CSL 105: Discrete Mathematical Structures

Instructor: Ragesh Jaiswal

This file may get updated. So, please refresh your browser.

1. Discuss Homework-3 and Minor-2 problems.
2. Six swimmers training together either swam in a race or watched the others swim. At least how many races must have been scheduled if every swimmer had opportunity to watch all of the others?
3. Consider the following two theorems:

Theorem 1 (Permutation with indistinguishable objects) The number of different permutations of n objects, where there are n_{1} indistinguishable objects of type $1, n_{2}$ indistinguishable objects of type $2, \ldots$, and n_{k} indistinguishable objects of type k, is

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!} .
$$

Theorem 2 (Distinguishable objects into distinguishable boxes) The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_{i} objects are placed into box $i, i=1,2, \ldots, k$, equals

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

Prove the second theorem by first setting up a one-to-one correspondence between permutations of n objects with n_{i} indistinguishable objects of type $i, i=1,2, \ldots, k$ and the distribution of n objects in k boxes such that n_{i} objects are placed in box $i, i=1,2, \ldots, k$ and then applying the first theorem.
4. In how many ways can you place n distinguishable objects into k indistinguishable boxes?
5. In how many ways can you place n indistinguishable objects into k indistinguishable boxes?

