
Chapter 11

Asymmetric Encryption

The setting of public-key cryptography is also called the “asymmetric” setting due to the asymmetry
in key information held by the parties. Namely one party has a secret key while another has the
public key that matches this secret key. This is in contrast to the symmetry in the private key
setting, where both parties had the same key. Asymmetric encryption is thus another name for
public-key encryption, the mechanism for achieving data privacy in the public key or asymmetric
setting.

Our study of asymmetric encryption (following our study of other primitives) will begin by
searching for appropriate notions of security, and models and formalizations via which they are
captured. We then consider constructions, where we look at how to design and analyze various
schemes.

With regard to notions of security, we will be able to build considerably on our earlier study
of symmetric encryption. Indeed, from this point of view there is very little difference between
symmetric and asymmetric encryption; not much more than the fact that in the latter the adversary
gets the public key as input. This is important (and re-assuring) to remember. All the intuition and
examples we have studied before carry over, so that we enter the study of asymmetric encryption
already having a good idea of what encryption is, how security is modeled, and what it means
for a scheme to be secure. Accordingly we will deal with the security issues quite briefly, just
re-formulating the definitions we have seen before.

The second issue (namely constructions) is a different story. Designs of asymmetric encryption
schemes rely on tools and ideas different from those underlying the design of symmetric encryp-
tion schemes. Namely in the asymmetric case, the basis is (typically) computationally intractable
problems in number theory, while for the symmetric case we used block ciphers. Thus, the greater
part of the effort in this chapter will be on schemes and their security properties.

11.1 Asymmetric encryption schemes

An asymmetric encryption scheme is just like a symmetric encryption scheme except for an asym-
metry in the key structure. The key pk used to encrypt is different from the key sk used to decrypt.
Furthermore pk is public, known to the sender and also to the adversary. So while only a receiver
in possession of the secret key can decrypt, anyone in possession of the corresponding public key
can encrypt data to send to this one receiver.

2 ASYMMETRIC ENCRYPTION

Definition 11.1.1 An asymmetric encryption scheme AE = (K, E ,D) consists of three algorithms,
as follows:

• The randomized key generation algorithm K (takes no inputs and) returns a pair (pk, sk)

of keys, the public key and matching secret key, respectively. We write (pk, sk) $←K for the
operation of executing K and letting (pk, sk) be the pair of keys returned.

• The encryption algorithm E takes the public key pk and a plaintext (also called a message) M
to return a value called the ciphertext. The algorithm may be randomized, but not stateful.
We write C $←Epk(M) or C $←E(pk,M) for the operation of running E on inputs pk,M and
letting C be the ciphertext returned.

• The deterministic decryption algorithm D takes the secret key sk and a ciphertext C 6= ⊥ to
return a message M . We write M ← Dsk(C) or M ← D(sk, C).

The message space associated to a public key pk is the set Plaintexts(pk) of all M for which Epk(M)
never returns ⊥. We require that the scheme provide correct decryption, which means that for any
key-pair (pk, sk) that might be output by K and any message M ∈ Plaintexts(pk), if C was returned
by Epk(M) then Dsk(C) = M .

Let R be an entity that wants to be able to receive encrypted communications. The first step
is key generation: R runs K to generate a pair of keys (pk, sk) for itself. Note the key generation
algorithm is run locally by R. Anyone in possession of R’s public key pk can then send a message
M privately to R. To do this, they would encrypt M via C ← Epk(M) and send the ciphertext C
to R. The latter will be able to decrypt C using sk via M ← Dsk(C).

Note that an entity wishing to send data to R must be in possession of R’s public key pk, and
must be assured that the public key is authentic, meaning really is the R’s public-key, and not
someone else’s public key. We will look later into mechanisms for assuring this state of knowledge.
But the key management processes are not part of the asymmetric encryption scheme itself. In
constructing and analyzing the security of asymmetric encryption schemes, we make the assumption
that any prospective sender is in possession of an authentic copy of the public key of the receiver.
This assumption is made in what follows.

A viable scheme of course requires some security properties. But these are not our concern now.
First we want to pin down what constitutes a specification of a scheme, so that we know what are
the kinds of objects whose security we want to assess.

The key usage is the “mirror-image” of the key usage in a digital signature scheme. In an
asymmetric encryption scheme, the holder of the secret key is a receiver, using the secret key to
decrypt ciphertexts sent to it by others. In a digital signature scheme, the holder of the secret key
is a sender, using the secret key to tag its own messages so that the tags can be verified by others.

The last part of the definition says that ciphertexts that were correctly generated will decrypt
correctly.

The encryption algorithm might be randomized, and must for security. But unlike in a sym-
metric encryption scheme, we will not consider stateful asymmetric encryption algorithms. This is
because there is no unique sender to maintain state; many different entities are sending data to the
receiver using the same public key. The decryption algorithm is deterministic and stateless.

We do not require that the message or ciphertext be strings. Many asymmetric encryption
schemes are algebraic or number-theoretic, and in the natural formulation of these schemes messages
might be group elements and ciphertexts might consist of several group elements. However, it is
understood that either messages or ciphertexts can be encoded as strings wherever necessary. (The
encodings will usually not be made explicit.) In particular, we might talk of the length of a

Bellare and Rogaway 3

message of ciphertext, with the understanding that we mean the length of some binary encoding
of the quantity in question. (We do this, for example, in defining security.)

In cases where messages are not strings, but, say, group elements, using the scheme in practice
will usually require encoding of actual messages as group elements. We will discuss this as it arises.

11.2 Notions of security

Security of an encryption scheme (whether symmetric or asymmetric) is supposed to reflect the
inability of an adversary, given ciphertexts (and any public information such as a public key), to get
“non-trivial” information about the underlying plaintexts. We allow an adversary (having the goal
of figuring out some non-trivial information about plaintexts from ciphertexts) different “attack”
capabilities reflecting different situations. The most basic kind of attack is a chosen-plaintext
attack, in which the adversary can obtain encryptions of messages of its choice. We discussed this
type of attack in depth in the context of symmetric encryption, and argued that the definition of
security in the sense of “left-or-right” captured security against these types of attacks in a strong
sense. In the asymmetric case, the same is true, and we will use the same notion to capture security
against chosen plaintext attack. (A difference that must be kept in mind is that the adversary in
an asymmetric setting also has the public key, and so can in any case encrypt on its own, but this
does not really affect the formalization of the notion.)

We also discussed the stronger chosen-ciphertext attack, in which we desire that privacy of data
be maintained even if the adversary has some (limited) access to a “decryption oracle”, this being
a box that contains the secret decryption key and implements decryption under this key. (The
adversary does not get the key itself.) For the asymmetric setting, chosen-ciphertext attacks are
both more relevant and more difficult to protect against than in the symmetric setting.

We begin by summarizing the notion of security against chosen-plaintext attack, extending the
definitions for the symmetric setting. Then we go on to discuss chosen-ciphertext attacks.

11.2.1 Security against chosen-plaintext attack

Let us fix a specific asymmetric encryption scheme AE = (K, E ,D). We consider an adversary
A that is an algorithm (program) that is given as input a public key pk. The intuition behind
the notion is as follows. Imagine that the sender has two sequences of messages, M1

0 , . . . ,M q
0 and

M1
1 , . . . ,M q

1 . It encrypts the messages in one of the sequences to get a sequence of ciphertexts
which it transmits. That is, if b ∈ {0, 1} denotes the choice of sequence, the sender computes
Ci ← Epk(M i

b) for i = 1, . . . , q, and then transmits C1, . . . , Cq to the receiver. The adversary,
being able to eavesdrop, obtains the ciphertexts. Its goal is to figure out which of the two message
sequences was encrypted, namely to figure out the value of the bit b. The scheme is said to be
“secure” if it cannot compute the value of b correctly with probability significantly more than 1/2.

The formalization allows the adversary to specify both message sequences, and furthermore to
mount an adaptive attack, meaning to choose M i

0,M
i−1
0 as a function of C1, . . . , Ci−1.

The formalization is in terms of the left-or-right encryption oracle. It depends on the public
key and challenge bit b. It takes input two messages and returns a ciphertext, as follows:

Oracle Epk(LR(M0,M1, b)) // b ∈ {0, 1} and M0, M1 ∈ {0, 1}∗

If |M0| 6= |M1| then return ⊥
C ← EK(Mb)
Return C

4 ASYMMETRIC ENCRYPTION

Thus the oracle encrypts one of the messages, the choice of which being made according to the bit
b. Now we consider two “worlds”:

World 0: The oracle provided to the adversary is Epk(LR(·, ·, 0)). So, whenever the adversary

makes a query (M0,M1) to its oracle, the oracle computes C $←Epk(M0), and returns C as the
answer.

World 1: The oracle provided to the adversary is Epk(LR(·, ·, 1)). So, whenever the adversary

makes a query (M0,M1) to its oracle, the oracle computes C $←Epk(M1), and returns C as the
answer.

We call the first world (or oracle) the “left” world (or oracle), and we call the second world (or
oracle) the “right” world (or oracle). The problem for the adversary is, after talking to its oracle
for some time, to tell which of the two oracles it was given.

The adversary queries makes some number of queries to its oracle, and then outputs a bit. This
bit has some probability of equaling one. The probability is over the choice of the keys (pk, sk)
as made by the key-generation algorithm, any random choices made by the oracle, and any other
random choices made by the adversary in its computation. We look at this probability in each of
the two worlds as the basis for the definition.

We suggest that the reader return to the chapter on symmetric encryption to refresh his or her
mind about this model. In particular remember that the encryption function is randomized, and
the oracle implementing it is thus randomized too. Each time the oracle computes a ciphertext, it
does so by running the encryption algorithm with fresh coins.

Definition 11.2.1 Let AE = (K, E ,D) be an asymmetric encryption scheme, let b ∈ {0, 1}, and
let A be an algorithm that has access to an oracle and returns a bit. We consider the following
experiment:

Experiment Exp
ind-cpa-b
AE

(A)

(pk, sk) $←K

b′ ← AEpk(LR(·,·,b))(pk)
Return b′

The ind-cpa-advantage of A is defined as

Adv
ind-cpa
AE

(A) = Pr
[

Exp
ind-cpa-1
AE

(A) = 1
]

− Pr
[

Exp
ind-cpa-0
AE

(A) = 1
]

.

As usual, the time-complexity mentioned above is the worst case total execution time of the entire
experiment. This means the adversary complexity, defined as the worst case execution time of A
plus the size of the code of the adversary A, in some fixed RAM model of computation (worst
case means the maximum over A’s coins or the answers returned in response to A’s oracle queries),
plus the time for other operations in the experiment, including the time for key generation and the
computation of answers to oracle queries via execution of the encryption algorithm.

Another convention we make is that the length of a query M0,M1 to a left-or-right encryption
oracle is defined as |M0|. (We can assume without loss of generality that this equals |M1| since
otherwise the oracle returns ⊥ and so the query would be useless.) The total message length, which
is the sum of the lengths of all oracle queries, is another parameter of interest. We say that the
total message length is at most µ if it is so in the worst case, meaning across all coin tosses and
answers to oracle queries in the experiment.

We consider an encryption scheme to be “secure against chosen-plaintext attack” if a “rea-
sonable” adversary cannot obtain “significant” advantage, where reasonable reflects its resource

Bellare and Rogaway 5

usage. The technical notion is called indistinguishability under chosen-ciphertext attack, denoted
IND-CPA.

11.2.2 Security against chosen-ciphertext attack

Stories introducing chosen-ciphertext attack can be somewhat whimsical. One is about the so-
called “lunchtime attack.” Entity R goes to lunch while leaving his console accessible. For the
short period of the lunch break, an adversary gets access to this console; when the lunch break is
over, the adversary has to leave before it is discovered at the console by the legitimate user, returning
from lunch. The access is such that the adversary cannot actually read the secret decryption key sk

(imagine that sk is in protected hardware) but does have the capability of executing the algorithm
Dsk(·) on input any ciphertext of its choice. At that time if the adversary has in hand some
ciphertext it wants to decrypt, it can certainly do so; there is nothing one can do to prevent that.
However, it may be able to do even more. For example, perhaps there is some clever sequence of
calls to Dsk(·) via which the latter can be made to output sk itself. (These calls would not be
made under normal execution of the algorithm on normal ciphertexts, but the adversary concocts
weird ciphertexts that make the decryption routine do strange things.) Having sk means the
adversary could decrypt traffic at any time in the future, even after the lunch break. Alternatively,
the adversary is able to call Dsk(·) on some inputs that result in the adversary’s gaining some
information that would enable it to decrypt some fraction of ciphertexts it might see later, after
the lunch break, when it no longer has access to Dsk(·). These are the eventualities we want to
prevent.

This scenario is artificial enough that were it the only motivation, it would be natural to wonder
whether it is really worth the trouble to design schemes to withstand chosen-ciphertext attack. But
this is not the main motivation. The real motivation arises from gathering evidence that asymmetric
encryption schemes secure against chosen-ciphertext attack are the desired and appropriate tool for
use in many higher level protocols, for example protocols for authenticated session key exchange.
There a party decrypts a random challenge message to prove its identity. This leaves it open
to a chosen-ciphertext attack on the part of an adversary who sends ciphertexts in the guise of
challenges and obtains their decryption. Were this attack to reveal the secret key, the adversary
could impersonate the legitimate entity at a later date, since it would now itself possess the ability
to decrypt the challenges sent by others.

Based on this and other such applications, we would like to design asymmetric encryption
schemes that are secure against very strong kinds of chosen-ciphertext attack. To illustrate let’s
consider the following game. An adversary A is given a challenge ciphertext C and must output
the corresponding plaintext to win the game. The adversary is given the public key pk under which
C was created, and is also given access to the oracle Dsk(·) allowing decryption under the secret
key sk corresponding to pk. A trivial way for the adversary to win the game is to invoke its oracle
on C. This triviality is the one thing disallowed. We allow the adversary to invoke Dsk(·) on any
input C ′ 6= C. Of course it may invoke the oracle multiple times; all the inputs provided to the
oracle must however be different from C. If from the information so gathered the adversary can
compute Dsk(C) then it wins the game.

This is a very strong form of chosen-ciphertext attack: the adversary can invoke the decryption
oracle on any point other than the challenge. Again, one’s first reaction might be that it is in fact
ridiculously strong. How in any setting where I have some sort of decryption oracle access is it
possible that I could not ask the query of my choice, yet be able to ask absolutely any other query?
Indeed it is hard to imagine such a setting. Yet, this is the “right” attack model to consider for
several reasons. One is that in proving the security of authenticated key exchange protocols that

6 ASYMMETRIC ENCRYPTION

use asymmetric encryption as discussed above, it is exactly security under such an attack that is
required of the asymmetric encryption scheme. The other reasons is perhaps more fundamental.
We have seen many times that it is difficult to anticipate the kinds of attacks that can arise. It is
better to have an attack model that is clear and well defined even if perhaps stronger than needed,
than to not have a clear model or have one that may later be found to be too weak.

We have already seen that inability to decrypt a challenge ciphertext is not evidence of security
of a scheme, since one must also consider loss of partial information. In finalizing a notion of
security against chosen-ciphertext attack one must take this into account too. This, however, we
already know how to do, via left-or-right encryption oracles.

Definition 11.2.2 Let AE = (K, E ,D) be an asymmetric encryption scheme, let b ∈ {0, 1}, and
let A be an algorithm that has access to two oracles and returns a bit. We consider the following
experiment:

Experiment Expind-cca-b
AE (A)

(pk, sk)
$
←K

b′ ← AEpk(LR(·,·,b)),Dsk(·)(pk)
If A queried Dsk(·) on a ciphertext previously returned by EK(LR(·, ·, b))

then return 0
else Return b′

The ind-cca-advantage of A is defined as

Advind-cca
AE (A) = Pr

[

Expind-cca-1
AE (A) = 1

]

− Pr
[

Expind-cca-0
AE (A) = 1

]

.

The conventions with regard to resource measures are the same as those used in the case of chosen-
plaintext attacks.

We consider an encryption scheme to be “secure against chosen-ciphertext attack” if a “rea-
sonable” adversary cannot obtain “significant” advantage, where reasonable reflects its resource
usage. The technical notion is called indistinguishability under chosen-ciphertext attack, denoted
IND-CCA.

11.3 One encryption query or many?

The adversary in our definitions is allowed to make many queries to its lr-encryption oracle. We
gave it this power because it might be possible to expose weaknesses in the encryption scheme
via an attack involving observing the encryptions of many related messages, chosen adaptively as
a function of ciphertexts of previous messages. Indeed, it may be possible to achieve a higher
advantage with more queries, but we show here that the gain is limited. Namely, an adversary
making qe lr-encryption oracle queries cannot achieve an advantage greater than qe times that of
an adversary making just one lr-encryption oracle query and having other resources comparable
to that of the original adversary. This is true both under chosen-plaintext and chosen-ciphertext
attack, as indicated in the following.

Theorem 11.3.1 Let AE = (K, E ,D) be an asymmetric encryption scheme. Let B be an ind-cpa
adversary who makes at most qe queries to its left-or-right encryption oracle. Then there exists an
ind-cpa adversary A making at most one query to its left-or-right encryption oracle and such that

Adv
ind-cpa
AE

(B) ≤ qe ·Adv
ind-cpa
AE

(A) . (11.1)

Bellare and Rogaway 7

Furthermore, the running time of A is that of B. Similarly, let B be an ind-cca adversary who makes
at most qe queries to its left-or-right encryption oracle. Then there exists an ind-cca adversary A
making at most one query to its left-or-right encryption oracle and such that

Advind-cca
AE (B) ≤ qe ·Advind-cca

AE (A) . (11.2)

Furthermore, the number of decryption oracle queries made by A is the same as made by B, and
the running time of A is that of B.

In a qualitative sense, this theorem can be interpreted as saying that an asymmetric encryption
scheme secure against adversaries making just one lr-encryption query is also secure against adver-
saries making many lr-encryption queries. This will simplify later analyses by allowing us to focus
on adversaries that make only one lr-encryption query.

An important element making this result possible is that in an asymmetric encryption scheme,
an adversary can itself encrypt any message it wants, because it has the public (encryption) key. In
the symmetric setting, the adversary cannot directly encrypt a message, but may only do so via an
oracle that holds the key. An analogue of the above is true in the symmetric setting, but requires
that the adversary be provided not only with an lr-encryption oracle but also with an encryption
oracle.

Proof of Theorem 11.3.1: The statement corresponding to Equation (11.1) follows from the
statement corresponding to Equation (11.2) by considering an ind-cca adversary who makes no
queries to its decryption oracle, so we need only prove the statement corresponding to Equation (11.2).

We will use what’s called a “hybrid argument”. We will associate to B a sequence of experiments

Exp0
AE(B) , Exp1

AE (B) , . . . , Exp
q
AE

(B) (11.3)

such that, if we let

P (i) = Pr
[

Expi
AE (B) = 1

]

for i ∈ {0, 1, . . . , q}, then it will be the case that

P (0) = Pr
[

Expind-cca-0
AE (B) = 1

]

(11.4)

P (q) = Pr
[

Expind-cca-1
AE (B) = 1

]

. (11.5)

In other words, the first and last experiments in our sequence will correspond to the world 0 and
world 1 experiments, respectively, in Definition 11.2.1. If so, Definition 11.2.1 tells us that

Advind-cca
AE (B) = P (q)− P (0) .

Now comes a trick. We consider the sum
q−1
∑

i=1

[P (i)− P (i)] .

Its value, of course, is 0. Hence, from the above,

Advind-cca
AE (B) = P (q)− P (0)

= P (q) +
q−1
∑

i=1

[P (i)− P (i)] − P (0)

=
q

∑

i=1

P (i) −
q−1
∑

i=0

P (i) .

8 ASYMMETRIC ENCRYPTION

Oracle HE i
pk(M0,M1)

j ← j + 1

If j ≤ i

then C $←Epk(M1)

else C
$
←Epk(M0)

EndIf

Return C

Experiment Expi
AE(B)

(pk, sk) $←K

d← BHE i
pk

(·,·),Dsk(·)(pk)

Return d

Adversary AEpk(LR(·,·,b)),Dsk(·)(pk)

j ← 0 ; I $←{1, . . . , q}

Subroutine OE(M0,M1)

j ← j + 1

If j < I then C
$
←Epk(M1) EndIf

If j = I then C $←Epk(LR(M0,M1, b)) EndIf

If j > I then C
$
←Epk(M0) EndIf

Return C

End Subroutine

d $← BOE(·,·),Dsk(·)(pk)

Return d

Figure 11.1: Hybrid oracles and experiments related to the construction of ind-cca adversary A in
the proof of Theorem 11.3.1.

We will now construct ind-cca-adversary A so that

Pr
[

Expind-cca-1
AE (A) = 1

]

=
1

q
·

q
∑

i=1

P (i) (11.6)

Pr
[

Expind-cca-0
AE (A) = 1

]

=
1

q
·

q−1
∑

i=0

P (i) . (11.7)

Then, from the above we would have

Advind-cca
AE (A) =

1

q
·Advind-cca

AE (B) .

Re-arranging terms, we get Equation (11.2).

We now specify the “hybrid” experiments of Equation (11.3) in such a way that Equations (11.4)
and (11.5) are true and we are able to construct adversary A such that Equations (11.6) and (11.7)
are true.

We associate to any i ∈ {0, . . . , q} an oracle and an experiment, as indicated in Fig. 11.1. The
oracle associated to i is stateful, maintaining a counter j that is initialized to 0 by the overlying
experiment and is incremented by the oracle each time the latter is invoked.

Bellare and Rogaway 9

Now, observe that oracles HE 0
pk(·, ·) and Epk(LR(·, ·, 0)) are equivalent, meaning that on any inputs,

their responses are identically distributed. Similarly, oracles HE q
pk(·, ·) and Epk(LR(·, ·, 1)) are

equivalent. Hence, Equations (11.4) and (11.5) are true.

Adversary A is specified in Fig. 11.1. It begins by initializing a counter j to 0, and picking I at
random from {1, . . . , q}. It then defines a subroutine OE . Finally A executes B, replacing the
B’s lr-encryption oracle with the subroutine OE , and providing B a decryption oracle via A’s own
access to a decryption oracle.

We highlight that A’s operation depends on the fact that it was provided the public encryption key
as an input. This enables it to compute encryptions under this key directly, and it does so inside
the subroutine. Had we not given A the public key, this construction would not be posible.

To complete the proof it suffices to justify Equations (11.6) and (11.7). Suppose A is in world 1,
meaning the challenge bit b equals 1. Then subroutine OE encrypts the right message of its input
pair the first I times it is called, and the left-message after that. One the other hand, if A is in
world 0, meaning b = 0, subroutine OE encrypts the right message of its input pair the first I − 1
times it is called, and the left message after that. Regarding I as a random variable taking values
in {1, . . . , q}, this means that for every i ∈ {1, . . . , q} we have

Pr
[

Expind-cca-1
AE (A) = 1 | I = i

]

= P (i)

Pr
[

Expind-cca-0
AE (A) = 1 | I = i

]

= P (i− 1) .

Since the random variable I is uniformly distributed in the range {1, . . . , q} we have

Pr
[

Expind-cca-1
AE (A) = 1

]

=
q

∑

i=1

Pr
[

Expind-cca-1
AE (A) = 1 | I = i

]

· Pr [I = i]

=
q

∑

i=1

P (i) ·
1

q
.

This justifies Equation (11.6). Similarly,

Pr
[

Expind-cca-0
AE (A) = 1

]

=
q

∑

i=1

Pr
[

Expind-cca-0
AE (A) = 1 | I = i

]

· Pr [I = i]

=
q

∑

i=1

P (i− 1) ·
1

q

=
q−1
∑

i=0

P (i) ·
1

q
,

which justifies Equation (11.7). This concludes the proof.

11.4 Hybrid encryption

Before we present constructions of asymmetric encryption schemes, it is useful to get some idea of
the context in which they are used.

Given an asymmetric encryption scheme AE = (Ka, Ea,Da), one rarely encrypts data directly
with it. Rather, to encrypt M under a public key pk of this scheme, we first pick a random key

10 ASYMMETRIC ENCRYPTION

K for a symmetric encryption scheme SE = (Ks, Es,Ds), encrypt K under pk via the asymmetric
scheme to get a ciphertext Ca, encrypt M under K via the symmetric scheme to get a ciphertext
Cs, and transmit (Ca, Cs). This is called hybrid encryption.

More precisely, hybrid encryption is a transform that given any asymmetric encryption scheme
and any symmetric encryption scheme associates to them a new asymmetric encryption scheme:

Scheme 11.4.1 Let AE = (Ka, Ea,Da) be an asymmetric encryption scheme, and let SE =
(Ks, Es,Ds) be a stateless symmetric encryption scheme such that Keys(SE) ⊆ Plaintexts(pk) for
every pk that might be output by Ka. The hybrid encryption scheme associated to AE ,SE is the
asymmetric encryption scheme AE = (Ka, E ,D) whose key-generation algorithm is the same as that
of AE and whose encryption and decryption algorithms are defined as follows:

Algorithm Epk(M)

K $←Ks ; Cs $←Es
K(M)

If Cs = ⊥ then return ⊥

Ca $←Ea
pk(K) ; C ← (Ca, Cs)

Return C

Algorithm Dsk(C)
Parse C as (Ca, Cs)
K ← Da

sk(Ca)
If K = ⊥ then return ⊥
M ← Ds

K(Cs)
Return M

Under this hybrid encryption scheme, one can (asymmetrically) encrypt any message M that is in
the plaintext-space of the underlying symmetric encryption scheme.

Hybrid encryption is used for numerous reasons. The principal one is cost. The number-theoretic
operations underlying common asymmetric encryption schemes are computationally costly relative
to the operations on block ciphers that underly common symmetric encryption schemes. In practice
one wants to minimize the amount of data to which these number-theoretic operations are applied.
Accordingly, rather than encrypt the possibly long message M directly under pk via the given
asymmetric scheme, one uses hybrid encryption. The costly number-theoretic operations are thus
applied only to data whose length k is fixed and not dependent on the length of M .

This context tells us that when we design asymmetric encryption schemes, we can typically
assume that the message space consists of short strings. This will facilitate our constructions.

However, before we adopt the hybrid encryption paradigm we need to know that it “works,”
meaning that it is secure. In assessing the strength of hybrid encryption, we use as usual the
provable-security philosophy and approach. A hybrid encryption scheme is built from two com-
ponents: a base asymmetric encryption scheme and a base symmetric encryption scheme. The
appropriate question to ask is whether the assumed security of the components suffices to guaran-
tee security of the hybrid scheme based on them. It turns out that it does, and moreover for security
under both chosen-plaintext and chosen-ciphertext atttacks. Theorem 11.4.2 below addresses the
first case, and Theorem 11.4.3 the second. (Although the latter implies the former, we state and
prove them separately because the proof has some delicate issues and ideas and is best understood
via an incremental approach.)

Theorem 11.4.2 LetAE = (Ka, Ea,Da) be an asymmetric encryption scheme, let SE = (Ks, Es,Ds)
be a stateless symmetric encryption scheme such that

Keys(SE) ⊆ Plaintexts(pk)

for every pk that might be output by Ka, and let AE = (Ka, E ,D) be the hybrid encryption scheme
associated to AE ,SE as per Scheme 11.4.1. Let k denote the length of keys output by Ks. Let B be

Bellare and Rogaway 11

an ind-cpa-adversary attacking AE . Then there exist ind-cpa adversaries A00,01, A11,10 attacking
AE , and an adversary A attacking SE , such that

Adv
ind-cpa

AE
(B)

≤ Adv
ind-cpa
AE

(A00,01) + Adv
ind-cpa
AE

(A11,10) + Adv
ind-cpa
SE

(A) . (11.8)

Furthermore, suppose B had time complexity at most t, made at most q queries to its left-or-right
encryption oracle, these totalling at most µ bits in length. Then A00,01, A11,10 each have time-
complexity at most t and make at most q left-or-right encryption oracle queries, each query being
k bits long. Also A has time-complexity at most t, and makes only one query to its left-or-right
encryption oracle.

The qualitative interpretation of Theorem 11.4.2 is that if AE and SE are each assumed to be
secure against chosen-plaintext attack, then AE is also secure against chosen-plaintext attack. On
the quantitative front, note that the advantage of AE against an attack involving q lr-encryption
queries is upper bounded as a function of the advantage of SE against an attack involving only a
single lr-encryption query. This means that the symmetric encryption scheme used may be very
weak and yet the hybrid asymmetric encryption scheme will be secure. For example, the encryption
algorithm of the symmetric encryption scheme could apply a pseudorandom bit generator to the
key to get an output of |M | bits and XOR this with the message to get the ciphertext. In particular,
the symmetric encryption scheme could be deterministic.

Proof of Theorem 11.4.2: These constructions are not as straightforward as some we have seen
in the past. We will need to “isolate” the asymmetric and symmetric components of AE in such
a way that an attack on this scheme can be broken down into attacks on the component schemes.
To do this we will use a hybrid argument. We will associate to B a sequence of experiments

Exp00
AE

(B) , Exp01
AE

(B) , Exp11
AE

(B) , Exp10
AE

(B) (11.9)

such that, if we let

P (α, β) = Pr
[

Exp
αβ

AE
(B) = 1

]

(11.10)

for bits α, β ∈ {0, 1}, then it will be the case that

P (1, 0) = Pr
[

Exp
ind-cpa-1
AE

(B) = 1
]

(11.11)

P (0, 0) = Pr
[

Exp
ind-cpa-0
AE

(B) = 1
]

. (11.12)

In other words, the first and last experiments in our sequence will correspond to the world 0 and
world 1 experiments, respectively, in Definition 11.2.1. If so, Definition 11.2.1 tells us that

Adv
ind-cpa

AE
(B) = P (1, 0) − P (0, 0) .

Now comes a trick. We throw into the expression P (1, 0)−P (0, 0) a bunch of extra terms that sum
to zero and hence don’t change the value of the expression, and then we regroup, like this:

P (1, 0) − P (0, 0)

= P (1, 0) − P (1, 1) + P (1, 1) − P (0, 1) + P (0, 1) − P (0, 0)

= [P (1, 0) − P (1, 1)] + [P (1, 1) − P (0, 1)] + [P (0, 1) − P (0, 0)] .

12 ASYMMETRIC ENCRYPTION

Oracle HE 00
pk (M0,M1)

K0
$←Ks ; K1

$←Ks

Cs $
←Es(K0, M0)

If Cs = ⊥ then return ⊥

Ca $
←Ea(pk, K0)

C ← (Ca, Cs)

Return C

Oracle HE 01
pk(M0,M1)

K0
$←Ks ; K1

$←Ks

Cs $
←Es(K0, M0)

If Cs = ⊥ then return ⊥

Ca $
← Ea(pk, K1)

C ← (Ca, Cs)

Return C

Oracle HE 11
pk (M0,M1)

K0
$
←Ks ; K1

$
←Ks

Cs $←Es(K0, M1)

If Cs = ⊥ then return ⊥

Ca $←Ea(pk, K1)

C ← (Ca, Cs)

Return C

Oracle HE 10
pk(M0,M1)

K0
$
←Ks ; K1

$
←Ks

Cs $←Es(K0, M1)

If Cs = ⊥ then return ⊥

Ca $← Ea(pk, K0)

C ← (Ca, Cs)

Return C

Figure 11.2: Hybrid lr-encryption oracles used in the proof of Theorem 11.4.2.

We have now written the ind-cpa-advantage of B as a sum of the differences that adjacent experi-
ments in our experiment sequence return 1. We will then construct the adversaries A01,00, A,A10,11

such that

P (0, 1) − P (0, 0) ≤ Adv
ind-cpa
AE

(A01,00) (11.13)

P (1, 1) − P (0, 1) ≤ Adv
ind-cpa
SE

(A) (11.14)

P (1, 0) − P (1, 1) ≤ Adv
ind-cpa
AE

(A10,11) . (11.15)

Equation (11.8) follows.

The template above is pretty generic. What we need to do now is to actually specify the “hybrid”
experiments of Equation (11.9) in such a way that Equations (11.11)–(11.12) are true and we are
able to construct adversaries A01,00, A,A10,11 such that Equations (11.13)–(11.15) are true.

Recall that B has access to an oracle that takes input a pair of messages and returns a ciphertext.
In the experiments of Definition 11.2.1 that define the ind-cpa-advantage of B, this oracle is either
Epk(LR(·, ·, 1)) or Epk(LR(·, ·, 0)), depending on the world in which B is placed. Our hybrid
experiments will involve executing B not only with these oracles, but with others that we will
define. Specifically, we will define a sequence of oracles

HE 00
pk(·, ·) , HE 01

pk(·, ·) , HE 11
pk(·, ·) , HE 10

pk(·, ·) . (11.16)

Each oracle will take input a pair M0,M1 of messages and return a ciphertext. Now, to each pair
α, β of bits, we associate the (α, β) hybrid experiment defined as follows:

Bellare and Rogaway 13

Adversary A
Ea

pk
(LR(·,·,b))

01,00 (pk)

Subroutine OE(M0,M1)

K0
$
←Ks ; K1

$
←Ks

Cs $←Es(K0,M0)

If Cs = ⊥ then return ⊥

Ca $←Ea
pk(LR(K0,K1, b))

Return (Ca, Cs)

End Subroutine

d $←BOE(·,·)(pk)

Return d

Adversary A
Ea

pk
(LR(·,·,b))

10,11 (pk)

Subroutine OE(M0,M1)

K0
$
←Ks ; K1

$
←Ks

Cs $←Es(K0,M1)

If Cs = ⊥ then return ⊥

Ca $←Ea
pk(LR(K1,K0, b))

Return (Ca, Cs)

End Subroutine

d $←BOE(·,·)(pk)

Return d

Figure 11.3: Adversaries attacking AE constructed for the proof of Theorem 11.4.2.

Experiment Exp
αβ

AE
(B)

(pk, sk)
$
←Ka

d← BHE
αβ

pk
(·,·)(pk)

Return d

This defines our experiments in terms of the oracles, and, finally, the oracles themselves are specified
in Fig. 11.2. Each hybrid lr-encryption oracle is paramterized by a pair (α, β) of bits and takes
input a pair M0,M1 of messages. Examining the oracles, you will see that they are mostly identical,
different only in the quantities that have been boxed. Each oracle picks not one but two keys
K0,K1, independently at random, for symmetric encryption. It then encrypts Mα under K0 via
the symmetric encryption scheme to get a ciphertext Cs, and it encrypts Kβ under the public key
via the asymmetric encryption scheme to get a ciphertext Ca. It returns the pair (Ca, Cs).

Note oracles HE 00
pk(·, ·) and HE 10

pk (·, ·) do not actually use K1. We have asked these oracles to pick
K1 only to highlight the common template underlying all four oracles.

Observe that oracle HE 00
pk (·, ·) and oracle Epk(LR(·, ·, 0)) are equivalent in the sense that their

responses to any particular query are identically distributed. Similarly oracle HE 10
pk (·, ·) and oracle

Epk(LR(·, ·, 1)) are equivalent. This means that Equations (11.11) and (11.12) are true, which is
the first requirement of a successful hybrid argument.

The new hybrid lr-encryption oracles we introduce may seem rather bizarre at first since they do
not necessarily return valid ciphertexts. For example, oracle (0, 1) will return a ciphertext (Ca, Cs)
in which Cs is the encryption of M0 under a key K0, but Ca is not an encryption of K0 as it ought
to be under the definition of AE , but rather is the encryption of a random, unrelated key K1. Thus,
in the corresponding hybrid experiment, B is not getting the types of responses it “expects.” But
nonetheless, being an algorithm with access to an oracle, B will execute and eventually return a
bit. The meaning of this bit may be unclear, but we will see that this does not matter.

Before constructing A01,00 so that Equation (11.13) is true, let us try to explain the intuition. Con-
sider hybrid lr-encryption oracles (0, 0) and (0, 1). Note that in both experiments, Cs is computed
in exactly the same way. This means that the difference between P (0, 0) and P (0, 1) measures the

14 ASYMMETRIC ENCRYPTION

ability of the adversary to tell whether Ca encrypts the key underling Cs or not. This is something
we can relate solely to the security of the base asymmetric encryption scheme.

Adversary A01,00 attacking the base asymmetric encryption scheme AE is specified in Fig. 11.3. As
per Definition 11.2.1, it has access to a lr-encryption oracle Ea

pk(LR(·, ·, b)). Its strategy is to define
a subroutine OE and then run B, using OE to reply to B’s oracle queries. Subroutine OE takes
input a pair M0,M1 of messages, picks a pair of keys for symmetric encryption, and finally returns
a ciphertext which is computed using a call to the given oracle Ea

pk(LR(·, ·, b)).

Consider A01,00 in world 1, meaning its oracle is Ea
pk(LR(·, ·, 1)). In that case, the ciphertext Ca

computed by subroutineOE(·, ·) is an encryption of K1, and thus subroutineOE(·, ·) is equivalent to
oracle HE 01

pk(·, ·). On the other hand, when A01,00 is in world 0, meaning its oracle is Ea
pk(LR(·, ·, 0)),

the ciphertext Ca computed by subroutine OE(·, ·) is an encryption of K0, and thus subroutine
OE(·, ·) is equivalent to oracle HE 00

pk(·, ·). Hence

Pr
[

Exp
ind-cpa-1
AE

(A01,00) = 1
]

= Pr
[

Exp01
AE

(B) = 1
]

Pr
[

Exp
ind-cpa-0
AE

(A01,00) = 1
]

= Pr
[

Exp00
AE

(B) = 1
]

.

Subtracting, and remembering the notation of Equation (11.10), we get

Adv
ind-cpa
AE

(A01,00) = P (0, 1) − P (0, 0) ,

which justifies Equation (11.13).

We leave to the reader the task of verifying Equation (11.15) based on the construction of A11,10

given in Fig. 11.3, and now proceed to the construction of the ind-cpa adversary A attacking the
base symmetric encryption scheme.

The intuition here is that the (0, 1) and (1, 1) hybrid experiments both compute Ca as an encryption
of key K1, but differ in which message they symmetrically encrypt under K0, and thus the difference
between P (0, 1) and P (1, 1) measures the ability of the adversary to tell which message Cs encrypts
under K0. This is something we can relate solely to the security of the base symmetric encryption
scheme. The construction however will require a little more work, introducing another sequence of
hybrid experiments. This time there will be q + 1 of them,

Exp0
AE

(B) , Exp1
AE

(B) , . . . , Exp
q

AE
(B) .

Again we associate to any i ∈ {0, . . . , q} an oracle and an experiment, as indicated in Fig. 11.4. The
oracle associated to i is stateful, maintaining a counter j that is initially 0 and is incremented each
time the oracle is invoked. The oracle behaves differently depending on how its counter j compares
to its defining parameter i. If j ≤ i it symmetrically encrypts, under K0, the right message M1, and
otherwise it symmetrically encrypts, under K0, the left message M0. The asymmetric component
Ca is always an encryption of K1.

For i = 0, . . . , q we let

P (i) = Pr
[

Expi
AE

(B) = 1
]

.

Now, suppose i = 0. In that case, the value Cs computed by oracle HE i
pk(·, ·) on input M0,M1 is

a symmetric encryption of M0 regardless of the value of the counter j. This means that oracles
HE 0

pk(·, ·) and HE 01
pk(·, ·) are equivalent. Similarly, oracles HE q

pk(·, ·) and HE 11
pk(·, ·) are equivalent.

Hence

P (0, 1) = P (0) and P (1, 1) = P (q) .

Bellare and Rogaway 15

Oracle HE i
pk(M0,M1)

j ← j + 1

K0
$←Ks ; K1

$←Ks

If j ≤ i

then Cs $←Es(K0, M1)

else Cs $
←Es(K0, M0)

EndIf

If Cs = ⊥ then return ⊥

Ca $←Ea(pk, K1)

C ← (Ca, Cs)

Return C

Experiment Expi
AE

(B)

(pk, sk)
$
←Ka

d← BHE i
pk

(·,·)(pk)

Return d

Adversary AEs
K

(LR(·,·,b))

(pk, sk)
$
←Ka ; j ← 0 ; I

$
←{1, . . . , q}

Subroutine OE(M0,M1)

j ← j + 1

K0
$←Ks ; K1

$←Ks

If j < I then Cs $
←Es(K0, M1) EndIf

If j = I then Cs $←Es
K(LR(M0,M1, b)) EndIf

If j > I then Cs $
←Es(K0, M0) EndIf

If Cs = ⊥ then return ⊥

Ca $
←Ea(pk, K1)

Return (Ca, Cs)

End Subroutine

d $←BOE(·,·)(pk)

Return d

Figure 11.4: Hybrid oracles and experiments related to the construction of ind-cpa adversary A in
the proof of Theorem 11.4.2.

So

P (1, 1) − P (0, 1)

= P (q)− P (0)

= P (q)− P (q − 1) + P (q − 1)− · · · − P (1) + P (1)− P (0)

=
q

∑

i=1

[P (i) − P (i− 1)] . (11.17)

Our ind-cpa adversary A attacking the base symmetric encryption scheme SE is depicted in
Fig. 11.4. It gets a lr-encryption oracle Es

K(LR(·, ·, b)) based on a hidden key K and challenge

16 ASYMMETRIC ENCRYPTION

bit b. It picks a pair of public and secret keys by running the key-generation algorithm of the
asymmetric encryption scheme. It then picks an index i at random, and initializes a counter j to 0.
Next it defines a subroutine OE(·, ·) that takes input a pair of messages and returns a ciphertext,
and runs B, replying to the latter’s oracle queries via the subroutine. The subroutine increments
the counter j at each call, and computes the symmetric component Cs of the ciphertext differently
depending on how the counter j compares to the parameter i. In one case, namely when j = i,
it computes Cs by calling the given Es

K(LR(·, ·, b)) oracle on inputs M0,M1. Notice that A makes
only one call to its oracle, as required.

For the analysis, regard I as a random variable whose value is uniformly distributed in {1, . . . , q}.
Then notice that for any i ∈ {1, . . . , q}

Pr
[

Exp
ind-cpa-1
SE

(A) = 1 | I = i
]

= P (i)

Pr
[

Exp
ind-cpa-0
SE

(A) = 1 | I = i
]

= P (i− 1) .

Thus

Adv
ind-cpa
SE

(A)

= Pr
[

Exp
ind-cpa-1
SE

(A) = 1
]

− Pr
[

Exp
ind-cpa-0
SE

(A) = 1
]

=
q

∑

i=1

Pr
[

Exp
ind-cpa-1
SE

(A) = 1 | I = i
]

· Pr [I = i]

−
q

∑

i=1

Pr
[

Exp
ind-cpa-0
SE

(A) = 1 | I = i
]

· Pr [I = i]

=
q

∑

i=1

P (i) · Pr [I = i] −
q

∑

i=1

P (i− 1) · Pr [I = i]

=
1

q
·

q
∑

i=1

P (i)− P (i− 1)

=
1

q
· [P (1, 1) − P (0, 1)] .

In the last step we used Equation (11.17). Re-arranging terms, we get Equation (11.14). This
completes the proof.

We now proceed to the chosen-ciphertext attack case. The scheme itself is unchanged, but we now
claim that if the base components are secure against chosen-ciphertext attack, then so is the hybrid
encryption scheme.

Theorem 11.4.3 LetAE = (Ka, Ea,Da) be an asymmetric encryption scheme, let SE = (Ks, Es,Ds)
be a stateless symmetric encryption scheme such that

Keys(SE) ⊆ Plaintexts(pk)

for every pk that might be output by Ka, and let AE = (Ka, E ,D) be the hybrid encryption scheme
associated to AE ,SE as per Scheme 11.4.1. Let k denote the length of keys output by Ks, and let

Bellare and Rogaway 17

c denote the length of a ciphertext created by Ea on input a k-bit message. Let B be an ind-cpa-
adversary attacking AE . Then there exist ind-cpa adversaries A01,00, A10,11 attacking AE , and an
adversary A attacking SE , such that

Advind-cca
AE

(B)

≤ Advind-cca
AE (A01,00) + Advind-cca

AE (A10,11) + Advind-cca
SE (A) . (11.18)

Furthermore, suppose B had time complexity at most t, made at most qe queries to its left-or-right
encryption oracle, these totalling at most µe bits in length, and at most qd queries to its decryption
oracle, these totalling at most µd bits in length. Then A00,01, A11,10 each have time-complexity at
most t and make at most qe left-or-right encryption oracle queries, each query being k bits long, and
at most qd queries decryption oracle queries, each at most c bits long. Also A has time-complexity
at most t, makes only one query to its left-or-right encryption oracle, and at most qd queries to its
decryption oracle.

Proof of Theorem 11.4.3: We use a hybrid experiment template similar to the one in the proof
of Theorem 11.4.2, but there are some tricky issues regarding decryption oracles. Let us try to
highlight these before proceeding to the constructions.

Since B now has access to a decryption oracle, the (α, β) hybrid experiment of the proof of
Theorem 11.4.2 will have to be enhanced to provide B with an oracle that plays the role of the
decryption oracle that B expects. A natural first thought is to set this to the actual decryption or-
acle Dsk(·). Now, let us look ahead to the construction of A01,00. Besides subroutine OE to replace
B’s lr-encryption oracle, A01,00 will have to provide a subroutine OD to replace B’s decryption
oracle. This seems easy at first glance, because A01,00, itself being a ind-cca-adversary, has access
to a decryption oracle Dsk(·) for the base asymmetric encryption scheme. Thus, it can simulate
Dsk(·). The catch is in the rules of the game. Recall that A01,00 is not allowed to call its decryption
oracle on a ciphertext Ca that was previously returned by its own lr-encryption oracle. However,
in attempting to simulate Dsk(·) using Dsk(·), it might be forced to do so, because B might call
Dsk(·) on a ciphertext (Ca, Cs) where a ciphertext of the form (Ca,X) was previously returned by
B’s lr-encryption oracle, but X 6= Cs. In that case, A00,01 is stuck: how can it decrypt (Ca, Cs)
without breaking the rules of its game?

To get around this problem we will enhance the hybrid experiments to provide B not with an actual
decryption oracle, but with a fake one that we will define. Let us now proceed to the actual proof.
To each pair α, β of bits, we associate the (α, β) hybrid experiment defined as follows:

Experiment Exp
αβ

AE
(B)

(pk, sk) $←Ka ; j ← 0

d← BHE
αβ

pk
(·,·),HD

sk
(·,·)(pk)

Return d

The experiment initializes a counter j to 0, and then runs B, replacing B’s lr-encryption oracle with
a hybrid lr-encryption oracle, and B’s decryption oracle with a hybrid decryption oracle. Note that
the hybrid lr-encryption depends on (α, β) but the hybrid decryption oracle does not. However, the
two oracles share state, in the form of counter j as well as quantities that are created and stored
by the hybrid lr-encryption oracle and then accessed by the hybrid decryption oracle.

18 ASYMMETRIC ENCRYPTION

Oracle HE 00
pk (M0,M1)

j ← j + 1

K0,j
$←Ks ; K1,j

$←Ks

Cs
j

$←Es(K0,j , M0)

If Cs
j = ⊥ then return ⊥

Ca
j

$←Ea(pk, K0,j)

Cj ← (Ca
j , Cs

j)

Return Cj

Oracle HE 01
pk(M0,M1)

j ← j + 1

K0,j
$←Ks ; K1,j

$←Ks

Cs
j

$
←Es(K0,j , M0)

If Cs
j = ⊥ then return ⊥

Ca
j

$← Ea(pk, K1,j)

Cj ← (Ca
j , Cs

j)

Return Cj

Oracle HE 11
pk (M0,M1)

j ← j + 1

K0,j
$←Ks ; K1,j

$←Ks

Cs
j

$←Es(K0,j , M1)

If Cs
j = ⊥ then return ⊥

Ca
j

$←Ea(pk, K1,j)

Cj ← (Ca
j , Cs

j)

Return Cj

Oracle HE 10
pk(M0,M1)

j ← j + 1

K0,j
$←Ks ; K1,j

$←Ks

Cs
j

$←Es(K0,j , M1)

If Cs
j = ⊥ then return ⊥

Ca
j

$← Ea(pk, K0,j)

Cj ← (Ca
j , Cs

j)

Return Cj

Oracle HDsk(C)

Parse C as (Ca, Cs)

l← Find(Ca;Ca
1 , . . . , Ca

j)

If l 6= 0 then M ← Ds(K0,l, C
s) EndIf

If l = 0 then M ← D(sk, C) EndIf

Return M

Figure 11.5: Hybrid lr-encryption oracles, and hybrid decryption oracle, used in the proof of
Theorem 11.4.3.

The hybrid lr-encryption oracles, shown in Fig. 11.5, are equivalent to the corresponding ones of
Fig. 11.2 in the sense that on any inputs M0,M1, the output of the (α, β) hybrid lr-encryption
oracle of Fig. 11.5 is distributed identically to the output of the (α, β) hybrid lr-encryption oracle
of Fig. 11.2. However, the code of the hybrid lr-encryption oracles has been enhanced to do some
extra internal book-keeping.

The hybrid decryption oracle invokes a subroutine Find that given a value T and a list T1, . . . , Tj

returns the smallest j such that T = Tj if such a j exists, and 0 if T 6∈ {T1, . . . , Tj}. It uses this
to see whether the asymmetric component of the ciphertext it is given to decrypt was previously
returned by a partner (α, β) hybrid lr-encryption oracle. If not, it decrypts the given ciphertext via
the decryption algorithm of scheme AE, using the secret key sk which it is given. Else, it decrypts
the symmetric component of the ciphertext under the key K0,j chosen at the time the asymmetric
component was first created.

Bellare and Rogaway 19

Adversary A
Ea

pk
(LR(·,·,b)),Da

sk
(·)

01,00 (pk)

j ← 0

Subroutine OE(M0,M1)

j ← j + 1

K0,j
$
←Ks ; K1,j

$
←Ks

Cs
j

$←Es(K0,j ,M0)

If Cs
j = ⊥ then return ⊥

Ca
j

$
←Ea

pk(LR(K0,j,K1,j , b))

Return (Ca
j , Cs

j)

End Subroutine

Subroutine OD(C)

Parse C as (Ca, Cs)

l← Find(Ca;Ca
1 , . . . , Ca

j)

If l 6= 0 then M ← Ds(K0,l, C
s)

If l = 0 then M ← D(sk, C)

Return M

End Subroutine

d
$
←BOE(·,·),OD(·)(pk)

Return d

Adversary A
Ea

pk
(LR(·,·,b)),Da

sk
(·)

10,11 (pk)

j ← 0

Subroutine OE(M0,M1)

j ← j + 1

K0,j
$←Ks ; K1,j

$←Ks

Cs
j

$
←Es(K0,j ,M1)

If Cs
j = ⊥ then return ⊥

Ca
j

$←Ea
pk(LR(K1,j ,K0,j , b))

Return (Ca, Cs)

End Subroutine

Subroutine OD(C)

Parse C as (Ca, Cs)

l← Find(Ca;Ca
1 , . . . , Ca

j)

If l 6= 0 then M ← Ds(K0,l, C
s)

If l = 0 then M ← D(sk, C)

Return M

End Subroutine

d $←BOE(·,·),OD(·)(pk)

Return d

Figure 11.6: Adversaries attacking AE constructed for the proof of Theorem 11.4.3.

As in the proof of Theorem 11.4.2, for any α, β ∈ {0, 1}, we let

P (α, β) = Pr
[

Exp
αβ

AE
(B) = 1

]

.

Observe that the hybrid decryption oracle is equivalent to Dsk(·) in the cases (α, β) ∈ {(0, 0), (1, 0)}
because in these cases, the asymmetric component of the ciphertext produced by the hybrid lr-
encryption oracle is an encryption of K0,j. Thus we have

P (1, 0) = Pr
[

Expind-cca-1
AE

(B) = 1
]

P (0, 0) = Pr
[

Expind-cca-0
AE

(B) = 1
]

.

Following the proof of Theorem 11.4.2, our proof of Equation (11.18) is complete if we can construct
adversaries A01,00, A,A10,11 such that

P (0, 1) − P (0, 0) ≤ Advind-cca
AE (A01,00) (11.19)

P (1, 1) − P (0, 1) ≤ Advind-cca
SE (A) (11.20)

P (1, 0) − P (1, 1) ≤ Advind-cca
AE (A10,11) . (11.21)

The constructions of A01,00 and A10,11 are shown in Fig. 11.6. Each adversary runs B, replacing
B’s lr-encryption oracle with a subroutine OE and B’s decryption oracle with a subroutine OD.

20 ASYMMETRIC ENCRYPTION

Note the OD subroutine calls Dsk(·). It does not actually have sk but it can implement this by
running the code of Dsk(·) shown in Scheme 11.4.1 and using its Da

sk(·) oracle.

We note that A01,00 and A10,11 are legal in the sense that they never query their decryption oracle
Da

sk(·) on a ciphertext previously returned by their lr-encryption oracle Ea
pk(LR(·, ·, b). This is

ensured by the definition of OD, which, if given a ciphertext C = (Ca, Cs) whose asymmetric
component Ca was previously returned by Ea

pk(LR(·, ·, b), does not call Da
sk(·), but instead directly

computes the symmetric decryption of Cs under a key K0,j satisfying Ca
j = Ca.

We leave to the reader to extend the arguments of the proof of Theorem 11.4.2 to verify that
Equations (11.19) and (11.21) are true, and proceed to the construction of the ind-cca adversary
A attacking the base symmetric encryption scheme. We associate to any i ∈ {0, . . . , q} the oracle
and experiment defined in Fig. 11.7. The experiment shown in that figure initializes counter j and
then runs B with the shown oracle and also with the hybrid decryption oracle HDsk(·) that we
defined previously. The two oracles share state in the form of a counter j and as well as quantities
that are created and stored by HE i

pk(·, ·) and then accessed by HDsk(·).

Our ind-cca adversary A attacking the base symmetric encryption scheme SE is depicted in
Fig. 11.7. The novelty here, as compared to Fig. 11.4, is the subroutine OD defined by A. Note
that it considers three cases for the value of l. In the second case, it computes a response by
invoking A’s given decryption oracle Ds

K(·). In the third case it computes a response using the fact
that it knows sk.

We must check that A is legal, meaning that it never queries its decryption oracle with a ciphertext
Cs previously returned by its lr-encryption oracle. Suppose B makes decryption oracle query
C = (Ca, Cs). Our concern is that Cs = Cs

I . (The latter is the only ciphertext returned by A’s
lr-encryption oracle since A makes only one query to this oracle, and thus this is the only concern.)
Let l = Find(Ca;Ca

1 , . . . , Ca
j). If l 6= I then A does not query its decryption oracle at all and thus

certainly does not make an illegal query. So suppose l = I. This means Ca = Ca
I . However B is

assumed to be legal, which implies (Ca, Cs) 6= (Ca
I , Cs

I), so it must be that Cs 6= Cs
I as desired.

The analysis of A is then analogous to the one in the proof of Theorem 11.4.2, and we omit the
details.

11.5 El Gamal scheme and its variants

Let G be a cyclic group with generator g, meaning G = {g0, g1, . . . , gn−1}, where n = |G| is the
order of G. Recall that the discrete exponentiation function is

DExpG,g : Zn → G

x 7→ gx .

The inverse of this function is the discrete logarithm function

DLogG,g : G → Zn

X 7→ x ,

where x ∈ Zn is the unique integer such that gx = X in G.

The discrete exponentiation function is conjectured to be one-way (meaning the discrete loga-
rithm function is hard to compute) for some groups G. An example is the group G = Z∗

p under

Bellare and Rogaway 21

Oracle HE i
pk(M0,M1)

j ← j + 1

K0,j
$←Ks ; K1,j

$←Ks

If j ≤ i

then Cs
j

$←Es(K0,j , M1)

else Cs
j

$←Es(K0,j , M0)

EndIf

If Cs
j = ⊥ then return ⊥

Ca
j

$←Ea(pk, K1,j)

Cj ← (Ca
j , Cs

j)

Return Cj

Experiment Expi
AE

(B)

(pk, sk) $←Ka

d← BHE i
pk

(·,·),HD
sk

(·)(pk)

Return d

Adversary AEs
K

(LR(·,·,b)),Ds
K

(·)

(pk, sk) $←Ka ; j ← 0 ; I $←{1, . . . , q}

Subroutine OE(M0,M1)

j ← j + 1

K0,j
$
←Ks ; K1,j

$
←Ks

If j < I then Cs
j

$←Es(K0,j , M1) EndIf

If j = I then Cs
j

$←Es
K(LR(M0,M1, b)) EndIf

If j > I then Cs
j

$
←Es(K0,j , M0) EndIf

If Cs
j = ⊥ then return ⊥

Ca
j

$←Ea(pk, K1,j)

Return (Ca
j , Cs

j)

End Subroutine

Subroutine OD(C)

Parse C as (Ca, Cs)

l← Find(Ca;Ca
1 , . . . , Ca

j)

If l 6∈ {0, I} then M ← Ds(K0,l, C
s) EndIf

If l = I then M ← Ds
K(Cs) EndIf

If l = 0 then M ← D(sk, C) EndIf

Return M

End Subroutine

d $←BOE(·,·),OD(·)(pk)

Return d

Figure 11.7: Hybrid oracles and experiments related to the construction of ind-cca adversary A in
the proof of Theorem 11.4.3.

22 ASYMMETRIC ENCRYPTION

multiplication modulo p, where p is a large prime such that p−1 has a large prime factor. The size
(order) of Z∗

p is p − 1, so in this case n = p − 1. In other words, exponents of g are in the range
0, 1, . . . , p− 2.

Let us now assume G is some cyclic group in which the discrete logarithm problem is hard. We
would like to use this assumption as the basis of an encryption scheme in the sense that, somehow,
an adversary wanting to decrypt should be faced with solving a discrete logarithm problem. The
basic idea is the following. Let the receiver’s secret key by x ∈ Zn and let its public key be
X = gx ∈ G. Note that computing the secret key given the public key involves computing a
discrete logarithm and by assumption is hard. Now suppose a sender, in possession of X, picks
y ∈ Zn lets Y = gy ∈ G, and sends Y to the receiver. At this point the receiver holds x, Y and the
sender holds y,X. Consider the quantity K = gxy ∈ G and notice that

Y x = (gy)x = gxy

︸︷︷︸

K

= (gx)y = Xy . (11.22)

The sender can compute K as Xy since it knows y,X while the receiver can compute K via Y x

since it knows x, Y . The quantity K is thus a shared key. Having such a key, encryption of a
message M is easy. Assuming that M ∈ G is a group element, the sender computes W = KM in
G and transmits W to the receiver. The latter, having K, recovers M as WK−1.

The above description might make it look like there are two steps, namely the sender first
transmits Y and then W , but when we implement this as an encryption scheme, we simply merge
these steps. The sender computes Y and W and the ciphertext it transmits is the pair (Y,W).

Now, what about security? The adversary is in possession of the public key X, and, via
eavesdropping, will obtain the ciphertext (Y,W). The most direct attack is to attempt to compute
K = gxy. An adversary attempting to do this is faced with solving what we call the computationl
Diffie-Hellman (CDH) problem: given X,Y compute gxy where X = gx and Y = gy. One approach
to solving this is for the adversary to try either to find either x and then let K = Y x, or to find y
and let K = Xy. But finding x or y given X,Y involves computing discrete logarithms and is hard
by assumption. However, even if the discrete logarithm problem is hard, we are not necessarily
assured that computing K given X,Y is hard because there may be methods to do this that do not
involve computing discrete logarithms. We do not know whether such methods exist or not, but we
do know, empirically, that the CDH problem seems to be hard in numerous groups. Accordingly,
the security of the scheme relies on this assumption rather than merely the assumption that the
discrete logarithm problem is hard.

But this is a very rough view of the security considerations. When we examine security more
closely we will see that for the schemes to achieve the kinds of strong, well-defined notions of
security we have discussed above, the CDH assumption is not sufficient. But it is certainly the first
cut at understanding the issues.

11.5.1 The El Gamal scheme

What we described informally above is the El Gamal encryption scheme. Let us now detail it and
then look more closely at its security.

Scheme 11.5.1 Let G be a cyclic group of order n and let g be a generator of G. The El Gamal

encryption scheme AEEG = (K, E ,D) associated to G, g is the asymmetric encryption scheme whose
constituent algorithms are depicted below:

Bellare and Rogaway 23

Algorithm K

x $← Zn

X ← gx

Return (X,x)

Algorithm EX(M)
If M 6∈ G then return ⊥

y
$
← Zn ; Y ← gy

K ← Xy ; W ← KM
Return (Y,W)

Algorithm Dx((Y,W))
K ← Y x

M ←WK−1

Return M

The plaintext-space associated to a public key X ∈ G is G itself, and if M is not in this set then
the encryption algorithm returns ⊥.

The quantities G, g are assumed to be chosen a priori and known to all parties. A typical example
is G = Z∗

p where p ≥ 3 is a prime. We have discussed in Section 9.3 how to find primes and
generators and thus set up G, g in this case.

The first thing that should be verified about the El Gamal scheme is that decryption works
correctly, meaning Dx(EX(M)) = M for all M ∈ G. This is true because of Equation (11.22),
which says that the value K in both algorithms is indeed the same.

In common with several other algebraic schemes, in the natural formulation of the El Gamal
scheme given above, the message is a group element. In practice we might prefer to think of our
starting message as a string. In that case, we would encode the string as a group element before
using the El Gamal scheme. For example if G = Z∗

p where p is a prime of length k (i.e. 2k−1 ≤ p <

2k), the scheme could be viewed as enabling us to encrypt any binary string message m of length
k− 1. To do this, compute the integer whose binary representation is m and then adding one to it
to get an integer M in the range 1, . . . , 2k−1. This M beign in Z∗

p can be thought of as the message
for the El Gamal scheme. From the group element returned by the decryption algorithm one can
recover the corresponding string message in the obvious way. More generally, the message space
can be viewed as any set of strings of size at most |G|, mapping these to group elements via some
injective encoding function for the sake of encryption.

Now, we turn to security, concentrating first on security against chosen-plaintext attack. The
first thing to consider is whether the adversary could recover the secret key x from the public
key X. This however requires solving the discrete logarithm problem, which we are assuming is
computationally intractable. Next we could consider the possibility of recovery of the plaintext
M from a ciphertext (Y,W). The most obvious attack is for the adversary (given the public key
X and a ciphertext (Y,W)) to try to compute the key K from X,Y , and then recover M via
M = [[WK−1 mod p]]−1. But trying to find K amounts to solving the CDH problem, which as we
discussed is believed to be hard.

However, by now we know that it is naive to restrict security concerns to key recovery or even
to recovery of plaintext from ciphertext. We must also address the possibility of loss of partial
information about the plaintext. In other words, we should be asking whether the scheme meets
the notion of IND-CPA we discussed above. Whether it does or not turns out to depend on the
choice of group.

Before assessing IND-CPA, we need to clarify something. Recall that encryption is not, by
our definition, required to hide the length of a message, captured by the fact that the left-or-right
encryption oracle simply returns ⊥ if fed a pair of messages of equal length. This leads us to ask
what is the length of a message when the latter is a group element. As we said earlier, some encoding
of group elements as strings is presumed. However, we insist that the strings corresponding to all
elements of the group be of the same length, meaning encryption should not enable an adversary
to distinguish the ciphertexts corresponding to any two group elements.

24 ASYMMETRIC ENCRYPTION

11.5.2 El Gamal in the group Z∗
p

We first look at the case where G = Z∗
p for a prime p ≥ 3 and show that in this case the scheme

fails to be IND-CPA. The attacks rely on a little number theory from Chapter 9. Recall that the
Legendre (also Jacobi) symbol Jp(A) of A ∈ Z∗

p is 1 if A is a quadratic residue and −1 otherwise.
We claim that given a ciphertext (Y,W) of the scheme above, we can compute Jp(M). This is loss
of information about M since a priori there is no reason that the Jacobi symbol of M should be
known to an adversary.

We now explain how to compute Jp(M) given an encryption (Y,W) of M under public key
X = gx. The scheme tells us that W = KM where K = gxy and gy = Y . We first note that
by Proposition 9.20, Jp(W) = Jp(KM) = Jp(K) · Jp(M). This implies Jp(M) = Jp(K) · Jp(W).
Now Proposition 9.21 tells us Jp(K) = Jp(g

xy) can be computed given Jp(X) and Jp(Y). Finally,
Proposition 9.18 tells us that Jp(X), Jp(Y), Jp(W) can all be computed in time cubic in the length
of p. Putting it all together, Jp(M) can be computed given X,Y,W in time cubic in the length of
p. We now detail the attack.

Proposition 11.5.2 Let p ≥ 3 be a prime and let G = Z∗
p. Let g be a generator of G. Let AEEG

be the El Gamal encryption scheme associated to G, g as per Scheme 11.5.1. Then there is an
adversary A such that

Adv
ind-cpa
AEEG

(A) = 1 .

Furthermore A makes only one query to its left-or-right encryption oracle and having running time
O(|p|3) plus the time to perform some encoding related operations.

Proof of Proposition 11.5.2: Adversary A has input a public key X ∈ Z∗
p and access to a left-

or-right encryption oracle EX(LR(·, ·, b)), where E is the encryption algorithm of the scheme. (We
regard p, g as fixed and known to all parties including the adversary.) Now here is the adversary:

Adversary AEX (LR(·,·,b))(X)

M0 ← 1 ; M1 ← g

(Y,W) $←EX(LR(M0,M1, b))

If X(p−1)/2 ≡ −1 (mod p) and Y (p−1)/2 ≡ −1 (mod p))
then s← −1 else s← 1

EndIf

If W (p−1)/2 ≡ s (mod p) then return 0 else return 1 EndIf

Results in previous chapters Propositions 9.21 and 9.18 tell us that s = Jp(K) where K = gxy,
Y = gy and X = gx. By Proposition 9.20 and some basic algebra, we have

Jp(W) = Jp(KM−1
b) = Jp(K) · Jp(M

−1
b) = Jp(K) · Jp(Mb) = s · Jp(Mb)

where b is the challenge bit. Proposition 9.17 tells us that M0 is a square (it equals g0 and 0 is
even) and M1 is a non-square (it equals g1 and 1 is odd). Now suppose we are in world 0, meaning
b = 0. Then Jp(Mb) = 1 so Jp(W) = s and thus A returns 0. On the other hand if we are in
world 1, meaning b = 1, then Jp(Mb) = −1, so Jp(W) 6= s and A returns 1. This means that

Pr
[

Exp
ind-cpa-1
AEEG

(A) = 1
]

= 1

Pr
[

Exp
ind-cpa-0
AEEG

(A) = 1
]

= 0 .

Bellare and Rogaway 25

Subtracting, we get

Adv
ind-cpa
AEEG

(A) = 1

as desired.

11.5.3 Chosen-ciphertext attacks on the El Gamal scheme

The El Gamal scheme is vulnerable to a chosen-ciphertext attack regardless of the choice of group
G. An adversary can obtain the decryption of a given ciphertext by calling the decryption oracle
on a different but related ciphertext. This leads to the following:

Proposition 11.5.3 Let G be a cyclic group and g a generator of G. Let AEEG be the El Gamal
encryption scheme associated to G, g as per Scheme 11.5.1. Then there is an adversary A such that

Advind-cca
AEEG

(A) = 1 .

Furthermore A makes one query to its left-or-right encryption oracle, one query to its decryption
oracle, and has running time the cost of a few exponentiations in G.

Proof of Proposition 11.5.3: Adversary A that has input a public key X ∈ G and access to
two oracles: a left-or-right encryption oracle EX(LR(·, ·, b)) and a decryption oracle Dx(·) where
gx = X. (Group G and generator g are fixed and known to all parties including the adversary, and
E ,D are as in Scheme 11.5.1). It works as follows:

Adversary AEX (LR(·,·,b)),Dx(·)(X)

Let M0,M1 be any two distinct elements of G

(Y,W) $←EX(LR(M0,M1, b))

W ′ ← Wg

M ← Dx((Y,W ′))

If M = M0g then return 0 else return 1

The ciphertext (Y,W ′) is different from the ciphertext (Y,W) and thus the adversary is allowed to
call its decryption oracle on (Y,W ′). Let b denote the challenge bit and let K = gxy where Y = gy.
Then

M = Dx((Y,W ′)) = K−1W ′ = K−1Wg = Mbg .

Thus the value returned by A is the bit b, meaning it has advantage 1.

11.5.4 Security of El Gamal under the DDH assumption

In suitable groups, the El Gamal encryption scheme is secure against chosen-plaintext attack.
The groups in question are those for which the DDH (Decision Diffie-Hellman) problem is hard.
The problem was described in Section 10.1.4. Recall the problem is that the adversary is given
gx, gy , gz and must return a bit to indicate whether or not gz = gxy, where g is a generator of
the underlying cyclic group G. If one can solve the CDH problem then one can solve the DDH
problem by computing gxy and testing whether it equals gz , but it might be possible to solve the
DDH problem without solving the CDH problem. Indeed, this is true in some groups such as

26 ASYMMETRIC ENCRYPTION

integers modulo a prime, as indicated by Proposition 10.5 meaning the DDH problem is easy in
these groups. But there are choices of group for which the DDH problem is hard, in particular some
groups of prime order such as the subgroup of quadratic residues of the group of integers modulo
a prime (cf. Section 9.5).

