
Computer Science and Engineering, UCSD Fall 10
CSE 107: Introduction to Modern Cryptography Instructor: Mihir Bellare
Problem Set 5 Solutions November 8, 2010

Problem Set 5 Solutions

Problem 1. [40 points] Let E: {0, 1}k × {0, 1}l → {0, 1}l be a secure block cipher, where
k, l ≥ 128. Let K be the key-generation algorithm that returns a random k-bit key K. Let

Plaintexts = {M ∈ {0, 1}l : 0 < |M | < l2l and |M | mod l = 0 } .

Let T ,V be the following tagging and verification algorithms:

algorithm TK(M)
if M 6∈ Plaintexts then return ⊥
Break M into l bit blocks, M = M [1] . . . M [n]
M [n + 1]← 〈n〉
C[0]← 0l

for i = 1, . . . , n + 1 do
C[i]← EK(C[i− 1] ⊕M [i])

return C[n + 1]

algorithm VK(M,σ)
if M 6∈ Plaintexts then return 0
if σ = TK(M) then return 1
else return 0

Above, 〈n〉 denotes the l-bit binary representation of the integer n.

Show thatMA = (K,T ,V) is an insecure message-authentication scheme by presenting a practical
adversary A such that Advuf-cma

MA (A) = 1. Say how many queries A makes to each of its oracles,
and what is its running time. (The number of points you get depends on these quantities.)

Dicsussion. We saw that the CBC-MAC is not secure when one wants to authenticate strings of
varying length. The above is a possible fix, which appends the number of blocks in the message
to the message before computing the CBC-MAC. Your task is to show that this fix does not work,
meaning the scheme is still insecure.

Recall that the adversary is given oracles Tag(·) and Verify(·, ·). Our adversary A proceeds as
follows:

adversary A

Tag0 ← Tag(0l)
Tag1 ← Tag(0l ‖ 〈1〉 ‖ Tag0)
d← Verify(0l ‖ 〈3〉 ‖Tag1,Tag1)

This adversary makes two queries to its Tag(·) oracle and one to its Verify(·, ·) oracle, and has
running time O(l) plus the time for the computations of responses to oracle queries. We claim that
Advuf-cma

MA (A) = 1. Let us now justify this. We let Z = EK(0). Then notice that

Tag0 = EK(Z ⊕ 〈1〉)

Tag1 = EK(Z ⊕ 〈3〉) .

1



However, it is also the case that

TK(0l ‖ 〈3〉 ‖ Tag1) = EK(Z ⊕ 〈3〉) .

Thus VK will accept Tag1 as the tag for 0l ‖ 〈3〉 ‖ Tag1.

Problem 2. [40 points] Consider the following computational problem:

Input: N, a, b, x, y where N ≥ 1 is an integer, a, b ∈ Z∗
N and x, y are integers with 0 ≤ x, y < N

Output: axby mod N

Let k = |N |. The naive algorithm for this first computes ax mod N , then computes by mod N ,
and multiplies them modulo N . This has a worst case cost of 4k + 1 multiplications modulo N .
Design an alternative, faster algorithm for this problem that uses at most 2k + 1 multiplications
modulo N .

Let us first explain the claim about the naive algorithm. On inputs N, a, b, x, y it would do the
following:

A← MOD-EXP(a, x,N)
B ← MOD-EXP(b, y,N)
z ← MOD-MULT(A,B,N)
Return z

The algorithm MOD-EXP was presented in class and is shown in the slides for the Computational
Number Theory chapter. It is the special case of algorithm EXPG when the group G is Z∗

N . Each
iteration of the for loop of that algorithm uses two modular multiplications in the worst case, the
first to obtain w = y2 mod N from y and the second to obtain w ·abi mod N . Thus, MOD-EXP uses
2k modular multiplications in all. So the above naive algorithm uses 4k+1 modular multiplications.

The faster algorithm extends the ideas of EXPG. It works as follows:

Alg FASTEXP(N, a, b, x, y)
Let xk−1 . . . x1x0 be the binary representation of x

Let yk−1 . . . y1y0 be the binary representation of y

c← ab mod N

z ← 1
for i = k − 1 downto 0 do

if xi = 1 and yi = 1 then z ← z2 · c mod N

if xi = 1 and yi = 0 then z ← z2 · a mod N

if xi = 0 and yi = 1 then z ← z2 · b mod N

if xi = 0 and yi = 0 then z ← z2 mod N

return z

Since 0 ≤ x, y < N and N is k-bits long, we know that x and y are also at most k bits long.
Therefore, the number of iterations for the loop is at most k. Since each loop incurs at most two
modular multiplications, the total number of multiplications in the for loop is 2k. Adding the

2



one multiplication done on the 4th line of the code to get c, we have that the total number of
multiplications for FASTEXP is 2k + 1 as desired.

3


