Problem Set 2 Solutions

Problem 1. [30 points] Let K by a 56 -bit DES key and L a 64 -bit auxiliary key. For any 64 -bit plaintext M let

$$
\operatorname{DESY}(K \| L, M)=\operatorname{DES}(K, L \oplus M) .
$$

This defines a family of functions DESY: $\{0,1\}^{120} \times\{0,1\}^{64} \rightarrow\{0,1\}^{64}$.
(a) [8 points] Show that DESY is a block cipher.

A block cipher is a map $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ for some k, n with the property of being invertible, namely given K, C there is a unique M such that $E(K, M)=C$. This M is denoted $E^{-1}(K, C)$ and must be easily computable given K, C.
The DESY map has the desired form with $k=120$ and $n=64$. The important thing is to show it is invertible. This is true because DES itself is invertible. We observe that if $\operatorname{DESY}(K \| L, M)=C$ then M can be recovered via

$$
M=\mathrm{DES}^{-1}(K, C) \oplus L
$$

Accordingly, DESY has as inverse

$$
\operatorname{DESY}^{-1}(K \| L, C)=\operatorname{DES}^{-1}(K, C) \oplus L
$$

This is easily computable given the key $K \| L$.
(b) [22 points] Let $\left(M_{1}, C_{1}\right),\left(M_{2}, C_{2}\right)$ be input-output examples of DESY under a random 120bit target key $K \| L$. Present an attack that given $\left(M_{1}, C_{1}\right),\left(M_{2}, C_{2}\right)$ recovers the target key using at most 2^{57} computations of DES or DES ${ }^{-1}$. (As usual, the job is actually only to recover a key consistent with the input-output examples, but in practice this is typically equally to the target key.)

Let $T_{1}, \ldots, T_{2^{56}}$ denote a listing of all 56 -bit DES keys. The attack is:
For $i=1, \ldots, 2^{56}$ do
$L \leftarrow M_{1} \oplus \operatorname{DES}^{-1}\left(T_{i}, C_{1}\right)$
If $\operatorname{DES}\left(T_{i}, L \oplus M_{2}\right)=C_{2}$ then return $T_{i} \| L$
If $T_{i} \| L$ is returned by the attack, then this key is consistent with the input-output examples. The attack uses 2^{56} DES computations and 2^{56} DES $^{-1}$ computations.

Problem 2. [50 points] Let $F:\{0,1\}^{k} \times\{0,1\}^{l} \rightarrow\{0,1\}^{l}$ be a family of functions and let $r \geq 1$
be an integer. The r-round Feistel cipher associated to F is the family of functions $F^{(r)}:\{0,1\}^{k} \times$ $\{0,1\}^{2 l} \rightarrow\{0,1\}^{2 l}$, defined as follows for any key $K \in\{0,1\}^{k}$ and input $x \in\{0,1\}^{2 l}-$

Function $F^{(r)}(K, x)$
Parse x as $L_{0} R_{0}$ with $\left|L_{0}\right|=\left|R_{0}\right|=l$
For $i=1, \ldots, r$ do
$L_{i} \leftarrow R_{i-1} ; R_{i} \leftarrow F\left(K, R_{i-1}\right) \oplus L_{i-1}$
Return $L_{r} R_{r}$

1. [20 points] Show that $F^{(1)}$ is not a secure PRF by presenting a practical adversary A such that $\operatorname{Adv}_{F^{(1)}}^{\mathrm{prf}}(A)$ is close to one.

Adversary A, as per the definition of the PRF game, has access to an oracle for a function Fn: $\{0,1\}^{2 l} \rightarrow\{0,1\}^{2 l}$. It is trying to determine whether $\mathbf{F n}=F_{K}^{(1)}$ for some K or $\mathbf{F n}$ was chosen at random. It works as follows:

Adversary A
$x_{1} \leftarrow 1^{2 l}$
$y \leftarrow \mathbf{F n}\left(x_{1}\right)$
Parse y as $L R$, where $|L|=|R|=l$
If $L=1^{l}$ then return 1 else return 0
The advantage of A is by definition

$$
\operatorname{Adv}_{F^{(1)}}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F^{(1)}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{2 l}}^{A} \Rightarrow 1\right]
$$

We claim that the first term above is equal to 1 and the second term is equal to 2^{-l}. (And thus the advantage of our adversary is $1-2^{-l}$, which is almost 1.) To justify our claim, consider the first term. Here, we are asking what is the probability that A outputs 1 given that it is in game Real, meaning its oracle $\mathbf{F n}$ is a random instance of the family $F^{(1)}$. Due to the fact that $L_{1}=R_{0}$ in the code of $F^{(1)}$, the condition that A tests will always be true, so it will always output 1 in game Real. Now, consider the second term above. Here, we are asking what is the probability that A outputs 1 given that it is in game Rand, meaning its oracle Fn is a random function of $2 l$ bits to $2 l$ bits. In that case, there is a slight possibility that $\mathbf{F n}$ will output a string that begins with l ones, causing A to output 1 . Specifically, the probability of this event is 2^{-l}.
Adversary A is practical because it makes only one oracle query and has running time $O(l)$.
2. [30 points] Show that $F^{(2)}$ is not a secure PRF by presenting a practical adversary A such that $\mathbf{A d v}_{F^{(2)}}^{\mathrm{prf}}(A)$ is close to one.

Adversary A, as per the definition of the PRF game, has access to an oracle for a function Fn: $\{0,1\}^{2 l} \rightarrow\{0,1\}^{2 l}$. It is trying to determine whether $\mathbf{F n}=F_{K}^{(2)}$ for some K or $\mathbf{F n}$ was chosen at random. It works as follows:

Adversary A

```
\(x_{1} \leftarrow 0^{l} 1^{l}\)
\(y_{1} \leftarrow \mathbf{F n}\left(x_{1}\right)\)
Parse \(y_{1}\) as \(L_{1,2} R_{1,2}\), where \(\left|L_{1,2}\right|=\left|R_{1,2}\right|=l\)
\(x_{2} \leftarrow L_{1,2} 1^{l}\)
\(y_{2} \leftarrow \mathbf{F n}\left(x_{2}\right)\)
Parse \(y_{2}\) as \(L_{2,2} R_{2,2}\), where \(\left|L_{2,2}\right|=\left|R_{2,2}\right|=l\)
If \(L_{2,2}=0^{l}\) then return 1 else return 0
```

The advantage of A is by definition

$$
\operatorname{Adv}_{F^{(2)}}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F^{(2)}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{2 l}}^{A} \Rightarrow 1\right] .
$$

We claim that the first term above is equal to 1 and the second term is equal to 2^{-l}. (And thus the advantage of our adversary is $1-2^{-l}$, which is almost 1.) To justify our claim, consider the first term. Here, we are asking what is the probability that A outputs 1 given that it is in game Real, meaning its oracle $\mathbf{F n}$ is a random instance of the family $F^{(2)}$. Note that, in game Real, the left half of y_{1} will be $L_{1,2}=F_{K}\left(1^{l}\right) \oplus 0^{l}=F_{K}\left(1^{l}\right)$. In the second query, A uses this value as the left half of the input to $\mathbf{F n}$, so it gets xor-ed with the value of the function at the right half of x_{2}. But A chose the right half to be 1^{l}, so $F_{K}\left(1^{l}\right)$ is xor-ed with itself in the first round. Since any value xor-ed with itself is 0^{l}, and the right half of the first round's result is propagated to the left hand side of the output, we know that the left half of y_{2} will be 0^{l}. Now, consider the second term above. Here, we are asking what is the probability that A outputs 1 given that it is in game Rand, meaning its oracle $\mathbf{F n}$ is a random function of $2 l$ bits to $2 l$ bits. In that case, there is a slight possibility that $\mathbf{F n}$ will output a string that begins with $l 0$'s, causing A to output 1 . Specifically, the probability of this event is 2^{-l}.
Adversary A is practical because it makes only two oracle queries and has running time $O(l)$.
For both (1) and (2) above, say what is the advantage achieved by your adversary. Also say what is its running time and the number of oracle queries it makes.

