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Problem Set 4 Solutions

Problem 1. [20 points] Define the family of functions H: {0, 1}64 × {0, 1}192 → {0, 1}128 as
follows:

function HK(x)
a ‖ b← x

y ← AESK ‖ a(b)

return y

Here, a ‖ b ← x means we split x as x = a ‖ b with |a| = 64 and |b| = 128. Show that H is not
collision-resistant by presenting a practical adversary A such that Advcr

H(A) is close to one. (The
better the attack, the more points you get.)

The first thing to do is look at the definition of collision-resistance. The game shows us that the
adversary gets as input the randomly chosen key K defining the particular instance HK of the
family H that it is attacking. Now we use the fact that AES is a block cipher and thus given K ‖a1

one can easily compute AES
−1

K ‖ a1
. The adversary with input the key K proceeds as follows:

adversary A(K)

Let a1, a2 be two different 64-bit strings and let b1 be any 128-bit string

h← AESK ‖ a1
(b1) ; b2 ← AES

−1

K ‖ a2
(h)

x1 ← a1 ‖ b1 ; x2 ← a2 ‖ b2

return x1, x2

This adversary is very practical, using only two AES or AES
−1 computations. We claim that the

x1, x2 it returns is a collision for HK , which means that Advcr
H(A) = 1. The claim is true because

AESK ‖ a2
(b2) = AESK ‖ a2

(AES
−1

K ‖ a2
(h)) = h = AESK ‖ a1

(b1) ,

and also a1, a2 being different implies x1 6= x2.

Problem 2. [30 points] Let h: K×{0, 1}2b → {0, 1}b be a compression function. Define H: K×
{0, 1}4b → {0, 1}b as follows:

function H(K,M)
M1 ‖M2 ←M

V1 ← h(K,M1) ; V2 ← h(K,M2)
V ← h(K,V1 ‖ V2)
return V

1



adversary Ah(K)

Run AH(K) to get its output (y1, y2)

Parse y1 as M1,1 ‖M1,2 where |M1,1| = |M1,2| = 2b

Parse y2 as M2,1 ‖M2,2 where |M2,1| = |M2,2| = 2b

V1,1 ← h(K,M1,1) ; V1,2 ← h(K,M1,2)

V2,1 ← h(K,M2,1) ; V2,2 ← h(K,M2,2)

V1 ← h(K,V1,1 ‖ V1,2)

V2 ← h(K,V2,1 ‖ V2,2)

If (V1 6= V2 OR y1 = y2) return FAIL // AH did not find a collision, so neither will Ah

If V1,1 ‖ V1,2 6= V2,1 ‖ V2,2 then return (V1,1 ‖ V1,2, V2,1 ‖ V2,2)

If M1,1 6= M2,1 then return (M1,1,M2,1)

If M1,2 6= M2,2 then return (M1,2,M2,2)

Figure 1: Adversary Ah for the proof of the theorem.

Here, M1 ‖M2 ← M means we split M as M = M1 ‖M2 with |M1| = |M2| = 2b. Show that if h

is collision-resistant then so is H. Do this by stating and proving an analogue of the Theorem in
class, which also appears as Theorem 6.8 in the course notes.

Theorem: Let h,H be as above. Suppose we are given an adversary AH that attempts to find
collisions in H. Then we can construct an adversary Ah that attempts to find collisions in h, and

Advcr
H(AH) ≤ Advcr

h (Ah) . (1)

Furthermore, the running time of Ah is that of AH plus the time to perform 6 computations of h.

This theorem says that if h is collision-resistant then so is H. Why? Let AH be a practical adversary
attacking H. Then Ah is also practical, because its running time is that of AH plus a little more,
namely the time for 6 computations of h. But h is collision-resistant so we know that Advcr

h (Ah)
is low. Equation (1) then tells us that Advcr

H(AH) is low, meaning H is collision-resistant as well.

Proof of theorem: We follow the proof of Theorem 6.8 in the notes. Adversary Ah, taking input
a key K ∈ K, is depicted in Fig. 1. It runs AH on input K to get a pair (y1, y2) of messages, each
4b bits long. We claim that if y1, y2 is a collision for HK then Ah will return a collision for hK .

Adversary Ah computes V1 = HK(y1) and V2 = HK(y2). If y1, y2 is a collision for HK then we
know that V1 = V2. Let us assume this. Now, let us look at the inputs to the application of hK

that yielded these outputs. These are V1,1 ‖ V1,2 and V2,1 ‖ V2,2. If these inputs are different, they
form a collision for hK , and Ah outputs them.

If they are not different then we know that V1,1 = V2,1 and V1,2 = V2,2. That V1,1 = V2,1 means
that h(K,M1,1) = h(K,M2,1). So M1,1,M2,1 form a collision for h unless they happen to be equal.
Similarly, that V1,2 = V2,2 means that h(K,M1,2) = h(K,M2,2) and so M1,2,M2,2 form a collision
for h unless they happen to be equal. Adversary Ah checks for these equalities and returns an
unequal pair. The key point is that we cannot have both M1,1 = M2,1 and M1,2 = M2,2 since that
would imply y1 = y2, but we know that y1 6= y2 because it is a collision for HK .
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Problem 3. [20 points] Let sha1: {0, 1}672 → {0, 1}160 be the compression function underlying
the SHA1 hash function. We define a message authentication scheme MA = (K,T ,V) as follows.
The key generation algorithm returns a random 160 bit string as the key K, and the tagging and
verifying algorithms are:

Algorithm TK(M)
M [1] . . . M [n]←M

C[0]← K

For i = 1, . . . , n do
C[i]← sha1(C[i− 1] ‖M [i])

Return C[n]

Algorithm VK(M,σ)
If σ = TK(M) then return 1
Else return 0

Above, M [1] . . . M [n] ← M means we break M = M [1] . . . M [n] into 512-bit blocks. The message
space is the set of all strings whose length is a positive multiple of 512. Present a practical chosen-
message attack that succeeds in forgery using one query to the tagging oracle.

adversary A

x← 0512

y ← Tag(x)

T ← sha1(y ‖ 1512)

return (0512 ‖ 1512, T )

We have

y = sha1(K ‖ 0512)

T = sha1(y ‖ 1512)

= TK(0512 ‖ 1512)

So Advuf-cma
MA (A) = 1.
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