow UGPFVTQQRU

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Ceaser Cipher): Substitute each letter with the letter that is the α th letter after the letter in the sequence AB...Z
- Security was based on the fact that the encryption algorithm was a secret (Security through obscurity)

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Ceaser Cipher): Substitute each letter with the letter that is the α th letter after the letter in the sequence
- SB...Z was a secret (Seetrity through obscurity)
- Should be avoided at all cost!
- Algorithm should be public and security should come from secret keys.

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Ceaser Cipher): Substitute each letter with the letter that is the α th letter after the letter in the sequence AB...Z
- Suppose we make the algorithm public and use the secret key as α. Can you break this protocol?

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Substitution Cipher): Let π be a permutation of the English letters. Substitute each letter α with the letter $\pi(\alpha) . \pi$ acts as the secret key.
- Example: Let $\pi(A)=U, \pi(B)=T, \pi(C)=P, \ldots$ then encryption of CAB is PUT.

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Substitution Cipher): Let π be a permutation of the English letters. Substitute each letter α with the letter $\pi(\alpha) . \pi$ acts as the secret key.
- Question: How much space you need to use to store the secret key?

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Substitution Cipher): Let π be a permutation of the English letters. Substitute each letter α with the letter $\pi(\alpha) . \pi$ acts as the secret key.
- Consider a brute-force attack where you try to guess the secret key. Is such an attack feasible?

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Substitution Cipher): Let π be a permutation of the English letters. Substitute each letter α with the letter $\pi(\alpha)$.
- Can you break this scheme?

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Substitution Cipher): Let π be a permutation of the English letters. Substitute each letter α with the letter $\pi(\alpha)$.
- Attack idea: E's occur more frequently than X's

Introduction: Secure communication

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Vignere Cipher): Let K be a short string. For any given message M, add repeated copies of K to $M . K$ acts as the secret key.
- Example: Let $K=\mathrm{AB}$ and $M=A T T A C K$. Then the cipher text is ATTACK $+A B A B A B=B V U C D M$.

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (Vignere Cipher): Let K be a short string. For any given message M, add repeated copies of K to $M . K$ acts as the secret key.
- Can you break this scheme?

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (One Time Pad(OTP)): Let the message M be an n binary string. Let K be an n bit binary string that is used as a secret key. Add M and K modulo 2 to get the ciphertext.
- Example: $M=1101, K=0101$, then $C=M+K(\bmod 2)=M \bigoplus K=1000$

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

- Simple idea (One Time Pad(OTP)): Let the message M be an n binary string. Let K be an n bit binary string that is used as a secret key. Add M and K modulo 2 to get the Ciphertext.
- Can you break this scheme?

Introduction: Secure communication

- Secure communication: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.
- Perfect Secrecy (Information Theoretic Security):
- Let the message space be $\{0,1\}^{n}$.
- For any two message M_{0}, M_{1}, and Ciphertext C

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]
$$

where the probability is over uniformly random K in the Keyspace.

- Given the ciphertext, all messages are equally likely to be the secret message

Introduction: Secure communication

- Perfect Secrecy (Information Theoretic Security):
- Let the message space be $\{0,1\}^{n}$.
- For any two message M_{0}, M_{1}, and Ciphertext C

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]
$$

where the probability is over uniformly random K in the Keyspace.

- One Time Pad (OTP):
- The Keyspace is $\{0,1\}^{n}$.
- $E_{K}(M)=K \bigoplus M$
- $D_{K}(C)=K \bigoplus C$
- For any messages M_{0}, M_{1} and ciphertext C :

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]=? ?
$$

Introduction: Secure communication

- Perfect Secrecy (Information Theoretic Security):
- Let the message space be $\{0,1\}^{n}$.
- For any two message M_{0}, M_{1}, and Ciphertext C

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]
$$

where the probability is over uniformly random K in the Keyspace.

- One Time Pad (OTP):
- The Keyspace is $\{0,1\}^{n}$.
- $E_{K}(M)=K \bigoplus M$
- $D_{K}(C)=K \bigoplus C$
- For any messages M_{0}, M_{1} and ciphertext C :

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]=1 / 2^{n}
$$

Introduction: Secure communication

- Perfect Secrecy (Information Theoretic Security):
- Let the message space be $\{0,1\}^{n}$.
- For any two message M_{0}, M_{1}, and Ciphertext C

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]
$$

where the probability is over uniformly random K in the Keyspace.

- One Time Pad (OTP):
- The Keyspace is $\{0,1\}^{n}$.
- $E_{K}(M)=K \bigoplus M$
- $D_{K}(C)=K \bigoplus C$
- For any messages M_{0}, M_{1} and ciphertext C :

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]=1 / 2^{n}
$$

- Disadvantage: Key is as long as the message.

Introduction: Secure communication

- Perfect Secrecy (Information Theoretic Security):
- Let the message space be $\{0,1\}^{n}$.
- For any two message M_{0}, M_{1}, and Ciphertext C

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]
$$

where the probability is over uniformly random K in the Keyspace.

- One Time Pad (OTP):
- The Keyspace is $\{0,1\}^{n}$.
- $E_{K}(M)=K \bigoplus M$
- $D_{K}(C)=K \bigoplus C$
- For any messages M_{0}, M_{1} and ciphertext C :

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]=1 / 2^{n}
$$

- Disadvantage: Key is as long as the message.
- Fact: If $|M|>|K|$, then no scheme is perfectly secure.

Introduction: Secure communication

- Perfect Secrecy (Information Theoretic Security):
- Let the message space be $\{0,1\}^{n}$.
- For any two message M_{0}, M_{1}, and Ciphertext C

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]
$$

where the probability is over uniformly random K in the Keyspace.

- Fact: If $|M|>|K|$, then no scheme is perfectly secure.
- How do we get around this problem?

Introduction: Secure communication

- Perfect Secrecy (Information Theoretic Security):
- Let the message space be $\{0,1\}^{n}$.
- For any two message M_{0}, M_{1}, and Ciphertext C

$$
\operatorname{Pr}\left[E_{K}\left(M_{0}\right)=C\right]=\operatorname{Pr}\left[E_{K}\left(M_{1}\right)=C\right]
$$

where the probability is over uniformly random K in the Keyspace.

- Fact: If $|M|>|K|$, then no scheme is perfectly secure.
- How do we get around this problem?
- Relax our notion of security: Instead of saying "it is impossible to break the scheme", we would like to say "it is computationally infeasible to break the scheme".

Introduction: Pseudorandom generator

- Suppose there was a generator that stretches random bits.

- Idea:
- Choose a short key K randomly.
- Obtain $K^{\prime}=G(K)$.
- Use K^{\prime} as key for the one time pad.
- Issue:?

Introduction: Pseudorandom generator

- Suppose there was a generator that stretches random bits.

- Idea:
- Choose a short key K randomly.
- Obtain $K^{\prime}=G(K)$.
- Use K^{\prime} as key for the one time pad.
- Issue:
- Such a generator is not possible!
- Any such generator produces a longer string but the string is not random.

Introduction: Pseudorandom generator

- Suppose there was a generator that stretches random bits.

- Idea:

$$
G
$$

- Choose a short key K randomly.
- Obtain $K^{\prime}=G(K)$.
- Use K^{\prime} as key for the one time pad.
- Issue:
- Such a generator is not possible!
- Any such generator produces a longer string but the string is not random.
- What if we can argue that the output of the generator is computationally indistinguishable from truly random string.

End

