There are 5 questions for a total of 50 points.
(10) 1. Prove that $\mathbf{N P} \subseteq \mathbf{B P P}$ implies that $\mathbf{R P}=\mathbf{N P}$.
(10) 2. Prove that Chernoff bounds hold for arbitrary random variables in the $[0,1]$ interval. Note that we showed the bounds for $0 / 1$ variables in the class.
(10) 3. Consider the "balls and bins" problem where n balls are to be thrown into n bins. Suppose we consider the d-choice process instead of 2 -choice. That is, for each ball we randomly select d bins and assign the ball into the bin with least load. Show that with high probability the most loaded bin has a load of $O\left(\frac{\log \log n}{\log d}\right)$.
(10) 4. Consider the following version of the "balls and bins" problem: There are n bins to start with and balls are thrown in multiple rounds. In the first round n balls are thrown into n bins randomly. After the first round, the bins having at least one ball are removed. In the second round n balls are thrown randomly into the remaining bins. Again, after the second round, the non-empty bins are removed and in the thirds round n balls are thrown into the remaining bins. Show that the expected number of rounds for which this process runs is $c \cdot \log ^{*} n$ (for some constant c).
(10) 5. Let $G=(V, E)$ be an undirected graph and suppose each $v \in V$ is associated with a set $S(v)$ of $8 r$ colours, where $r \geq 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most r neighbors u of v such that c lies in $S(u)$. Prove that there is a proper colouring of G assigning to each vertex v a colour from its class $S(v)$ such that, for any edge $(u, v) \in E$, the colors assigned to u and v are different.

