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Problem Set 6 Solutions

Problem 1 [40 points] Let p ≥ 3 be a prime and g ∈ Z∗
p a generator of Z∗

p. (These are public
quantities, known to all parties including the adversary.) Consider the key-generation and encryp-
tion algorithms below:

Algorithm K

x
$
← Z∗

p−1

X ← gx mod p

return (X,x)

Algorithm E(X,M)
if M 6∈ Z∗

p then return ⊥

y
$
← Zp−1 ; Y ← gy mod p

Z ← Xy mod p ; W ← Y ·M mod p

return (Z,W )

The message space associated to public key X is Messages(X) = Z∗
p. We let k be the bit-length

of p.

1. [10 points] Specify a decryption algorithm D such that AE = (K, E ,D) is an asymmetric
encryption scheme satisfying the correct decryption property. State the running time of your
algorithm as a function of k (the lower this is, the more credit you get) and prove that the
correct decryption property holds.

The decryption algorithm takes input the secret key x and a ciphertext C = (Z,W ) and must
return the underlying message M . It works as follows:

algorithm D(x,C)
Parse C as (Z,W )
s← x−1 mod (p− 1)
Y ← Zs mod p

M ←W · Y −1 mod p

return M

Note that in the key-generation algorithm x is chosen from Z∗
p−1 (and not Zp−1). This implies

that x has an inverse modulo p − 1. The decryption algorithm begins by computing this
inverse and denoting it by s. The fact that s is the inverse of x modulo p − 1 means that
xs mod (p− 1) = 1.

Now, to show that the decryption algorithm is correct we have to show that

D(x, E(X,M)) = M

for any M ∈ Z∗
p. Let C = (Z,W ) be an output of E(X,M). We want to show that D(x,C) =

M . Let y be the value chosen by the encryption algorithm such that Y = gy mod p. Then
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Z = Xy = gxy mod p. Now, we first claim that Y is correctly re-computed by the decryption
algorithm. This is true because modulo p we have:

Zs ≡ (gxy)s ≡ gxys mod (p−1) ≡ g1·y mod (p−1) ≡ gy ≡ Y .

Since W = Y M mod p, the decryption algorithm, knowing Y , can recover M via M ←

WY −1 mod p.

The decryption algorithm performs one modular exponentiation, which is O(k3); a couple of
modular inverses, each of which is O(k2); and a modular multiplication, which is O(k2). So
its running time is O(k3).

2. [30 points] Show that this scheme is insecure with regard to the ind-cpa property by present-

ing an adversary A such that Advind-cpa
AE

(A) is high. You should specify the adversary, state
its running time in as a function of k (the smaller this is, the more credit you get), state the
value of its advantage (the larger this is, the more credit you get) and justify the correctness
of the adversary.

As for the El Gamal scheme studied in class, the weakness of this scheme is that given the
public key X and a ciphertext C = (Z,W ) an adversary can compute the Jacobi symbol of the
message M . To illustrate this, let y be the value chosen at random by the encryption algorithm
in its computation on input M and output C. Let Y = gy mod p and Z = Xy mod p. Then
we have the following equations, which we justify following their statements:

Jp(M) = Jp(WY −1 mod p) (1)

= Jp(W ) · Jp(Y
−1 mod p) (2)

= Jp(W ) · Jp(Y ) (3)

= Jp(W ) · Jp(Z) . (4)

Let us explain the reasoning behind the equations above. Equation (1) is true because the
4th line of the encryption algorithm tells us that M = WY −1 mod p. Equation (2) is true
because of the Proposition we saw in class stating that Jp(ab mod p) = Jp(a) · Jp(b) for
all a, b ∈ Z∗

p. Equation (3) is true because of the Proposition we saw in class stating that
Jp(a) = Jp(a

−1 mod p) for all a ∈ Z∗
p. Finally, we claim that Jp(Y ) = Jp(Z), which justifies

Equation (4). Why is this claim true? We know that Z ≡ Xy ≡ gxy (mod p). Observe that
x is an odd number. (Why? The key-generation algorithm tells us that x ∈ Z∗

p−1, meaning
gcd(x, p − 1) = 1. But p is odd so p − 1 is even, and so x must be odd, else gcd(x, p − 1)
would be at least two.) Since x is odd, xy mod (p−1) is even if and only if y is even. In other
words, gxy mod p is a square iff gy mod p is a square. That is, Jp(g

xy mod p) = Jp(g
y) mod p.

But Z = gxy mod p and Y = gy mod p so we have justified the claim that Jp(Y ) = Jp(Z) and
hence justified Equation (4).

The import of Equation (4) is that Jp(M) can be computed if we know Jp(W ) and Jp(Z). But
W,Z are part of the ciphertext and so an adversary can compute Jp(W ) and Jp(Z). Thus an
adversary can compute Jp(M) given the (public key and) the ciphertext, which is a security
weakness in the scheme.

We capitalize on this in the same was as in the attack on the El Gamal scheme. Our adversary
A has access to the oracle LR(·, ·), takes input the public key X, and proceeds as follows:
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adversary A(X)

M0 ← g ; M1 ← g2 mod p

C
$
← LR(M0,M1)

Parse C as (Z,W )
if Jp(W ) · Jp(Z) = 1 then d← 1 else d← 0
return d

The adversary picks M0 to be a non-square, meaning Jp(M0) = −1, and picks M1 to be
a square, meaning Jp(M1) = 1. It then computes Jp(Mb) via Equation (4), where b is the
challenge bit chosen in the experiment. If this value is 1 it knows that the chosen message
was M1, and if not it knows that the chosen message was M0.

To see how well this adversary does, we need to compute its advantage

Advind-cpa
AE

(A) = Pr
[

RightA
AE ⇒ 1

]

− Pr
[

LeftAAE ⇒ 1
]

.

Assume b = 1. This means that the ciphertext C = (Z,W ) obtained by A above is an

encryption of M1, meaning the experiment generated it via C
$
←E(X,M1). The Equation (4)

tells us that Jp(W ) · Jp(Z) = Jp(M1). We know the latter is 1 because M1 = g2 mod p. So A

returns 1. In other words, Pr
[

RightA
AE1⇒ 1

]

= 1.

On the other hand, assume b = 0. This means that the ciphertext C = (Z,W ) obtained by A

above is an encryption of M0, meaning the experiment generated it via C
$
←E(X,M0). The

Equation (4) tells us that Jp(W ) ·Jp(Z) = Jp(M0). We know the latter is −1 because M0 = g.

So A returns 0. In other words, Pr
[

LeftAAE ⇒ 1
]

= 0.

Now, plugging this into the advantage formula we get

Advind-cpa
AE

(A) = 1− 0 = 1 .

The running time of the adversary is O(k3) since it does some Jacobi symbol computations
and these are modular exponeniations via the formula Jp(a) ≡ a(p−1)/2 (mod p), valid for
all a ∈ Z∗

p, that we proved in class.

3


