CSL 105: Discrete Mathematical Structures

Instructor: Ragesh Jaiswal

This file may get updated. So, please refresh your browser.

1. Discuss homework-2.
2. A jigsaw puzzle is put together by successively joining pieces that fit together into blocks. A move is made each time a piece is added to a block, or when two blocks are joined. Use strong induction to prove that no matter how the moves are carried out, exactly $n-1$ moves are required to assemble a puzzle with n pieces.
3. Find the flaw with the following "proof" that $a^{n}=1$ for all nonnegative integers n, whenever a is a nonzero real number.
Basis step: $a^{0}=1$ is true by the definition of a^{0}.
Inductive step: Assume that $a^{j}=1$ for all nonnegative integers j with $j \leq k$. Then note that $a^{k+1}=\frac{a^{k} \cdot a^{k}}{a^{k-1}}=\frac{1 \cdot 1}{1}=1$.
4. Given a Bipartite graph $G=(X, Y, E)$, a matching in G is defined to be a subset of $M \subseteq E$ such that for any $(x, y) \in M$, both x and y do not appear as the end vertex of any edge in M. Given $|X|=|Y|=n$, a perfect matching of G is a matching of size n. Show the following theorem:
Theorem 1 (Hall's Theorem) Given a bipartite graph $G=(X, Y, E)$ such that $n=$ $|X|=|Y|$, there is a perfect matching in G is and only if for ever subset of vertices $S \subseteq X,|N(S)| \geq|S|$, where $N(S)$ denotes the set of neighboring vertices of S.
5. Given a list of n natural numbers d_{1}, \ldots, d_{n}, show how to decide in polynomial time whether there exists an undirected graph $G=(V, E)$ whose vertex degrees are precisely d_{1}, \ldots, d_{n}. (That is, if $V=\left\{v_{1}, \ldots, v_{n}\right\}$, then the degree of v_{i} should be exactly d_{i}.) G should not contain mtultiple edges between the same pair of nodes, or "loop" edges (where both end vertices are the same node).
