- Always try to give algorithm with best possible running time. The points that you obtain will depend on the running time of your algorithm. For example, a student who gives an $O(n)$ algorithm will receive more points than a student who gives an $O\left(n^{2}\right)$ algorithm.
- Use of unfair means will be severely penalized.

There are 3 questions for a total of 50 points.
(15) 1. Given integers a_{1}, \ldots, a_{n}, design an algorithm that determines whether there exists a partition of the set $\{1, \ldots, n\}$ into 3 disjoint subsets P, Q, and R such that

$$
\sum_{i \in P} a_{i}=\sum_{j \in Q} a_{j}=\sum_{k \in R} a_{k}
$$

Discuss running time of your algorithm.
(15) 2. Given positive integers n and W, design an algorithm that finds the number of n element sets $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $\sum_{i} x_{i}^{2}=W$ and all x_{i} 's are integers. Discuss running time of your algorithm.
(20) 3. You are given a string S of alphabets containing n alphabets. Let $S[i]$ denote the $i^{t h}$ alphabet of the string S and let $S[1, i]$ denote the substring $S[1] \ldots S[i]$. Design an algorithm that computes the following:

For each i, the length of the longest proper prefix of $S[1, i]$ that is also a suffix of $S[1, i]$.
Discuss running time of your algorithm.

\mathbf{a}	\mathbf{b}	\mathbf{a}	\mathbf{a}	\mathbf{b}	\mathbf{a}	\mathbf{b}	\mathbf{b}	\mathbf{a}	\mathbf{b}
0	0	1	1	2	3	2	0	1	2

Figure 1: Example string with 10 alphabets. The integer below the $i^{t h}$ alphabet denotes the length of the longest proper prefix of $S[1, i]$ that is also a suffix of $S[1, i]$.

