CSL759: Cryptography and Computer Security

Ragesh Jaiswal

CSE, IIT Delhi

Administrative information

- Course webpage:
 - <a>www.cse.iitd.ac.in/~rjaiswal/2013/csl759
- Evaluation components:
 - Minor 1 and 2 exams: 15% each
 - <u>Homework (2 3)</u>: 20%
 - <u>Project</u>: 20%
 - <u>Major exam</u>: 20%
- Reference material:
 - Mihir Bellare's slides and notes (available on the web).
 - Introduction to Modern Cryptography (Katz and Lindell).
 - Foundations of Cryptography (Oded Goldreich).
 - Other notes/slides/practice material on the web.

Administrative information

- Pre-requisites:
 - Basic probability theory
 - Algorithms
 - Comfortable in reading/writing rigorous mathematical proofs
- Lecture Timing:
 - To be decided.

- Throughout most of history:
 - Cryptography = art of secret writing
 - Secure communication

- Early history (early 70s):
 - Synonymous with secret communication.
 - Restricted to Military and Nobility.
 - More of *art* than rigorous science.

- Early history (early 70s):
 - Synonymous with secret communication.
 - Restricted to Military and Nobility.
 - More of *art* than rigorous science.

- Modern Cryptography:
 - Digital signatures, e-cash, secure computation, e-voting ...
 - Touches most aspects of modern lifestyle.
 - Rigorous science:
 - Reason about security of protocols.

Introduction: Theme of this course

- <u>Theme</u>: Reason about security of protocols (**Provable** security)
 - Fix security goals and formalize the notion of security.
 - Construct a protocol.
 - Show that a successful attack as per the security notion results in a successful attack on an underlying problem that is believed to be hard to solve.
- What you should hope to learn in the course:
 - Learn basic cryptographic primitives and their interesting properties.
 - Reasoning about security of protocols.
 - Numerous applications/examples.

Introduction: Provable security

Introduction: Provable security

We would like to argue:

• If the basic primitive/problem is secure/hard, then the constructed protocol is "secure"

Introduction: Provable security

• :If there is an adversary that successfully attacks the protocol, then there is another adversary that successfully attacks/solves at least one of the basic primitives/problems.

Secure communication

• <u>Secure communication</u>: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.

<u>Simple idea (Ceaser Cipher)</u>: Substitute each letter with the letter that is the *α*th letter after the letter in the sequence AB...Z

• Example (
$$\alpha = 2$$
): SEND TROOPS \rightarrow

- <u>Simple idea (Ceaser Cipher)</u>: Substitute each letter with the letter that is the *α*th letter after the letter in the sequence AB...Z
- Example ($\alpha = 2$): SEND TROOPS \rightarrow UGPFVTQQRU

- <u>Simple idea (Ceaser Cipher)</u>: Substitute each letter with the letter that is the *α*th letter after the letter in the sequence AB...Z
- Security was based on the fact that the encryption algorithm was a secret (Security through obscurity)

- <u>Simple idea (Ceaser Cipher)</u>: Substitute each letter with the letter that is the *α*th letter after the letter in the sequence AB...Z
- Security was based on the fact that the enc was a secret (Security through obscurity)
- Should be avoided at all cost!
 Algorithm should be public and security should come from secret keys.

- <u>Simple idea (Ceaser Cipher)</u>: Substitute each letter with the letter that is the *α*th letter after the letter in the sequence AB...Z
- Suppose we make the algorithm public and use the secret key as α . Can you break this protocol?

- <u>Simple idea (Substitution Cipher)</u>: Let π be a permutation of the English letters. Substitute each letter α with the letter $\pi(\alpha)$. π acts as the secret key.
- <u>Example</u>: Let $\pi(A) = U, \pi(B) = T, \pi(C) = P$, ...then encryption of CAB is PUT.

- <u>Simple idea (Substitution Cipher)</u>: Let π be a permutation of the English letters. Substitute each letter α with the letter $\pi(\alpha)$. π acts as the secret key.
- <u>Question</u>: How much space you need to use to store the secret key?

- <u>Simple idea (Substitution Cipher)</u>: Let π be a permutation of the English letters. Substitute each letter α with the letter $\pi(\alpha)$. π acts as the secret key.
- Consider a brute-force attack where you try to guess the secret key. Is such an attack feasible?

- <u>Simple idea (Substitution Cipher)</u>: Let π be a permutation of the English letters. Substitute each letter α with the letter $\pi(\alpha)$.
- Can you break this scheme?

- <u>Simple idea (Substitution Cipher)</u>: Let π be a permutation of the English letters. Substitute each letter α with the letter $\pi(\alpha)$.
- <u>Attack idea</u>: E's occur more frequently than X's

- <u>Simple idea (Vignere Cipher)</u>: Let *K* be a short string. For any given message *M*, add repeated copies of *K* to *M*. *K* acts as the secret key.
- <u>Example</u>: Let K = AB and M = ATTACK. Then the cipher text is ATTACK + ABABAB = BVUCDM.

- <u>Simple idea (Vignere Cipher)</u>: Let *K* be a short string. For any given message *M*, add repeated copies of *K* to *M*. *K* acts as the secret key.
- Can you break this scheme?

- <u>Simple idea (One Time Pad(OTP))</u>: Let the message *M* be an *n* binary string. Let *K* be an *n* bit binary string that is used as a secret key. Add *M* and *K* modulo 2 to get the ciphertext.
- <u>Example</u>: M = 1101, K = 0101,then $C = M + K \pmod{2} = M \oplus K = 1000$

- <u>Simple idea (One Time Pad(OTP))</u>: Let the message *M* be an *n* binary string. Let *K* be an *n* bit binary string that is used as a secret key. Add *M* and *K* modulo 2 to get the Ciphertext.
- Can you break this scheme?

- <u>Secure communication</u>: Alice wants to talk to Bob without Eve (who has access to the channel) knowing the communication.
- Perfect Secrecy (Information Theoretic Security):
 - Let the message space be $\{0,1\}^n$.
 - For any two message M_0 , M_1 , and Ciphertext C $\Pr[E_K(M_0) = C] = \Pr[E_K(M_1) = C]$

where the probability is over uniformly random K in the Keyspace.

• Given the ciphertext, all messages are equally likely to be the secret message

- Perfect Secrecy (Information Theoretic Security):
 - Let the message space be $\{0,1\}^n$.
 - For any two message M_0 , M_1 , and Ciphertext C $\Pr[E_K(M_0) = C] = \Pr[E_K(M_1) = C]$ where the probability is over uniformly random K in the Keyspace.
- One Time Pad (OTP):
 - The Keyspace is $\{0, 1\}^n$.
 - $E_K(M) = K \oplus M$
 - $D_K(C) = K \oplus C$
 - For any messages M_0 , M_1 and ciphertext C: $\Pr[E_K(M_0) = C] = \Pr[E_K(M_1) = C] = ??$

- Perfect Secrecy (Information Theoretic Security):
 - Let the message space be $\{0,1\}^n$.
 - For any two message M_0 , M_1 , and Ciphertext C $\Pr[E_K(M_0) = C] = \Pr[E_K(M_1) = C]$ where the probability is over uniformly random K in the Keyspace.
- One Time Pad (OTP):
 - The Keyspace is $\{0, 1\}^n$.
 - $E_K(M) = K \oplus M$
 - $D_K(C) = K \oplus C$
 - For any messages M_0 , M_1 and ciphertext C: $\Pr[E_K(M_0) = C] = \Pr[E_K(M_1) = C] = 1/2^n$

- Perfect Secrecy (Information Theoretic Security):
 - Let the message space be $\{0,1\}^n$.
 - For any two message M_0 , M_1 , and Ciphertext C $\Pr[E_K(M_0) = C] = \Pr[E_K(M_1) = C]$ where the probability is over uniformly random K in the Keyspace.
- One Time Pad (OTP):
 - The Keyspace is $\{0, 1\}^n$.
 - $E_K(M) = K \oplus M$
 - $D_K(C) = K \oplus C$
 - For any messages M_0 , M_1 and ciphertext C: $Pr[E_K(M_0) = C] = Pr[E_K(M_1) = C] = 1/2^n$
 - <u>Disadvantage</u>: Key is as long as the message.

- Perfect Secrecy (Information Theoretic Security):
 - Let the message space be $\{0,1\}^n$.
 - For any two message M_0 , M_1 , and Ciphertext C $\Pr[E_K(M_0) = C] = \Pr[E_K(M_1) = C]$ where the probability is over uniformly random K in the Keyspace.
- One Time Pad (OTP):
 - The Keyspace is $\{0, 1\}^n$.
 - $E_K(M) = K \oplus M$
 - $D_K(C) = K \oplus C$
 - For any messages M_0 , M_1 and ciphertext C: $\Pr[E_K(M_0) = C] = \Pr[E_K(M_1) = C] = 1/2^n$
 - <u>Disadvantage</u>: Key is as long as the message.
- <u>Fact</u>: If |M| > |K|, then no scheme is perfectly secure.

- Perfect Secrecy (Information Theoretic Security):
 - Let the message space be $\{0,1\}^n$.
 - For any two message M_0 , M_1 , and Ciphertext C $\Pr[E_K(M_0) = C] = \Pr[E_K(M_1) = C]$ where the probability is over uniformly random K in the Keyspace.
- <u>Fact</u>: If |M| > |K|, then no scheme is perfectly secure.
- How do we get around this problem?

- Perfect Secrecy (Information Theoretic Security):
 - Let the message space be $\{0,1\}^n$.
 - For any two message M_0 , M_1 , and Ciphertext C $\Pr[E_K(M_0) = C] = \Pr[E_K(M_1) = C]$ where the probability is over uniformly random K in the Keyspace.
- <u>Fact</u>: If |M| > |K|, then no scheme is perfectly secure.
- How do we get around this problem?
 - <u>Relax our notion of security</u>: Instead of saying "it is impossible to break the scheme", we would like to say "it is *computationally infeasible* to break the scheme".

Introduction: Pseudorandom generator

• Suppose there was a *generator* that *stretches* random bits.

• Idea:

- Choose a short key *K* randomly.
- Obtain K' = G(K).
- Use *K*' as key for the one time pad.

• Issue: ?

Introduction: Pseudorandom generator

• Suppose there was a *generator* that *stretches* random bits.

- Choose a short key *K* randomly.
- Obtain K' = G(K).
- Use *K*' as key for the one time pad.
- Issue:
 - Such a generator is not possible!
 - Any such generator produces a longer string but the string is not *random*.

Introduction: Pseudorandom generator

• Suppose there was a *generator* that *stretches* random bits.

- Idea:
 - Choose a short key *K* randomly.
 - Obtain K' = G(K).
 - Use *K*' as key for the one time pad.
- Issue:
 - Such a generator is not possible!
 - Any such generator produces a longer string but the string is not *random*.
- What if we can argue that the output of the generator is *computationally indistinguishable* from truly random string.

End