
Ragesh Jaiswal

CSE, IIT Delhi

CSL759: Cryptography and Computer

Security

Administrative information
 Course webpage:

 www.cse.iitd.ac.in/~rjaiswal/2013/csl759

 Evaluation components:

 Minor 1 and 2 exams: 15% each

 Homework (2 - 3): 20%

 Project: 20%

 Major exam: 20%

 Reference material:

 Mihir Bellare’s slides and notes (available on the web).

 Introduction to Modern Cryptography (Katz and Lindell).

 Foundations of Cryptography (Oded Goldreich).

 Other notes/slides/practice material on the web.

http://www.cse.iitd.ac.in/~rjaiswal/2013/csl759

Administrative information

 Pre-requisites:

 Basic probability theory

 Algorithms

 Comfortable in reading/writing rigorous mathematical proofs

 Lecture Timing:

 To be decided.

Introduction

Introduction

 Throughout most of history:

 Cryptography = art of secret writing

 Secure communication

𝑲 𝑲
Key exchange protocol

𝑀

𝐶 = 𝐸𝐾(𝑀)

𝑀 = 𝐷𝐾(𝐶)

Introduction

 Early history (- early 70s):

 Synonymous with secret communication.

 Restricted to Military and Nobility.

 More of art than rigorous science.

Design protocol Protocol broken

Introduction

 Early history (- early 70s):

 Synonymous with secret communication.

 Restricted to Military and Nobility.

 More of art than rigorous science.

 Modern Cryptography:

 Digital signatures, e-cash, secure computation, e-voting …

 Touches most aspects of modern lifestyle.

 Rigorous science:

 Reason about security of protocols.

Design protocol Protocol broken

Introduction: Theme of this course

 Theme: Reason about security of protocols (Provable

security)

 Fix security goals and formalize the notion of security.

 Construct a protocol.

 Show that a successful attack as per the security notion results

in a successful attack on an underlying problem that is believed

to be hard to solve.

 What you should hope to learn in the course:

 Learn basic cryptographic primitives and their interesting

properties.

 Reasoning about security of protocols.

 Numerous applications/examples.

Introduction: Provable security

Factoring AES MD5Discrete log

Protocol

Construction

Protocol

Introduction: Provable security

Factoring AES MD5Discrete log

Protocol

Construction

Protocol

We would like to argue:

• If the basic primitive/problem is secure/hard, then the constructed protocol is “secure”

Introduction: Provable security

Factoring AES MD5Discrete log

Protocol

Construction

Protocol

• :If there is an adversary that successfully attacks the protocol, then there is another

adversary that successfully attacks/solves at least one of the basic primitives/problems.

Introduction

Secure communication

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Ceaser Cipher): Substitute each letter with the

letter that is the 𝛼th letter after the letter in the sequence

AB...Z

 Example (𝛼 = 2): SEND TROOPS

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Ceaser Cipher): Substitute each letter with the

letter that is the 𝛼th letter after the letter in the sequence

AB...Z

 Example (𝛼 = 2): SEND TROOPS UGPF VTQQRU

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the 𝛼th letter after the letter in the sequence
AB...Z

 Security was based on the fact that the encryption algorithm
was a secret (Security through obscurity)

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the 𝛼th letter after the letter in the sequence
AB...Z

 Security was based on the fact that the encryption algorithm
was a secret (Security through obscurity)

- Should be avoided at all cost!

- Algorithm should be public

and security should come

from secret keys.

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the 𝛼th letter after the letter in the sequence
AB...Z

 Suppose we make the algorithm public and use the secret key
as 𝛼. Can you break this protocol?

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Substitution Cipher): Let 𝜋 be a permutation of
the English letters. Substitute each letter 𝛼 with the letter
𝜋 𝛼 . 𝜋 acts as the secret key.

 Example: Let 𝜋 𝐴 = 𝑈, 𝜋 𝐵 = 𝑇, 𝜋 𝐶 = 𝑃,…then
encryption of CAB is PUT.

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Substitution Cipher): Let 𝜋 be a permutation of
the English letters. Substitute each letter 𝛼 with the letter
𝜋 𝛼 . 𝜋 acts as the secret key.

 Question: How much space you need to use to store the
secret key?

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Substitution Cipher): Let 𝜋 be a permutation of
the English letters. Substitute each letter 𝛼 with the letter
𝜋 𝛼 . 𝜋 acts as the secret key.

 Consider a brute-force attack where you try to guess the
secret key. Is such an attack feasible?

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Substitution Cipher): Let 𝜋 be a permutation of

the English letters. Substitute each letter 𝛼 with the letter

𝜋 𝛼 .

 Can you break this scheme?

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Substitution Cipher): Let 𝜋 be a permutation of

the English letters. Substitute each letter 𝛼 with the letter

𝜋 𝛼 .

 Attack idea: E’s occur more frequently than X’s

Introduction: Secure communication

Frequency of letters in typical

English sentences.

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Vignere Cipher): Let 𝐾 be a short string. For
any given message 𝑀, add repeated copies of 𝐾 to 𝑀.𝐾 acts
as the secret key.

 Example: Let 𝐾 = AB and 𝑀 = 𝐴𝑇𝑇𝐴𝐶𝐾. Then the cipher
text is 𝐴𝑇𝑇𝐴𝐶𝐾 + 𝐴𝐵𝐴𝐵𝐴𝐵 = 𝐵𝑉𝑈𝐶𝐷𝑀.

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (Vignere Cipher): Let 𝐾 be a short string. For

any given message 𝑀, add repeated copies of 𝐾 to 𝑀. 𝐾 acts

as the secret key.

 Can you break this scheme?

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (One Time Pad(OTP)):Let the message 𝑀 be an
𝑛 binary string. Let 𝐾 be an 𝑛 bit binary string that is used as
a secret key.Add 𝑀 and 𝐾 modulo 2 to get the ciphertext.

 Example: 𝑀 = 1101, 𝐾 = 0101,
then 𝐶 = 𝑀 + 𝐾 (𝑚𝑜𝑑 2) = 𝑀⊕𝐾 = 1000

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Simple idea (One Time Pad(OTP)):Let the message 𝑀 be an

𝑛 binary string. Let 𝐾 be an 𝑛 bit binary string that is used as

a secret key.Add 𝑀 and 𝐾 modulo 2 to get the Ciphertext.

 Can you break this scheme?

Introduction: Secure communication

 Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the

Keyspace.

 Given the ciphertext, all messages are equally likely to be the

secret message

Introduction: Secure communication

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the

Keyspace.

 One Time Pad (OTP):

 The Keyspace is 0, 1 𝑛.

 𝐸𝐾 𝑀 = 𝐾⊕𝑀

 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶

 For any messages 𝑀0, 𝑀1 and ciphertext 𝐶:

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶 = ? ?

Introduction: Secure communication

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the

Keyspace.

 One Time Pad (OTP):

 The Keyspace is 0, 1 𝑛.

 𝐸𝐾 𝑀 = 𝐾⊕𝑀

 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶

 For any messages 𝑀0, 𝑀1 and ciphertext 𝐶:

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶 = 1/2𝑛

Introduction: Secure communication

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the

Keyspace.

 One Time Pad (OTP):

 The Keyspace is 0, 1 𝑛.

 𝐸𝐾 𝑀 = 𝐾⊕𝑀

 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶

 For any messages 𝑀0, 𝑀1 and ciphertext 𝐶:

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶 = 1/2𝑛

 Disadvantage: Key is as long as the message.

Introduction: Secure communication

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the
Keyspace.

 One Time Pad (OTP):

 The Keyspace is 0, 1 𝑛.

 𝐸𝐾 𝑀 = 𝐾⊕𝑀

 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶

 For any messages 𝑀0, 𝑀1 and ciphertext 𝐶:
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶 = 1/2𝑛

 Disadvantage: Key is as long as the message.

 Fact: If 𝑀 > |𝐾|, then no scheme is perfectly secure.

Introduction: Secure communication

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the

Keyspace.

 Fact: If 𝑀 > |𝐾|, then no scheme is perfectly secure.

 How do we get around this problem?

Introduction: Secure communication

 Perfect Secrecy (Information Theoretic Security):

 Let the message space be 0,1 𝑛.

 For any two message 𝑀0, 𝑀1, and Ciphertext 𝐶
Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶

where the probability is over uniformly random 𝐾 in the

Keyspace.

 Fact: If 𝑀 > |𝐾|, then no scheme is perfectly secure.

 How do we get around this problem?

 Relax our notion of security: Instead of saying “it is impossible

to break the scheme”, we would like to say “it is computationally

infeasible to break the scheme”.

Introduction: Pseudorandom generator

 Suppose there was a generator that stretches random bits.

001101011 00101001001010010100101011

 Idea:

 Choose a short key 𝐾 randomly.

 Obtain 𝐾’ = 𝐺(𝐾).

 Use 𝐾’ as key for the one time pad.

 Issue: ?

𝐺

Introduction: Pseudorandom generator

 Suppose there was a generator that stretches random bits.

001101011 00101001001010010100101011

 Idea:

 Choose a short key 𝐾 randomly.

 Obtain 𝐾’ = 𝐺(𝐾).
 Use 𝐾’ as key for the one time pad.

 Issue:

 Such a generator is not possible!

 Any such generator produces a longer string but the string is
not random.

𝐺

Introduction: Pseudorandom generator

 Suppose there was a generator that stretches random bits.

001101011 00101001001010010100101011

 Idea:

 Choose a short key 𝐾 randomly.

 Obtain 𝐾’ = 𝐺(𝐾).
 Use 𝐾’ as key for the one time pad.

 Issue:

 Such a generator is not possible!

 Any such generator produces a longer string but the string is not
random.

 What if we can argue that the output of the generator is
computationally indistinguishable from truly random string.

𝐺

End

