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Tail Inequalities

1 The problem

We have a collection X1; : : : ;Xn of random variables each ranging between 0 and 1. We let pi =

E [Xi] for i = 1; : : : ; n and we let X = X1 + � � � +Xn. We let � = E [X]. Linearity of expectation

tells us that � = p1 + � � �+ pn. We �x some parameter A > 0 and are interested in the probability

that X � � � A, namely that X exceeds its expectation by some amount A.

A particular form in which we wish to study this probability is the following. We let A = x� for

some x > 0. Then Pr [X � � � A ] = Pr [X � (1 + x)� ]. We are interested in how this behaves

as a function of x, with all other quantities being �xed. Mostly we want good upper bounds.

This situation arises extremely often. Typically, something is known about the \amount of indepen-

dence" of the random variablesX1; : : : ;Xn. The simplest case is that they are actually independent.

Another case common in computer science is that they satisfy some limited form of independence,

for example pairwise independence, or, more generally, t-wise independence where t � 2 is some

integer. (When t = n we have independence.) Alternatively, they may satisfy some form of \almost

independence". Tail inequalities deal with these situations.

In mathematics courses on introductory probability theory, these problems are typically treated

via the \laws of large numbers" and the \central limit theorem". These provide qualitative under-

standing of how the probabilities in question behave as a function of n. Tail inequalities are the

quantitative analogue.

We will begin with some background and then go to the most common case, the one where the

random variables are (fully) independent. Then we address limited independence.

2 Basic inequalities

The most basic inequality is Markov's.

Proposition 1 [Markov's Inequality] For any non-negative random variable X and any real

number a > 0 we have

Pr [X � a ] �
E [X]

a
:

As an example let a = 2 � E [X]. Then the above says Pr [X � 2 � E [X] ] � 1=2. Namely, if you

move out to twice the expectation, you can have only half the area under the curve to your right.

This is quite intuitive.
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Proof of Proposition 1: This is a simple computation:

a � Pr [X � a ] = a �
X

x :x�a

Pr [X = x ]

�
X

x :x�a

x � Pr [X = x ]

�
X
x

x � Pr [X = x ]

= E [X] :

Where in this proof did we use that X � 0? Third line above.

Markov's inequality is rather weak. The curious thing is that nonetheless it is in the end the root

of the most powerful tail inequalities around. You just have to �nd the right way to use it.

One step up from Markov's inequality is Chebyschev's inequality. To state it we �rst recall that if

X is a random variable then its variance is Var [X] = E
�
(X � �)2

�
= E

�
X2
�
��2 where � = E [X]

is the expectation of X.

Proposition 2 [Chebychev's inequality] Let X be a random variable, and let A > 0. Then

Pr [ jX � �j � A ] �
Var [X]

A2
:

Proof of Proposition 2: Let � = E [X]. Let Y be the random variable de�ned by Y = (X��)2 =

X2 � 2� �X + �2. Then

E [Y ] = E
h
X

2

i
� 2� �E [X] + �

2 = E
h
X

2

i
� 2�2 + �

2 = Var [X] :

Since Y � 0 we can apply Proposition 1 to it. We have

Pr [ jX � �j � A ] = Pr
h
Y � A

2

i

�
E [Y ]

A2

=
Var [X]

A2

as desired.

This will come in useful for tail inequalities on pairwise independent random variables.

3 Tail inequalities for independent random variables

We have independent random variables X1; : : : ;Xn ranging between 0 and 1. For simplicity let's

assume they are actually boolean, meaning assume only the values 0 and 1. (This turns out to

be the worse case for the situations we deal with.) In that case, pi
def
= E [Xi] = Pr [Xi = 1 ] for
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i = 1; : : : ; n. As usual set X = X1 + � � �+Xn and � = E [X]. We are interested in upper bounding

Pr [X � � > A ] where A > 0 is some given real number.

The law of large numbers says that if we �x A; p then

lim
n!1

Pr
h ��� 1nPn

i=1
(Xi � pi)

��� > A

i
= 0 :

That is, the probability that X deviates from its expectation gets smaller and smaller as the number

of samples n grows. In computer science we want more precise information: our interest is in how

this probability tails of as a function of n.

Nomenclature in this area is not uniform, but the bounds we will now discuss sometimes go under

the name of Cherno�-type bounds. A good reference is [1].

The �rst bound we specify is the simplest, yet good enough in many of the applications.

Proposition 3 Let X1; : : : ;Xn be independent, 0=1 valued random variables, and let pi = E [Xi]

for i = 1; : : : ; n. Let X = X1 + � � �+Xn and let � = E [X]. Let A > 0 be a real number. Then

Pr [X � � > A ] � e
�A2=2n

:

We won't prove this because below we will prove something stronger. But let's discuss it. To get

an understanding of the bound we consider the case where p1 = p2 = � � � = pn.

Corollary 4 Let X1; : : : ;Xn be independent, 0=1 valued random variables all having the same

expectation p. Let X = X1 + � � �+Xn and let � = E [X]. Let x > 0 be a real number. Then

Pr [X > (1 + x)� ] � e
�x2p2n=2

= e
�x2�p=2

:

Proof: Set A = x� in Proposition 3 and use the fact that � = pn.

This shows us the punch-line: roughly, Pr [X > (1 + x)� ] decreases exponentially with n for �xed

x; p. In other words, the probability that the sum of independent random variables deviates signif-

icantly from its mean (expectation) drops very quickly as the number of random variables grows.

For example if you toss many fair coins, the probability of getting signi�cantly more than 50%

heads is very small.

However you have to be careful with the above bound. The intuition that Pr [X > (1 + x)� ]

decreases exponentially with n is quite sensitive to the values of x; p, and there are many common

situations in which the bounds obtained from the above are not good enough. One way to see why

is to consider the second line in the bound of Corollary 4, which we got just by substituting � for

np in the �rst line. It shows us that if p is small, the bound is worse even for a �xed value of the

expectation � of the sum X. This is actually a weakness in the bound, not necessarily a re
ection

of reality.

Here now is a stronger Cherno�-type bound. This is pretty much \tight", meaning as good as you

can get. It may at �rst be hard to interpret, but we'll elucidate it later.
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Theorem 5 Let X1; : : : ;Xn be independent, 0=1 valued random variables, and let pi = E [Xi] for

i = 1; : : : ; n. Let X = X1 + � � �+Xn and let � = E [X]. Let � > 1 be a real number. Then

Pr [X > � � � ] � e
�g(�)��

where we de�ne the function g(�) by g(�) = � ln(�) + 1� �.

To visualize this it is again useful to set � = 1 + x for x > 0 and see what happens to the bound

viewed as a function of x.

Corollary 6 Let X1; : : : ;Xn be independent, 0=1 valued random variables, and let pi = E [Xi] for

i = 1; : : : ; n. Let X = X1 + � � �+Xn and let � = E [X]. Let 0 < x � 2 be a real number. Then

Pr [X > (1 + x) � � ] � e
�3x2�=10

:

Notice the improvement over Corollary 4: the factor of p in the exponent has vanished. That is

quite a change; the new bound is much better.

Be careful when you apply this bound to note that it only holds for x � 2. If x is larger, our

intuition is that the probability in question should be even lower, yet the bound above does not

apply. If you want a bound that works for \large" x you will need to go back to the proofs of

Theorem 5 and Corollary 6 and try to extend them. It would be nice to do this and get a clean

bound for larger x, actually. We might explore these issues later, but right now I want to look more

at the proofs. Let's begin by seeing why Corollary 6 follows from Theorem 5.

Proof of Corollary 6: Theorem 5 tells us that

Pr [X > (1 + x) � � ] � e
�g(1+x)��

where g(�) is the function de�ned in the statement of Theorem 5. So it su�ces to show that

g(1 + x) � 3x2=10 for 0 < x � 2. We do this using Taylor series approximations. We have

g(1 + x) = (1 + x) ln(1 + x) + 1� (1 + x)

= (1 + x) ln(1 + x)� x

= �x+ (1 + x) �
X
i�1

(�1)i�1 �
xi

i

= �x+
X
i�1

(�1)i�1 �
xi

i
+
X
i�2

(�1)i �
xi

i� 1

=
X
i�2

(�1)i�1 �
xi

i
+ (�1)i �

xi

i� 1

=
X
i�2

(�1)i �
xi

i(i� 1)

=
x2

2
�
X
i�3

(�1)i�1 �
xi

i(i � 1)

�
x2

2
�

 
x3

6
�

x4

12
+

x5

20

!
:
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We now want to upper bound the expression in parentheses in the last line above. We consider

the function f(x) = 1=6 � x=12 + x2=20. It attains its minimum at x = 5=6 so for 0 < x � 2 the

maximum value of f is attained at x = 2. Thus the above is

�
x2

2
� x

2 � 2 � f(2)

= x
2 �

�
1

2
�

1

5

�

=
3x2

10
:

That concludes the proof.

Now we come to the interesting part, namely the proof of Theorem 5. It introduces the idea of

exponential generating functions. It is quite neat, illustrating many simple but powerful techniques.

Proof of Theorem 5: We introduce a parameter � > 0 whose value will be set later. Recall that

� = p1 + � � � + pn = E [X]. We use the monotonicity of the exponential function and then apply

Markov's inequality to get

Pr [X > � � � ] = Pr
h
e
�X

> e
����

i

�
E
h
e�X

i
e����

: (1)

This is the exponential generating function trick. We do something that looks really trivial. We

note that the probability is unchanged if we exponentiate the terms involved, and then we use, of

all things, the weakest of the inequalities around, namely Markov's inequality. Yet as we will now

see, rather strong bounds emerge.

The next thing we do is bound the expectation in Equation (1). We start with the following{

E
h
e
�X
i

= E
h
e
�(X1+X2+���+Xn)

i
= E

h
e
�X1 � e�X2 � : : : � e�Xn

i
:

The independence of X1; : : : ;Xn (this is the one and only place we use this) implies that the above

equals

E
h
e
�X1

i
� E
h
e
�X2

i
� : : : � E

h
e
�Xn

i
:

Now we compute these individual expectations: For any i = 1; : : : ; n we have

E
h
e
�Xi

i
= 1 � Pr [Xi = 0 ] + e

� � Pr [Xi = 1 ]

= (1� pi) + e
� � pi

= 1 + (e� � 1) � pi :

So at this point we have

E
h
e
�X
i

= [1 + (e� � 1) � p1] � [1 + (e� � 1) � p2] � : : : � [1 + (e� � 1) � pn] :
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Notice that so far we have done no bounding; we have equalities.

At this point, what can we do? We are looking at a complex bound, product of many terms. We

will start seeing terms involving products of the values p1; : : : ; pn, which is not something we know

much about. What we do know something about is the sum of p1; : : : ; pn, because this is exactly

�, the expectation of X. We'd like to work this in. This is done by applying a very common and

useful little inequality, namely that 1 + y � ey for any real number y. Set yi = (e� � 1)pi and we

get

E
h
e
�X
i

� (1 + y1) � (1 + y2) � : : : � (1 + yn)

� e
y1 � ey2 � : : : � eyn

= e
y1+���+yn

= e
(e��1)(p1+���+pn)

= e
(e��1)�

:

Let's now put this back together with Equation (1). That gives us

Pr [X > � � � ] �
e(e

��1)�

e����

= e
(e��1)������

= e
�f(�)��

where

f(�) = �� � (e� � 1) :

Now we want to analyze the function f(�) and choose the value of � > 0 that makes f as large as

possible. Since all the above is true for any value of � > 0 we can plug in this special value and that

will be our bound. To analyze f(�) we use high-school level calculus. We compute the derivate:

f 0(�) = � � e�. The function f 0 is positive for � < ln(�), zero at � = ln(�), and then negative for

� > ln(�). This tells us that f is increasing for 0 < � < ln(�) and decreasing for � > ln(�). So the

maximum is at � = ln(�). Now we note that

f(ln(�)) = ln(�) � � � � + 1 :

This is exactly what we called g(�), so the proof is complete.

The technique of this proof is the one used in all proofs of Cherno�-type bounds, with minor

variations. It is useful to know it so that you can derive your own bounds if necessary.

4 Tail inequalities for pairwise independent random variables

Pairwise independence means that we cannot infer anything extra about Xi given Xj where j 6= i,

even though we might be able to infer something or even everything about Xi if we were given Xj

and Xk where i; j; k are distinct.
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De�nition 7 We say that X1; : : : ;Xn are pairwise independent random variables if for every 1 �

i < j � n and every a; b 2 R we have

Pr [Xi = a and Xj = b ] = Pr [Xi = a ] � Pr [Xj = b ] :

The tail inequality for such random variables makes use of the fact that the variance of a sum of

pairwise independent random variables behaves exactly like the variance of a sum of independent

random variables: it is the sum of the individual variances.

Lemma 8 Let X1; : : : ;Xn be pairwise independent random variables. Then

Var [X1 + � � �+Xn] =Var [X1] + � � �+Var [Xn] :

Proof of Lemma 8: Use the formula for the variance and the linearity of expectation to get

Var [X1 + � � �+Xn] = E
h
(X1 + � � �+Xn)

2

i
�E [X1 + � � � +Xn]

2

= E [(X1 + � � �+Xn)(X1 + � � �+Xn)]� (E [X1] + � � �+E [Xn])
2

= E
hP

i;j XiXj

i
�
X
i;j

E [Xi] � E [Xj ]

=
X
i;j

E [XiXj ]�
X
i;j

E [Xi] �E [Xj ]

=
X
i

E
h
X

2

i

i
+
X
i6=j

E [XiXj]�
X
i

E [Xi]
2
�
X
i6=j

E [Xi] � E [Xj ]

=
X
i

�
E
h
X

2

i

i
�E [Xi]

2
�
+
X
i6=j

(E [XiXj ]�E [Xi] �E [Xj ])

=
X
i

Var [Xi] +
X
i6=j

(E [XiXj ]�E [Xi] � E [Xj ]) :

The pairwise independence means that E [XiXj ] = E [Xi] �E [Xj ] whenever i 6= j. Thus the second

sum above is zero, and we are done.

We can now obtain the tail inequality by applying Chebyshev's inequality.

Lemma 9 Let X1; : : : ;Xn be pairwise independent random variables, let X = X1 + � � � +Xn, let

A > 0 be a real number, and let � = E [X]. Then

Pr [ jX � �j > A ] �
Var [X1] + � � �+Var [Xn]

A2
:

Proof of Lemma 9: Proposition 2 tells us that

Pr [ jX � �j > A ] �
Var [X]

A2
:

Now apply Lemma 8.
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