COS 433 — Cryptography — Homework 9.

Boaz Barak

Total of 120 points. Due April 14th, 2007.

In the following two questions, we consider a zero knowledge proof system for proving statements of the form " $x \in L$ " where L is a subset (also called "language") of $\{0, 1\}^*$. (We're only concerned here with standard soundness and not knowledge soundness.) We want to show that unless it's easy to verify statements like that just from the public input x (in which case there's a trivial zero knowledge protocol where the prover doesn't say anything), then both interaction and randomization are necessary.

Exercise 1 (Interaction is necessary, 15 points). Let L be a language that is not decidable in polynomial time (that is, there is no efficient (possibly probabilistic) algorithm that on input x outputs 1 if $x \in L$ and 0 otherwise). Show that there is no *non-interactive* zero knowledge proof system for L. That is, show that if a language L has a proof system that consists of a single message from the prover to the verifier then L is decidable by a polynomial-time algorithm.

Exercise 2 (Randomness is necessary, 15 points). Let L be a language that is not decidable in polynomial-time. Show that there is no *deterministic* zero knowledge proof system for L. That is, show that if a language L has a proof system where the verifier is deterministic then L is decidable by a polynomial-sized algorithm.

In the following exercises we'll use the **Quadratic Residuosity Axiom**: the following two distributions (X, N) and (Y, N) are computationally indistinguishable where N is a random Blum integer (obtained by setting N = PQ where P, Q are two random n bit primes satisfying $P, Q = 3 \pmod{4}$, X is a random quadratic residue modulo N, and Y is a random quadratic non-residue modulo N of Jacobi symbol +1.

The Jacobi symbol of X modulo a prime P (also known as the Legendre symbol for this case), denoted by $\left(\frac{X}{P}\right)$, is +1 is X is a quadratic residue and -1 if X is not a quadratic residue. The Jacobi symbol of X modulo N = PQ, is $\left(\frac{X}{N}\right) = \left(\frac{X}{P}\right) \left(\frac{X}{Q}\right)$. There is a known polynomial-time algorithm to compute the Jacobi symbol $\left(\frac{X}{N}\right)$.

It can be easily verified that the set of $X \in \mathbb{Z}_N^*$ with $\left(\frac{X}{N}\right) = +1$ is a subgroup of \mathbb{Z}_N^* of size $|\mathbb{Z}_N^*|/2$. The Chinese remaindering theorem implies that if X is a quadratic residue modulo N than $\left(\frac{X}{N}\right) = +1$, although the quadratic residues account for only $|\mathbb{Z} *_N|/4$ of the X's with $\left(\frac{X}{N}\right) = +1$.

Exercise 3 (15 points). Prove that if N is a Blum integer, then -1 is a non-quadratic residue modulo N and $\left(\frac{-1}{N}\right) = +1$.

- **Exercise 4** (25 points). 1. Prove that the following public key cryptosystem (G, E, D) is CPA secure under the Quadratic Residuosity axiom:
 - Key generation Given security parameter n, let P, Q two n-bit prime random primes and let N = PQ. The public key is N and the secret key is P, Q.

Encrypt To encrypt a bit $b \in \{0,1\}$, choose $X \leftarrow_{\mathbb{R}} \mathbb{Z}_N^*$ and output $X^2(-1)^b \pmod{N}$.

- **Decrypt** To decrypt $Y \in \mathbb{Z}_N^*$, output 0 if Y is a quadratic residue and 1 otherwise. (Knowing the factorization, quadratic residuosity can be tested using Chinese remaindering.)
- 2. Prove that there is an algorithm that given the public key N and two ciphertexts $Y, Y' \in \mathbb{Z}_N^*$ that decrypt to b, b', outputs Z such that Z is identically distributed to an encryption of $b \oplus b'$ (where \oplus denotes XOR). This property is called being *homomorphic* with respect to XOR. Does this property contradict CPA security? how about CCA security? This cryptosystem is due to Goldwasser and Micali.

Exercise 5 (50 points). In the "cloud computing problem" we think of a user Alice that wishes to store a large database on the cloud of the server Bob, but doesn't wish Bob to learn anything about Alice's data. Specifically, we think of the database as just a very long string $A \in \{0, 1\}^M$. We'll think of M as being much larger than the key size/security parameter n we use for our cryptosystems etc.. A cloud computing protocol consists of the following:

- (Uploading phase) Alice uploads the database to Bob by sending him a string \hat{A} . She may keep a small state of poly(n) bits to herself where n is the security parameter, but she does not have memory to store the entire M bit long database on her own.
- (Recovery phase) Later, if Alice wants to recover A_i for some $i \in [M]$, she sends a message \hat{i} to Bob, and gets back a message \hat{b} from Bob. She should be able to obtain x_i from \hat{b} (and her own state) by some efficient procedure.

The security notion for this protocol is that for every $A, A' \in \{0, 1\}^M$ and $i, i' \in [M]$, the messages that Alice sends when uploading A and querying i are indistinguishable from the messages she sends when uploading A' and querying i'. (This simplified security notion is just protecting against passive/eavesdropping attacks by Bob— in real life we'd want to protect against active attacks as well.) We require Bob, Alice to run in polynomial time in n, M.

- 1. Show that there exists a secure cloud computing protocol.
- 2. Consider the following variant of cloud computing, where we think of the database A as a \sqrt{M} by \sqrt{M} matrix over GF(2) and *i* as a vector in $GF(2)^{\sqrt{M}}$, and Alice wished to recover the vector A*i*. Show that there is a secure cloud computing protocol for this variant, where the length of the messages exchanged between Alice and Bob in the recovery phase is at most \sqrt{M} poly(*n*).
- 3. Show that there exists a secure cloud computing protocol (in the standard sense) where the length of the messages exchanged between Alice and Bob in the recovery phase is at most \sqrt{M} poly(n).