
Chapter 10

Number-Theoretic Primitives

Number theory is a source of several computational problems that serve as primitives in the design
of cryptographic schemes. Asymmetric cryptography in particular relies on these primitives. As
with other beasts that we have been calling “primitives,” these computational problems exhibit
some intractability features, but by themselves do not solve any cryptographic problem directly
relevant to a user security goal. But appropriately applied, they become useful to this end. In
order to later effectively exploit them it is useful to first spend some time understanding them.

This understanding has two parts. The first is to provide precise definitions of the various
problems and their measures of intractability. The second is to look at what is known or conjectured
about the computational complexity of these problems.

There are two main classes of primitives. The first class relates to the discrete logarithm problem
over appropriate groups, and the second to the factoring of composite integers. We look at them
in turn.

This chapter assumes some knowledge of computational number theory as covered in the chapter
on Computational Number Theory.

10.1 Discrete logarithm related problems

Let G be a cyclic group and let g be a generator of G. Recall this means that G = {g0, g1, . . . , gm−1},
where m = |G| is the order of G. The discrete logarithm function DLogG,g : G→ Zm takes input a
group element a and returns the unique i ∈ Zm such that a = gi. There are several computational
problems related to this function that are used as primitives.

10.1.1 Informal descriptions of the problems

The computational problems we consider in this setting are summarized in Fig. 10.1. In all cases,
we are considering an attacker that knows the group G and the generator g. It is given the
quantities listed in the column labeled “given,” and is trying to compute the quantities, or answer
the question, listed in the column labeled “figure out.”

The most basic problem is the discrete logarithm (DL) problem. Informally stated, the at-
tacker is given as input some group element X, and must compute DLogG,g(X). This problem is
conjectured to be computationally intractable in suitable groups G.

2 NUMBER-THEORETIC PRIMITIVES

Problem Given Figure out

Discrete logarithm (DL) gx x

Computational Diffie-Hellman (CDH) gx, gy gxy

Decisional Diffie-Hellman (DDH) gx, gy, gz Is z ≡ xy (mod |G|)?

Figure 10.1: An informal description of three discrete logarithm related problems over a cyclic
group G with generator g. For each problem we indicate the input to the attacker, and what the
attacker must figure out to “win.” The formal definitions are in the text.

One might imagine “encrypting” a message x ∈ Zm by letting gx be the ciphertext. An
adversary wanting to recover x is then faced with solving the discrete logarithm problem to do so.
However, as a form of encryption, this has the disadvantage of being non-functional, because an
intended recipient, namely the person to whom the sender is trying to communicate x, is faced
with the same task as the adversary in attempting to recover x.

The Diffie-Hellman (DH) problems first appeared in the context of secret key exchange. Suppose
two parties want to agree on a key which should remain unknown to an eavesdropping adversary.
The first party picks x $← Zm and sends X = gx to the second party; the second party correspond-
ingly picks y $← Zm and sends Y = gy to the first party. The quantity gxy is called the DH-key
corresponding to X,Y . We note that

Y x = gxy = Xy . (10.1)

Thus the first party, knowing Y, x, can compute the DH key, as can the second party, knowing X, y.
The adversary sees X,Y , so to recover the DH-key the adversary must solve the Computational
Diffie-Hellman (CDH) problem, namely compute gxy given X = gx and Y = gy. Similarly, we will
see later a simple asymmetric encryption scheme, based on Equation (10.1), where recovery of the
encrypted message corresponds to solving the CDH problem.

The obvious route to solving the CDH problem is to try to compute the discrete logarithm of
either X or Y and then use Equation (10.1) to obtain the DH key. However, there might be other
routes that do not involve computing discrete logarithms, which is why CDH is singled out as a
computational problem in its own right. This problem appears to be computationally intractable
in a variety of groups.

We have seen before that security of a cryptographic scheme typically demands much more than
merely the computational intractability of recovery of some underlying key. The computational
intractability of the CDH problem turns out to be insufficient to guarantee the security of many
schemes based on DH keys, including the secret key exchange protocol and encryption scheme
mentioned above. The Decisional Diffie-Hellman (DDH) problem provides the adversary with a
task that can be no harder, but possibly easier, than solving the CDH problem, namely to tell
whether or not a given group element Z is the DH key corresponding to given group elements X,Y .
This problem too appears to be computationally intractable in appropriate groups.

We now proceed to define the problems more formally. Having done that we will provide more
specific discussions about their hardness in various different groups and their relations to each
other.

Bellare and Rogaway 3

10.1.2 The discrete logarithm problem

The description of the discrete logarithm problem given above was that the adversary is given as
input some group element X, and is considered successful if it can output DLogG,g(X). We would
like to associate to a specific adversary A some advantage function measuring how well it does in
solving this problem. The measure adopted is to look at the fraction of group elements for which
the adversary is able to compute the discrete logarithm. In other words, we imagine the group
element X given to the adversary as being drawn at random.

Definition 10.1.1 Let G be a cyclic group of order m, let g be a generator of G, and let A be an
algorithm that returns an integer in Zm. We consider the following experiment:

Experiment Expdl
G,g(A)

x
$← Zm ; X ← gx

x← A(X)
If gx = X then return 1 else return 0

The dl-advantage of A is defined as

Advdl
G,g(A) = Pr

[

Expdl
G,g(A) = 1

]

.

Recall that the discrete exponentiation function takes input i ∈ Zm and returns the group element
gi. The discrete logarithm function is the inverse of the discrete exponentiation function. The
definition above simply measures the one-wayness of the discrete exponentiation function according
to the standard definition of one-way function. It is to emphasize this that certain parts of the
experiment are written the way they are.

The discrete logarithm problem is said to hard in G if the dl-advantage of any adversary of
reasonable resources is small. Resources here means the time-complexity of the adversary, which
includes its code size as usual.

10.1.3 The Computational Diffie-Hellman problem

As above, the transition from the informal description to the formal definition involves considering
the group elements X,Y to be drawn at random.

Definition 10.1.2 Let G be a cyclic group of order m, let g be a generator of G, and let A be an
algorithm that returns an element of G. We consider the following experiment:

Experiment Expcdh
G,g(A)

x $← Zm ; y $← Zm

X ← gx ; Y ← gy

Z ← A(X,Y)
If Z = gxy then return 1 else return 0

The cdh-advantage of A is defined as

Advcdh
G,g(A) = Pr

[

Expcdh
G,g(A) = 1

]

.

Again, the CDH problem is said to be hard in G if the cdh-advantage of any adversary of reasonable
resources is small, where the resource in question is the adversary’s time complexity.

4 NUMBER-THEORETIC PRIMITIVES

10.1.4 The Decisional Diffie-Hellman problem

The formalization considers a “two worlds” setting. The adversary gets input X,Y,Z. In either
world, X,Y are random group elements, but the manner in which Z is chosen depends on the
world. In World 1, Z = gxy where x = DLogG,g(X) and y = DLogG,g(Y). In World 0, Z is chosen
at random from the group, independently of X,Y . The adversary must decide in which world it is.
(Notice that this is a little different from the informal description of Fig. 10.1 which said that the
adversary is trying to determine whether or not Z = gxy, because if by chance Z = gxy in World 0,
we will declare the adversary unsuccessful if it answers 1.)

Definition 10.1.3 Let G be a cyclic group of order m, let g be a generator of G, let A be an
algorithm that returns a bit, and let b be a bit. We consider the following experiments:

Experiment Expddh-1
G,g (A)

x
$← Zm

y $← Zm

z ← xy mod m
X ← gx ; Y ← gy ; Z ← gz

d← A(X,Y,Z)
Return d

Experiment Expddh-0
G,g (A)

x
$← Zm

y $← Zm

z $← Zm

X ← gx ; Y ← gy ; Z ← gz

d← A(X,Y,Z)
Return d

The ddh-advantage of A is defined as

Advddh
G,g (A) = Pr

[

Expddh-1
G,g (A) = 1

]

− Pr
[

Expddh-0
G,g (A) = 1

]

.

Again, the DDH problem is said to be hard in G if the ddh-advantage of any adversary of reasonable
resources is small, where the resource in question is the adversary’s time complexity.

10.1.5 Relations between the problems

Relative to a fixed group G and generator g for G, if you can solve the DL problem then you
can solve the CDH problem, and if you can solve the CDH problem then you can solve the DDH
problem. So if DL is easy then CDH is easy, and if CDH is easy then DDH is easy. Equivalently,
if DDH is hard then CDH is hard, and if CDH is hard then DL is hard.

We note that the converses of these statements are not known to be true. There are groups
where DDH is easy, while CDH and DL appear to be hard. (We will see examples of such groups
later.) Correspondingly, there could be groups where CDH is easy but DL is hard.

The following Proposition provides the formal statement and proof corresponding to the above
claim that if you can solve the DL problem then you can solve the CDH problem, and if you can
solve the CDH problem then you can solve the DDH problem.

Proposition 10.1.4 Let G be a cyclic group and let g be a generator of G. Let Adl be an adversary
(against the DL problem). Then there exists an adversary Acdh (against the CDH problem) such
that

Advdl
G,g(Adl) ≤ Advcdh

G,g(Acdh) . (10.2)

Furthermore the running time of Acdh is the that of Adl plus the time to do one exponentiation in
G. Similarly let Acdh be an adversary (against the CDH problem). Then there exists an adversary
Addh (against the DDH problem) such that

Advcdh
G,g(Acdh) ≤ Advddh

G,g (Addh) +
1

|G| . (10.3)

Bellare and Rogaway 5

Furthermore the running time of Addh is the same as that of Acdh.

Proof of Proposition 10.1.4: Adversary Acdh works as follows:

Adversary Acdh(X,Y)
x← A(X)
Z ← Y x

Return Z

Let x = DLogG,g(X) and y = DLogG,g(y). If Adl is successful then its output x equals x. In that
case

Y x = Y x = (gy)x = gyx = gxy

is the correct output for Acdh. This justifies Equation (10.2).

We now turn to the second inequality in the proposition. Adversary Addh works as follows:

Adversary Addh(X,Y,Z)
Z ← B(X,Y)
If Z = Z then return 1 else return 0

We claim that

Pr
[

Expddh-1
G,g (Addh) = 1

]

= Advcdh
G,g(Acdh)

Pr
[

Expddh-0
G,g (Addh) = 1

]

=
1

|G| ,

which implies Equation (10.3). To justify the above, let x = DLogG,g(X) and y = DLogG,g(y). If

Acdh is successful then its output Z equals gxy, so in world 1, Addh returns 1. On the other hand
in world 0, Z is uniformly distributed over G and hence has probability 1/|G| of equalling Z.

10.2 The choice of group

The computational complexity of the above problems depends of course on the choice of group G.
(But not perceptibly on the choice of generator g.) The issues are the type of group, and also its
size. Let us look at some possibilities.

10.2.1 General groups

For any “reasonable” group G, there is an algorithm that can solve the discrete logarithm problem in
time |G|1/2 ·O(|p|3). (The exceptions are groups lacking succinct representations of group elements,
and we will not encounter such groups here.) In thinking about this running time we neglect the
|p|3 factor since it is very small compared to |G|1/2, so that we view this as a O(|G|1/2) algorithm.

There are several different algorithms with this running time. Shank’s baby-step giant-step
algorithm is the simplest, and is deterministic. Pollard’s algorithm is randomized, and, although
taking time on the same order as that taken by Shank’s algorithm, is more space efficient, and
preferred in practice.

Let us present Shank’s baby-step giant-step algorithm. Let m = |G| and let n = ⌈√m⌉.
Given X = gx we seek x. We note that there exist integers x0, x1 such that 0 ≤ x0, x1 ≤ n and

6 NUMBER-THEORETIC PRIMITIVES

x = nx1 + x0. This means that gnx1+x0 = X, or Xg−x0 = (gn)x1 . The idea of the algorithm is to
compute two lists:

Xg−b for b = 0, 1, . . . , n

(gn)a for a = 0, 1, . . . , n

and then find a group element that is contained in both lists. The corresponding values of a, b
satisfy Xg−b = (gn)a, and thus DLogG,g(X) = an + b. The details follow.

Algorithm Absgs(X)
n← ⌈√m⌉ ; N ← gn

For b = 0, . . . , n do B[Xg−b]← b
For a = 0, . . . , n do

Y ← Na

If B[Y] is defined then x0 ← B[Y] ; x1 ← a
Return ax1 + x0

This algorithm is interesting because it shows that there is a better way to compute the discrete
logarithm of X than to do an exhaustive search for it. However, it does not yield a practical discrete
logarithm computation method, because one can work in groups large enough that an O(|G|1/2)
algorithm is not really feasible. There are however better algorithms in some specific groups.

10.2.2 Integers modulo a prime

Naturally, the first specific group to consider is the integers modulo a prime, which we know is
cyclic. So let G = Z∗

p for some prime p and let g be a generator of g. We consider the different
problems in turn.

We begin by noting that the Decisional Diffie-Hellman problem is easy in this group. Some
indication of this already appeared in the chapter on Computational Number Theory. In particular
we saw there that the DH key gxy is a square with probability 3/4 and a non-square with probability
1/4 if x, y are chosen at random from Zp−1. However, we know that a random group element is
a square with probability 1/2. Thus, a strategy to tell which world we are in when given a triple
X,Y,Z is to test whether or not Z is a square mod p. If so, bet on World 1, else on World 0. (We
also know that the Jacobi symbol can be computed via an exponentiation mod p, so testing for
squares can be done efficiently, specifically in cubic time.) A computation shows that this adversary
has advantage 1/4, enough to show that the DDH problem is easy. The Proposition below presents
a slightly better attack that achieves advantage 1/2, and provides the details of the analysis.

Proposition 10.2.1 Let p ≥ 3 be a prime, let G = Z∗
p, and let g be a generator of G. Then there

is an adversary A, with running time O(|p|3) such that

Advddh
G,g (A) =

1

2
.

Proof of Proposition 10.2.1: The input to our adversary A is a triple X,Y,Z of group elements,
and the adversary is trying to determine whether Z was chosen as gxy or as a random group element,
where x, y are the discrete logarithms of X and Y , respectively. We know that if we know Jp(g

x)
and Jp(g

y), we can predict Jp(g
xy). Our adversary’s strategy is to compute Jp(g

x) and Jp(g
y) and

then see whether or not the challenge value Z has the Jacobi symbol value that gxy ought to have.
In more detail, it works as follows:

Bellare and Rogaway 7

Adversary A(X,Y,Z)
If Jp(X) = 1 or Jp(Y) = 1

Then s← 1 Else s← −1
If Jp(Z) = s then return 1 else return 0

We know that the Jacobi symbol can be computed via an exponentiation modulo p, which we know
takes O(|p|3) time. Thus, the time-complexity of the above adversary is O(|p|3). We now claim
that

Pr
[

Expddh-1
G,g (A) = 1

]

= 1

Pr
[

Expddh-0
G,g (A) = 1

]

=
1

2
.

Subtracting, we get

Advddh
G,g (A) = Pr

[

Expddh-1
G,g (A) = 1

]

− Pr
[

Expddh-0
G,g (A) = 1

]

= 1− 1

2
=

1

2
as desired. Let us now see why the two equations above are true.

Let x = DLogG,g(X) and y = DLogG,g(Y). We know that the value s computed by our adversary
A equals Jp(g

xy mod p). But in World 1, Z = gxy mod p, so our adversary will always return 1. In
World 0, Z is distributed uniformly over G, so

Pr [Jp(Z) = 1] = Pr [Jp(Z) = −1] =
(p− 1)/2

p− 1
=

1

2
.

Since s is distributed independently of Z, the probability that Jp(Z) = s is 1/2.

Now we consider the CDH and DL problems. It appears that the best approach to solving the
CDH in problem in Z∗

p is via the computation of discrete logarithms. (This has not been proved in
general, but there are proofs for some special classes of primes.) Thus, the main question is how
hard is the computation of discrete logarithms. This depends both on the size and structure of p.

The currently best algorithm is the GNFS (General Number Field Sieve) which has a running
time of the form

O(e(C+o(1))·ln(p)1/3·(ln ln(p))2/3

) (10.4)

where C ≈ 1.92. For certain classes of primes, the value of C is even smaller. These algorithms are
heuristic, in the sense that the run time bounds are not proven, but appear to hold in practice.

If the prime factorization of the order of the group is known, the discrete logarithm problem
over the group can be decomposed into a set of discrete logarithm problems over subgroups. As a
result, if p− 1 = pα1

1 · · · pαn
n is the prime factorization of p− 1, then the discrete logarithm problem

in Z∗
p can be solved in time on the order of

n
∑

i=1

αi · (
√

pi + |p|) .

If we want the discrete logarithm problem in Z∗
p to be hard, this means that it must be the case

that at least one of the prime factors pi of p− 1 is large enough that
√

pi is large.

The prime factorization of p− 1 might be hard to compute given only p, but in fact we usually
choose p in such a way that we know the prime factorization of p−1, because it is this that gives us
a way to find a generator of the group Z∗

p, as discussed in the chapter on Computational Number
Theory So the above algorithm is quite relevant.

8 NUMBER-THEORETIC PRIMITIVES

From the above, if we want to make the DL problem in Z∗
p hard, it is necessary to choose p so

that it is large and has at least one large prime factor. A common choice is p = sq + 1 where s ≥ 2
is some small integer (like s = 2) and q is a prime. In this case, p − 1 has the factor q, which is
large.

Precise estimates of the size of a prime necessary to make a discrete logarithm algorithm infeasi-
ble are hard to make based on asymptotic running times of the form given above. Ultimately, what
actual implementations can accomplish is the most useful data. In April 2001, it was announced
that discrete logarithms had been computed modulo a 120 digit (ie. about 400 bit) prime (Joux
and Lercier, 2001). The computation took 10 weeks and was done on a 525MHz quadri-processor
Digital Alpha Server 8400 computer. The prime p did not have any special structure that was
exploited, and the algorithm used was the GNFS. A little earlier, discrete logarithms had been
computed modulo a slightly larger prime, namely a 129 digit one, but this had a special structure
that was exploited [1].

Faster discrete logarithm computation can come from many sources. One is exploiting paral-
lelism and the paradigm of distributing work across available machines on the Internet. Another is
algorithmic improvements. A reduction in the constant C of Equation (10.4) has important impact
on the running time. A reduction in the exponents from 1/3, 2/3 to 1/4, 3/4 would have an even
greater impact. There are also threats from hardware approaches such as the design of special
purpose discrete logarithm computation devices. Finally, the discrete logarithm probably can be
solved in polynomial time with a quantum computer. Whether a quantum computer can be built
is not known.

Predictions are hard to make. In choosing a prime p for cryptography over Z∗
p, the security

risks must be weighed against the increase in the cost of computations over Z∗
p as a function of the

size of p.

10.2.3 Other groups

In elliptic curve groups, the best known algorithm is the O(
√

|G|) one mentioned above. Thus,
it is possible to use elliptic curve groups of smaller size than groups of integers modulo a prime
for the same level of security, leading to improved efficiency for implementing discrete log based
cryptosystem.

10.3 The RSA system

The RSA system is the basis of the most popular public-key cryptography solutions. Here we
provide the basic mathematical and computational background that will be used later.

10.3.1 The basic mathematics

We begin with a piece of notation:

Definition 10.3.1 Let N, f ≥ 1 be integers. The RSA function associated to N, f is the function
RSAN,f : Z∗

N → Z∗
N defined by RSAN,f (w) = wf mod N for all w ∈ Z∗

N .

The RSA function associated to N, f is thus simply exponentiation with exponent f in the group
Z∗

N , but it is useful in the current context to give it a new name. The following summarizes a basic
property of this function. Recall that ϕ(N) is the order of the group Z∗

N .

Bellare and Rogaway 9

Proposition 10.3.2 Let N ≥ 2 and e, d ∈ Z∗

ϕ(N) be integers such that ed ≡ 1 (mod ϕ(N)).
Then the RSA functions RSAN,e and RSAN,d are both permutations on Z∗

N and, moreover, are
inverses of each other, ie. RSA

−1
N,e = RSAN,d and RSA

−1
N,d = RSAN,e.

A permutation, above, simply means a bijection from Z∗
N to Z∗

N , or, in other words, a one-to-one,
onto map. The condition ed ≡ 1 (mod ϕ(N)) says that d is the inverse of e in the group Z∗

ϕ(N).

Proof of Proposition 10.3.2: For any x ∈ Z∗
N , the following hold modulo N :

RSAN,d(RSAN,e(x)) ≡ (xe)d ≡ xed ≡ xed mod ϕ(N) ≡ x1 ≡ x .

The third equivalence used the fact that ϕ(N) is the order of the group Z∗
N . The fourth used the

assumed condition on e, d. Similarly, we can show that for any y ∈ Z∗
N ,

RSAN,e(RSAN,d(y)) ≡ y

modulo N . These two facts justify all the claims of the Proposition.

With N, e, d as in Proposition 10.3.2 we remark that

• For any x ∈ Z∗
N : RSAN,e(x) = MOD-EXP(x, e,N) and so one can efficiently compute

RSAN,e(x) given N, e, x.

• For any y ∈ Z∗
N : RSAN,d(y) = MOD-EXP(y, d,N) and so one can efficiently compute

RSAN,d(y) given N, d, y.

We now consider an adversary that is given N, e, y and asked to compute RSA
−1
N,e(y). If it had d,

this could be done efficiently by the above, but we do not give it d. It turns out that when the
paremeters N, e are properly chosen, this adversarial task appears to be computationally infeasible,
and this property will form the basis of both asymmetric encryption schemes and digital signature
schemes based on RSA. Our goal in this section is to lay the groundwork for these later applications
by showing how RSA parameters can be chosen so as to make the above claim of computational
difficulty true, and formalizing the sense in which it is true.

10.3.2 Generation of RSA parameters

We begin with a computational fact.

Proposition 10.3.3 There is an O(k2) time algorithm that on inputs ϕ(N), e where e ∈ Z∗

ϕ(N)

and N < 2k, returns d ∈ Z∗

ϕ(N) satisfying ed ≡ 1 (mod ϕ(N)).

Proof of Proposition 10.3.3: Since d is the inverse of e in the group Z∗

ϕ(N), the algorithm

consists simply of running MOD-INV(e, ϕ(N)) and returning the outcome. Recall that the modular
inversion algorithm invokes the extended-gcd algorithm as a subroutine and has running time
quadratic in the bit-length of its inputs.

To choose RSA parameters, one runs a generator. We consider a few types of geneators:

Definition 10.3.4 A modulus generator with associated security parameter k (where k ≥ 2 is an
integer) is a randomized algorithm that takes no inputs and returns integers N, p, q satisfying:

1. p, q are distinct, odd primes

2. N = pq

3. 2k−1 ≤ N < 2k (ie. N has bit-length k).

10 NUMBER-THEORETIC PRIMITIVES

An RSA generator with associated security parameter k is a randomized algorithm that takes no
inputs and returns a pair ((N, e), (N, p, q, d)) such that the three conditions above are true, and, in
addition,

4. e, d ∈ Z∗

(p−1)(q−1)

5. ed ≡ 1 (mod (p− 1)(q − 1))

We call N an RSA modulus, or just modulus. We call e the encryption exponent and d the decryption

exponent.

Note that (p− 1)(q − 1) = ϕ(N) is the size of the group Z∗
N . So above, e, d are relatively prime to

the order of the group Z∗
N . As the above indicates, we are going to restrict attention to numbers

N that are the product of two distinct odd primes. Condition (4) for the RSA generator translates
to 1 ≤ e, d < (p− 1)(q − 1) and gcd(e, (p − 1)(q − 1)) = gcd(d, (p − 1)(q − 1)) = 1.

For parameter generation to be feasible, the generation algorithm must be efficient. There are
many different possible efficient generators. We illustrate a few.

In modulus generation, we usually pick the primes p, q at random, with each being about k/2
bits long. The corresponding modulus generator K$

mod with associated security parameter k works
as follows:

Algorithm K$
mod

ℓ1 ← ⌊k/2⌋ ; ℓ2 ← ⌈k/2⌉
Repeat

p
$←{2ℓ1−1, . . . , 2ℓ1 − 1} ; q

$←{2ℓ2−1, . . . , 2ℓ2 − 1}
Until the following conditions are all true:

– TEST-PRIME(p) = 1 and TEST-PRIME(q) = 1
– p 6= q
– 2k−1 ≤ N

N ← pq

Return (N, e), (N, p, q, d)

Above, TEST-PRIME denotes an algorithm that takes input an integer and returns 1 or 0. It is
designed so that, with high probability, the former happens when the input is prime and the latter
when the input is composite.

Sometimes, we may want modulii product of primes having a special form, for example primes
p, q such that (p − 1)/2 and (q − 1)/2 are both prime. This corresponds to a different modulus
generator, which works as above but simply adds, to the list of conditions tested to exit the loop, the
conditions TEST-PRIME((p− 1)/2)) = 1 and TEST-PRIME((q− 1)/2)) = 1. There are numerous
other possible modulus generators too.

An RSA generator, in addition to N, p, q, needs to generate the exponents e, d. There are several
options for this. One is to first choose N, p, q, then pick e at random subject to gcd(N,ϕ(N)) = 1,
and compute d via the algorithm of Proposition 10.3.3. This random-exponent RSA generator,
denoted K$

rsa, is detailed below:

Algorithm K$
rsa

(N, p, q) $←K$
mod

M ← (p− 1)(q − 1)

e $← Z∗
M

Bellare and Rogaway 11

Compute d by running the algorithm of Proposition 10.3.3 on inputs M,e

Return ((N, e), (N, p, q, d))

In order to speed-up computation of RSAN,e, however, we often like e to be small. To enable this,
we begin by setting e to some small prime number like 3, and then picking the other parameters
appropriately. In particular we associate to any odd prime number e the following exponent-e RSA

generator :

Algorithm Ke
rsa

Repeat

(N, p, q) $←K$
mod(k)

Until

– e < (p − 1) and e < (q − 1)
– gcd(e, (p − 1)) = gcd(e, (q − 1)) = 1

M ← (p− 1)(q − 1)

Compute d by running the algorithm of Proposition 10.3.3 on inputs M,e

Return ((N, e), (N, p, q, d))

10.3.3 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning given N, e, y
it is hard to compute RSA

−1
N,e(y). One must be careful to formalize this properly though. The

formalization chooses y at random.

Definition 10.3.5 Let Krsa be an RSA generator with associated security parameter k, and let A
be an algorithm. We consider the following experiment:

Experiment Expow-kea
Krsa

(A)

((N, e), (N, p, q, d))
$←Krsa

x
$← Z∗

N ; y ← xe mod N

x′ $←A(N, e, y)
If x′ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Advow-kea
Krsa

(A) = Pr
[

Expow-kea
Krsa

(A) = 1
]

.

Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-exponent attack,
abbreviated “cea,” in which, rather than having the encryption exponent specified by the instance
of the problem, one allows the adversary to choose it. The only condition imposed is that the
adversary not choose e = 1.

Definition 10.3.6 Let Kmod be a modulus generator with associated security parameter k, and
let A be an algorithm. We consider the following experiment:

Experiment Expow-cea
Krsa

(A)

(N, p, q) $←Kmod

y $← Z∗
N

(x, e) $← A(N, y)
If xe ≡ y (mod N) and e > 1

then return 1 else return 0.

12 NUMBER-THEORETIC PRIMITIVES

The ow-cea-advantage of A is defined as

Advow-cea
K

mod
(A) = Pr

[

Expow-cea
K

mod
(A) = 1

]

.

10.4 Historical notes

10.5 Exercises and Problems

Bibliography

[1] T. Denny and D. Weber The solution of Mccurley’s discrete logchallenge. Advances in

Cryptology – CRYPTO ’98, Lecture Notes in Computer Science Vol. 1462, H. Krawczyk ed.,
Springer-Verlag, 1998.

