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Administrative information
 Course webpage: 

 www.cse.iitd.ac.in/~rjaiswal/2013/csl759

 Evaluation components: 

 Minor 1 and 2 exams: 15% each

 Homework (2 - 3): 20%

 Project: 20%

 Major exam: 20%

 Reference material:

 Mihir Bellare’s slides and notes (available on the web).

 Introduction to Modern Cryptography (Katz and Lindell).

 Foundations of Cryptography (Oded Goldreich).

 Other notes/slides/practice material on the web.

http://www.cse.iitd.ac.in/~rjaiswal/2013/csl759


Administrative information

 Pre-requisites: 

 Basic probability theory

 Algorithms

 Comfortable in reading/writing rigorous mathematical proofs

 Lecture Timing:

 To be decided.
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Introduction

 Throughout most of history:

 Cryptography = art of secret writing

 Secure communication

𝑲 𝑲
Key exchange protocol

𝑀

𝐶 = 𝐸𝐾(𝑀)

𝑀 = 𝐷𝐾(𝐶)
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Design protocol Protocol broken



Introduction

 Early history ( - early 70s):

 Synonymous with secret communication.

 Restricted to Military and Nobility.

 More of art than rigorous science.

 Modern Cryptography:

 Digital signatures, e-cash, secure computation, e-voting …

 Touches most aspects of modern lifestyle.

 Rigorous science:

 Reason about security of protocols. 

Design protocol Protocol broken



Introduction: Theme of this course

 Theme: Reason about security of protocols (Provable 

security)

 Fix security goals and formalize the notion of security.

 Construct a protocol.

 Show that a successful attack as per the security notion results 

in a successful attack on an underlying problem that is believed 

to be hard to solve.

 What you should hope to learn in the course:

 Learn basic cryptographic primitives and their interesting 

properties.

 Reasoning about security of protocols.

 Numerous applications/examples.



Introduction: Provable security

Factoring AES MD5Discrete log

Protocol 

Construction

Protocol



Introduction: Provable security

Factoring AES MD5Discrete log

Protocol 

Construction

Protocol

We would like to argue:

• If the basic primitive/problem is secure/hard, then the constructed protocol is “secure”



Introduction: Provable security

Factoring AES MD5Discrete log

Protocol 

Construction

Protocol

• :If there is an adversary that successfully attacks the protocol, then there is another 

adversary that successfully attacks/solves at least one of the basic primitives/problems.
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 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (Ceaser Cipher): Substitute each letter with the 

letter that is the 𝛼th letter after the letter in the sequence 

AB...Z

 Example (𝛼 = 2): SEND TROOPS  
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communication. 
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 Example (𝛼 = 2): SEND TROOPS   UGPF VTQQRU
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Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (Ceaser Cipher): Substitute each letter with the 
letter that is the 𝛼th letter after the letter in the sequence 
AB...Z

 Security was based on the fact that the encryption algorithm 
was a secret (Security through obscurity)

- Should be avoided at all cost!

- Algorithm should be public 

and security should come 

from secret keys.



Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (Ceaser Cipher): Substitute each letter with the 
letter that is the 𝛼th letter after the letter in the sequence 
AB...Z

 Suppose we make the algorithm public and use the secret key 
as 𝛼. Can you break this protocol?



Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (Substitution Cipher): Let 𝜋 be a permutation of 
the English letters. Substitute each letter 𝛼 with the letter 
𝜋 𝛼 . 𝜋 acts as the secret key.

 Example: Let 𝜋 𝐴 = 𝑈, 𝜋 𝐵 = 𝑇, 𝜋 𝐶 = 𝑃,…then 
encryption of CAB is PUT.



Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (Substitution Cipher): Let 𝜋 be a permutation of 
the English letters. Substitute each letter 𝛼 with the letter 
𝜋 𝛼 . 𝜋 acts as the secret key.

 Question: How much space you need to use to store the 
secret key?



Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (Substitution Cipher): Let 𝜋 be a permutation of 
the English letters. Substitute each letter 𝛼 with the letter 
𝜋 𝛼 . 𝜋 acts as the secret key.

 Consider a brute-force attack where you try to guess the 
secret key. Is such an attack feasible?



Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (Substitution Cipher): Let 𝜋 be a permutation of 

the English letters. Substitute each letter 𝛼 with the letter 

𝜋 𝛼 .

 Can you break this scheme?



Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (Substitution Cipher): Let 𝜋 be a permutation of 

the English letters. Substitute each letter 𝛼 with the letter 

𝜋 𝛼 .

 Attack idea: E’s occur more frequently than X’s



Introduction: Secure communication

Frequency of letters in typical

English sentences.



Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (Vignere Cipher): Let 𝐾 be a short string. For 
any given message 𝑀, add repeated copies of 𝐾 to 𝑀.𝐾 acts 
as the secret key.

 Example: Let 𝐾 = AB and 𝑀 = 𝐴𝑇𝑇𝐴𝐶𝐾. Then the cipher 
text is 𝐴𝑇𝑇𝐴𝐶𝐾 + 𝐴𝐵𝐴𝐵𝐴𝐵 = 𝐵𝑉𝑈𝐶𝐷𝑀.
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Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (One Time Pad(OTP)):Let the message 𝑀 be an 
𝑛 binary string. Let 𝐾 be an 𝑛 bit binary string that is used as 
a secret key.Add 𝑀 and 𝐾 modulo 2 to get the ciphertext.

 Example: 𝑀 = 1101, 𝐾 = 0101, 
then 𝐶 = 𝑀 + 𝐾 (𝑚𝑜𝑑 2) = 𝑀⊕𝐾 = 1000
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 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Simple idea (One Time Pad(OTP)):Let the message 𝑀 be an 

𝑛 binary string. Let 𝐾 be an 𝑛 bit binary string that is used as 

a secret key.Add 𝑀 and 𝐾 modulo 2 to get the Ciphertext.

 Can you break this scheme?



Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without 

Eve (who has access to the channel) knowing the 

communication. 

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the 

Keyspace.

 Given the ciphertext, all messages are equally likely to be the 

secret message
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 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the 

Keyspace.

 One Time Pad (OTP):

 The Keyspace is 0, 1 𝑛.

 𝐸𝐾 𝑀 = 𝐾⊕𝑀

 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶

 For any messages 𝑀0, 𝑀1 and ciphertext 𝐶:

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶 = ? ?
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Introduction: Secure communication

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the 

Keyspace.

 Fact: If 𝑀 > |𝐾|, then no scheme is perfectly secure.

 How do we get around this problem?

 Relax our notion of security: Instead of saying “it is impossible 

to break the scheme”, we would like to say “it is computationally 

infeasible to break the scheme”.



Introduction: Pseudorandom generator

 Suppose there was a generator that stretches random bits.

001101011 00101001001010010100101011

 Idea: 

 Choose a short key 𝐾 randomly.

 Obtain 𝐾’ = 𝐺(𝐾). 

 Use 𝐾’ as key for the one time pad.

 Issue: ?

𝐺
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Introduction: Pseudorandom generator

 Suppose there was a generator that stretches random bits.

001101011 00101001001010010100101011

 Idea: 

 Choose a short key 𝐾 randomly.

 Obtain 𝐾’ = 𝐺(𝐾). 
 Use 𝐾’ as key for the one time pad.

 Issue:

 Such a generator is not possible!

 Any such generator produces a longer string but the string is not 
random.

 What if we can argue that the output of the generator is 
computationally indistinguishable from truly random string.

𝐺
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