There are 5 questions for a total of 50 points.

(10) 1. In the class, we showed that the family $\mathcal{H} = \{h_{a,b} | 1 \le a \le p - 1, 0 \le b \le p\}$ is 2-universal for prime $p \ge n$, where $h_{a,b}(x) = ((ax + b) \mod p) \mod n$ Consider the hash function family

$$\mathcal{H}' = \{h_a | 1 \le a \le p - 1\}$$

where

$$h_a(x) = (ax \mod p) \mod n.$$

Show the following:

- (a) \mathcal{H}' is not 2-universal.
- (b) For any $x, y \in \{0, 1, 2, ..., p-1\}$, if h is chosen uniformly at random from \mathcal{H}' then $\Pr[h(x) = h(y)] \leq \frac{2}{n}$. (In other words \mathcal{H}' is almost 2-universal.)
- (10) 2. Let U be a universe with $|U| \ge n$ and let $V = \{0, 1, ..., n-1\}$. A family of hash functions \mathcal{H} from U to V is said to be k-universal if, for any elements $x_1, x_2, ..., x_k$ and for a hash function h chosen uniformly at random from \mathcal{H} , we have

$$\mathbf{Pr}[h(x_1) = h(x_2) = \dots = h(x_k)] \le \frac{1}{n^{k-1}}$$

Suppose n balls are hashed into n bins using a 3-universal hash function family. Show that with probability at least (1/2), the maximum loaded bin has at most $(2n)^{1/3}$ balls.

- (10) 3. Given a bag of r red balls and g green balls, suppose that we uniformly sample n balls from the bag without replacement. Let R denote the number of red balls in the sample. What is the expected value of R? How concentrated is R around its expectation E[R]?
- (10) 4. Let $f(X_1, ..., X_n)$ satisfy the Lipschitz condition so that, for any i and any values $x_1, ..., x_n$ and y_i ,

$$|f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)| \le c.$$

We set $Z_0 = \mathbf{E}[f(X_1, ..., X_n)]$, and $Z_i = \mathbf{E}[f(X_1, ..., X_n) | X_1, ..., X_i]$. Give an example to show that, if the X_i 's are not independent, then it is possible that $|Z_i - Z_{i-1}| > c$.

(10) 5. Consider the bit-fixing routing algorithm for routing a permutation on the *n*-dimensional hypercube. Suppose that *n* is even. Write each source node *i* as the concatenation of two binary strings a_i and b_i , each of length n/2. Let the destination of *i*'s packet be the concatenation of b_i and a_i . Show that this permutation causes the bit-fixing routing algorithm to take $\Omega(2^{n/2})$ steps.