There are 5 questions for a total of 50 points.
(10) 1. In the class, we showed that the family $\mathcal{H}=\left\{h_{a, b} \mid 1 \leq a \leq p-1,0 \leq b \leq p\right\}$ is 2-universal for prime $p \geq n$, where $h_{a, b}(x)=((a x+b) \bmod p) \bmod n$ Consider the hash function family

$$
\mathcal{H}^{\prime}=\left\{h_{a} \mid 1 \leq a \leq p-1\right\}
$$

where

$$
h_{a}(x)=(a x \quad \bmod p) \quad \bmod n
$$

Show the following:
(a) \mathcal{H}^{\prime} is not 2-universal.
(b) For any $x, y \in\{0,1,2, \ldots, p-1\}$, if h is chosen uniformly at random from \mathcal{H}^{\prime} then $\operatorname{Pr}[h(x)=h(y)] \leq$ $\frac{2}{n}$. (In other words \mathcal{H}^{\prime} is almost 2-universal.)
(10) 2. Let U be a universe with $|U| \geq n$ and let $V=\{0,1, \ldots, n-1\}$. A family of hash functions \mathcal{H} from U to V is said to be k-universal if, for any elements $x_{1}, x_{2}, \ldots, x_{k}$ and for a hash function h chosen uniformly at random from \mathcal{H}, we have

$$
\operatorname{Pr}\left[h\left(x_{1}\right)=h\left(x_{2}\right)=\ldots=h\left(x_{k}\right)\right] \leq \frac{1}{n^{k-1}} .
$$

Suppose n balls are hashed into n bins using a 3 -universal hash function family. Show that with probability at least ($1 / 2$), the maximum loaded bin has at most $(2 n)^{1 / 3}$ balls.
(10) 3. Given a bag of r red balls and g green balls, suppose that we uniformly sample n balls from the bag without replacement. Let R denote the number of red balls in the sample. What is the expected value of R ? How concentrated is R around its expectation $E[R]$?
(10) 4. Let $f\left(X_{1}, \ldots, X_{n}\right)$ satisfy the Lipschitz condition so that, for any i and any values x_{1}, \ldots, x_{n} and y_{i},

$$
\left|f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c
$$

We set $Z_{0}=\mathbf{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]$, and $Z_{i}=\mathbf{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]$. Give an example to show that, if the X_{i} 's are not independent, then it is possible that $\left|Z_{i}-Z_{i-1}\right|>c$.
5. Consider the bit-fixing routing algorithm for routing a permutation on the n-dimensional hypercube. Suppose that n is even. Write each source node i as the concatenation of two binary strings a_{i} and b_{i}, each of length $n / 2$. Let the destination of i 's packet be the concatenation of b_{i} and a_{i}. Show that this permutation causes the bit-fixing routing algorithm to take $\Omega\left(2^{n / 2}\right)$ steps.

