## - Use of unfair means will be severely penalized.

There are 3 questions for a total of 50 points.
(10) 1. Let $N=p \cdot q$ for primes $p$ and $q$. Let $e, d \in \mathbb{Z}_{\phi(N)}^{*}$ such that $e \cdot d \equiv 1(\bmod \phi(N))$, where $\phi(N)=$ $(p-1) \cdot(q-1)$. In the lectures, we have seen that $\forall M \in \mathbb{Z}_{N}^{*},\left(M^{e}\right)^{d} \equiv M(\bmod N)$. Show that this holds for all $M \in \mathbb{Z}_{N}$.
(20) 2. Alice wants to communicate a large integer $N$ to Bob over a lossy channel. Over this channel, Alice can send packets of information each containing an integer. However, there is $10 \%$ chance that this packet is going to get dropped (that is, Bob does not receive the packet) in transit. One solution is to send multiple packets each containing $N$. The communication overhead (the total number of digits communicated across all packets) in this case might be large. Can you think of a way to reduce the communication overhead using the Chinese Remaindering Theorem? Discuss.
(Note that this is a subjective question. So, the more insight you give, the more points you will get.)
(20) 3. We will use the following definition of cyclic groups.

Definition 1 (Cyclic group). Let $G$ be a group and let a be any element of this group. Let $<a>=\{x \in$ $G \mid x=a^{n}$ for some $\left.n \in \mathbb{Z}\right\}$. The group $G$ is called a cyclic group if there exists an element $a \in G$ such that $G=<a>$. In this case, $a$ is called the generator of $G$.

Show that for any prime $p, Z_{p}^{*}$ is a cyclic group.

