- Use of unfair means will be severely penalized.

There are 4 questions for a total of 50 points.
(10) 1. A graph is said to be connected if there is a path between any pair of vertices. Show that for any graph G, either G or its complement \bar{G} (includes only those edges that are not in G) is connected.
2. Solve the following two questions related to the "big-oh" notation.
3. Recall the Euclid-GCD (a, b) algorithm discussed in the lectures for finding the gcd of two integers a and b. Prove the following theorem:

Theorem 1 (Lame's theorem). For any integer $k \geq 1$, if $a>b \geq 1$ and $b<F_{k+1}$, then the call Euclid- $G C D(a, b)$ makes fewer than k recursive calls.

Here F_{k} denotes the $k^{t h}$ number in the Fibonacci sequence $(0,1,1,2,3,5,8,13, \ldots)$
(15) 4. Design an algorithm that takes as input positive integers a, b, m and outputs a^{b} ($\bmod m$) (input/output is in binary). Discuss the worst-case time complexity of your algorithm. Note that for this problem, the better the running time, the more points you will get.

