- Always try to give algorithm with best possible running time. The points that you obtain will depend on the running time of your algorithm. For example, a student who gives an $O(n)$ algorithm will receive more points than a student who gives an $O\left(n^{2}\right)$ algorithm.
- Use of unfair means will be severely penalized.

There are 1 questions for a total of 50 points.

1. This is question $26-6$ from the CLRS book. Here is the description of the problem in case you do not have a copy of the book.
In this problem, we describe a faster algorithm, due to Hopcroft and Karp, for finding a maximum matching in a bipartite graph. The algorithm runs in $O(\sqrt{n} \cdot m)$ time. Given an undirected, bipartite graph $G=(V, E)$, where $V=L \cup R$ and all edges have exactly one endpoint in L, let M be a matching in G. We say that a simple path P in G is an augmenting path with respect to M if it starts at an unmatched vertex in L, ends at an unmatched vertex in R, and its edges belong alternately to M and $E-M$. (This definition of an augmenting path is related to, but different from, an augmenting path in a flow network.) In this problem, we treat a path as a sequence of edges, rather than as a sequence of vertices. A shortest augmenting path with respect to a matching M is an augmenting path with a minimum number of edges.
Given two sets A and B, the symmetric difference $A \oplus B$ is defined as $(A-B) \cup(B-A)$, that is, the elements that are in exactly one of the two sets.
(a) Show that if M is a matching and P is an augmenting path with respect to M, then the symmetric difference $M \oplus P$ is a matching and $|M \oplus P|=|M|+1$. Show that if P_{1}, \ldots, P_{k} are vertex-disjoint augmenting paths with respect to M, then the symmetric difference $M \oplus\left(P_{1} \cup \ldots \cup P_{k}\right)$ is a matching with cardinality $|M|+k$.

The general structure of our algorithm is the following:
HOPCROFT-KARP (G)

1. $M=\{ \}$
2. repeat
3. Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a maximal set of vertex-disjoint shortest
. augmenting paths with respect to M.
4. $\quad M=M \oplus\left(P_{1} \cup \ldots \cup P_{k}\right)$
5. until $|\mathcal{P}|==0$
6. return M

The remainder of this problem asks you to analyse the number of iterations in the algorithm (that is, the number of iterations in the repeat loop) and to describe an implementation of line 3.
(b) Given two matchings M and M^{*} in G, show that every vertex in the graph $G^{\prime}=\left(V, M \oplus M^{*}\right)$ has degree at most 2. Conclude that G^{\prime} is a disjoint union of simple paths or cycles. Argue that edges in each simple path or cycle belongs alternately to M or M^{*}. Prove that if $|M| \leq\left|M^{*}\right|$, then $M \oplus M^{*}$ contains at least $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting paths with respect to M.

Let l be the length of a shortest augmenting path with respect to a matching M, and let P_{1}, \ldots, P_{k} be a maximal set of vertex-disjoint augmenting paths of length l with respect to M. Let $M^{\prime}=M \oplus\left(P_{1} \cup\right.$ $\ldots \cup P_{k}$), and suppose that P is a shortest augmenting path with respect to M^{\prime}.
(c) Show that if P is vertex-disjoint from P_{1}, \ldots, P_{k}, then P has more than l edges.
(d) Now suppose that P is not vertex-disjoint from P_{1}, \ldots, P_{k}. Let A be the set of edges $\left(M \oplus M^{\prime}\right) \oplus P$. Show that $A=\left(P_{1} \cup \ldots \cup P_{k}\right) \oplus P$ and that $|A| \geq(k+1) l$. Conclude that P has more than l edges.
(e) Prove that if a shortest augmenting path with respect to M has l edges, the size of the maximum matching is at most $|M|+n /(l+1)$.
(f) Show that the number of repeat loop iterations in the algorithm is at most $2 \sqrt{n}$. (Hint: By how much can M grow after iteration number \sqrt{n} ?)
(g) Give an algorithm that runs in $O(m)$ time to find a maximal set of vertex-disjoint shortest augmenting paths P_{1}, \ldots, P_{k} for a given matching M. Conclude that the total running time of HOPCROFTKARP is $O(\sqrt{n} m)$.

