- Use of unfair means will be severely penalized.

There are 4 questions for a total of 50 points.
(15) 1. You are given a bipartite graph $G=(X, Y, E)$ such that $|X|=|Y|$. Furthermore, every vertex in G has degree exactly k. Show that the edges of the graph can be colored with k distinct colors so that no two edges incident at a vertex have the same color.
(10) 2. Prove or disprove: Among $n+2$ arbitrarily chosen integers, either there are two whose difference is divisible by $2 n$ or there are two whose sum is divisible by $2 n$.
(10) 3. Show the following version of the birthday lemma:

Let N and r be positive integers and let S be a set of size N. Suppose we pick r elements Y_{1}, \ldots, Y_{r} from the set S randomly with replacement and then pick another r elements Z_{1}, \ldots, Z_{r} randomly with replacement from S. Let $D(N, r)$ denote the probability that there is a pair (i, j) such that $Y_{i}=Z_{j}$. Show that $D(N, r) \geq C(n, 2 r) / 2$.
(Recall, $C(N, 2 r)$ is the probability that $2 r$ randomly chosen elements from S are not all distinct.)
4. We say that a string of bits has k triply-repeated ones if there are k positions where three consecutive 1s appear in a row. For example, the string 011100111110 has four triply-repeated ones. Consider an experiment that outputs a random n-bit string (i.e., all n bit strings are equally likely). Let X be a random variable denoting the number of triply repeated 1 s in the n-bit string. What is the value of $\sum_{i=0}^{n-2} i \cdot \operatorname{Pr}[X=i]$?

