Problem Set 5

Due: Monday November 8, 2010, in class.
See course information section (on course web page) for instructions and rules on working on problem sets and turning them in.

Problem 1. [40 points] Let $E:\{0,1\}^{k} \times\{0,1\}^{l} \rightarrow\{0,1\}^{l}$ be a secure block cipher, where $k, l \geq 128$. Let \mathcal{K} be the key-generation algorithm that returns a random k-bit key K. Let

$$
\text { Plaintexts }=\left\{M \in\{0,1\}^{l}: 0<|M|<l 2^{l} \text { and }|M| \bmod l=0\right\} .
$$

Let \mathcal{T}, \mathcal{V} be the following tagging and verification algorithms:

$$
\begin{array}{l|l}
\text { algorithm } \mathcal{T}_{K}(M) & \text { algorithm } \mathcal{V}_{K}(M, \sigma) \\
\text { if } M \notin \text { Plaintexts then return } \perp & \text { if } M \notin \text { Plaintexts then return } 0 \\
\text { Break } M \text { into } l \text { bit blocks, } M=M[1] \ldots M[n] & \text { if } \sigma=\mathcal{T}_{K}(M) \text { then return 1 } \\
M[n+1] \leftarrow\langle n\rangle & \text { else return } 0 \\
C[0] \leftarrow 0^{l} & \\
\text { for } i=1, \ldots, n+1 \text { do } & \\
\quad C[i] \leftarrow E_{K}(C[i-1] \oplus M[i]) & \\
\text { return } C[n+1] &
\end{array}
$$

Above, $\langle n\rangle$ denotes the l-bit binary representation of the integer n.
Show that $\mathcal{M} \mathcal{A}=(\mathcal{K}, \mathcal{T}, \mathcal{V})$ is an insecure message-authentication scheme by presenting a practical adversary A such that $\operatorname{Adv}_{\mathcal{M} \mathcal{A}}^{\text {uf-cma }}(A)=1$. Say how many queries A makes to each of its oracles, and what is its running time. (The number of points you get depends on these quantities.)

Dicsussion. We saw that the CBC-MAC is not secure when one wants to authenticate strings of varying length. The above is a possible fix, which appends the number of blocks in the message to the message before computing the CBC-MAC. Your task is to show that this fix does not work, meaning the scheme is still insecure.

Problem 2. [40 points] Consider the following computational problem:
Input: N, a, b, x, y where $N \geq 1$ is an integer, $a, b \in \mathbf{Z}_{N}^{*}$ and x, y are integers with $0 \leq x, y<N$ Output: $a^{x} b^{y} \bmod N$

Let $k=|N|$. The naive algorithm for this first computes $a^{x} \bmod N$, then computes $b^{y} \bmod N$, and multiplies them modulo N. This has a worst case cost of $4 k+1$ multiplications modulo N.

Design an alternative, faster algorithm for this problem that uses at most $2 k+1$ multiplications modulo N.

