
SYMMETRIC ENCRYPTION
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Syntax

A symmetric encryption scheme SE = (K, E ,D) consists of three
algorithms:

• K is randomized

• E can be randomized or stateful

• D is deterministic
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Correct decryption requirement

Formally: For all K and M we have

Pr [DK (EK (M)) = M] = 1 ,

where the probability is over the coins of E
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Example: OTP

SE = (K, E ,D) where:

Alg K
K

$
←{0, 1}k

return K

Alg EK (M)
C ← K ⊕M

return C

Alg DK (C )
M ← K ⊕ C

return M

Correct decryption:

DK (EK (M)) = DK (K ⊕M)
= K ⊕ (K ⊕M)
= M
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Block cipher modes of operation

E : {0, 1}k × {0, 1}n → {0, 1}n a block cipher

Notation: x [i ] is the i-th n-bit block of a string x, so that
x = x [1] . . . x [m] if |x | = nm.

Always:

Alg K
K

$
← {0, 1}k

return K
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Block cipher modes of operation

Block cipher provides parties sharing K with

EK

M

C

which enables them to encrypt a 1-block message.

How do we encrypt a long message using a primitive that only applies to
n-bit blocks?

6 / 116



ECB: Electronic Codebook Mode

SE = (K, E ,D) where:

Alg EK (M)
for i = 1, . . . ,m do

C [i ]← EK (M[i ])
return C
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ECB: Electronic Codebook Mode

SE = (K, E ,D) where:

Alg EK (M)
for i = 1, . . . ,m do

C [i ]← EK (M[i ])
return C

Alg DK (C )
for i = 1, . . . ,m do

M[i ]← E−1
K (C [i ])

return M

Correct decryption relies on E being a block cipher, so that EK is
invertible
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Evaluating Security

Sender encrypts some messages M1, ...,Mq , namely

C1
$←EK (M1), ...,Cq

$←EK (Mq)

and transmits C1, ...,Cq to receiver.

Adversary

• Knows SE = (K, E ,D)

• Knows C1, ...,Cq

• Is not given K !

Possible adversary goals:

• Recover K

• Recover M1

But we will need to look beyond these
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Security of ECB

Adversary has ciphertext C = C [1] · · ·C [m]

Adversary task Assessment Why?

Compute K
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Security of ECB

Weakness: M1 = M2 ⇒ C1 = C2

Why is the above true? Because EK is deterministic:

EK. . .EK

M1[1] M1[m]

C1[1] C1[m]

EK EK. . .

M2[1] M2[m]

C2[1] C2[m]

Why does this matter?
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Security of ECB

Suppose we know that there are only two possible messages, Y = 1n

and N = 0n, for example representing
• FIRE or DON’T FIRE a missile
• BUY or SELL a stock
• Vote YES or NO

Then ECB algorithm will be EK (M) = EK (M).

EK

M

C
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Security of ECB

Votes M1,M2 ∈ {Y ,N} are ECB encrypted and adversary sees
ciphertexts C1 = EK (M1) and C2 = EK (M2)

EK

C1

M1

EK

M2

C2

Adversary may have cast the first vote and thus knows M1; say
M1 = Y . Then adversary can figure out M2:

• If C2 = C1 then M2 must be Y

• Else M2 must be N
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Is this avoidable?

Let SE = (K, E ,D) be ANY encryption scheme.

Suppose M1,M2 ∈ {Y ,N} and

• Sender sends ciphertexts C1 ← EK (M1) and C2 ← EK (M2)

• Adversary A knows that M1 = Y

Adversary says: If C2 = C1 then M2 must be Y else it must be N.

Does this attack work?
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Is this avoidable?

Let SE = (K, E ,D) be ANY encryption scheme.

Suppose M1,M2 ∈ {Y ,N} and

• Sender sends ciphertexts C1 ← EK (M1) and C2 ← EK (M2)

• Adversary A knows that M1 = Y

Adversary says: If C2 = C1 then M2 must be Y else it must be N.

Does this attack work?

Yes, if E is deterministic.
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Randomized encryption

For encryption to be secure it must be randomized

That is, algorithm EK flips coins.

If the same message is encrypted twice, we are likely to get back
different answers. That is, if M1 = M2 and we let

C1
$←EK (M1) and C2

$←EK (M2)

then
Pr [C1 = C2]

will (should) be small, where the probability is over the coins of E .
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Randomized encryption

There are many possible ciphertexts corresponding to each message.

If so, how can we decrypt?

We will see examples soon.

EKM

C1

DK M

C2

Cs
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Randomized encryption

A fundamental departure from classical and conventional notions of
encryption.

Clasically, encryption (e.g., substitution cipher) is a code, associating to
each message a unique ciphertext.

Now, we are saying no such code is secure, and we look to encryption
mechanisms which associate to each message a number of different
possible ciphertexts.
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Stateful encryption

An alternative to randomization is to allow the encryption algorithm to
maintain state. This might be a counter

• encrypt depending on counter value

• then update counter

We will see schemes that use this paradigm to get around the security
weaknesses of deterministic encryption without using randomness.
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More Modes of Operation

Randomized Stateful

CBC$, CTR$ CBCC,CTRC
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CBC$: Cipher Block Chaining with random IV mode

SE = (K, E ,D) where:

Alg EK (M)

C [0]
$←{0, 1}n

for i = 1, . . . ,m do

C [i ]← EK (M[i ]⊕ C [i − 1])
return C
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CBC$: Cipher Block Chaining with random IV mode

SE = (K, E ,D) where:

Alg EK (M)

C [0]
$←{0, 1}n

for i = 1, . . . ,m do

C [i ]← EK (M[i ]⊕ C [i − 1])
return C

Alg DK (C )
for i = 1, . . . ,m do

M[i ]← E−1
K

(C [i ])⊕ C [i − 1]
return M

Correct decryption relies on E being a block cipher so that EK is
invertible
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CTRC mode

Sender maintains a counter ctr that is initially 0 and is updated by E

〈j〉 = the n-bit binary representation of integerj (0 ≤ j < 2n)

Alg EK (M)
C [0]← ctr
for i = 1, . . . ,m do

P [i ]← EK (〈ctr + i〉)
C [i ]← P [i ]⊕M[i ]

ctr ← ctr + m
return C
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for i = 1, . . . ,m do

P [i ]← EK (〈ctr + i〉)
C [i ]← P [i ]⊕M[i ]

ctr ← ctr + m
return C

Alg DK (C )
ctr ← C [0]
for i = 1, . . . ,m do

P [i ]← EK (〈ctr + i〉)
M[i ]← P [i ]⊕ C [i ]
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CTRC mode

Sender maintains a counter ctr that is initially 0 and is updated by E

〈j〉 = the n-bit binary representation of integerj (0 ≤ j < 2n)

Alg EK (M)
C [0]← ctr
for i = 1, . . . ,m do

P [i ]← EK (〈ctr + i〉)
C [i ]← P [i ]⊕M[i ]

ctr ← ctr + m
return C

Alg DK (C )
ctr ← C [0]
for i = 1, . . . ,m do

P [i ]← EK (〈ctr + i〉)
M[i ]← P [i ]⊕ C [i ]

return M

• Decryptor does not maintain a counter

• D does not use E−1
K !

• Encryption and Decryption are parallelizable.
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Security of CBC$ against key recovery

If adversary has a plaintext M and corresponding ciphertext
C

$
←EK (M) then it has input-output examples

(M[1]⊕ C [0],C [1]), (M[2] ⊕ C [1],C [2]) of EK .

EK

M[1]

C [1]

EK

C [2]

M[2]

C [0]

So chosen-message key recovery attacks on E can be mounted to
recover K .

Conclusion: Security of CBC$ against key recovery is no better than
that of the underlying block cipher.
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Voting with CBC$

Suppose we encrypt M1,M2 ∈ {Y ,N} with CBC$.

EK

M1

C1[1]{0, 1}n $→ C1[0]

EK

M2

C2[1]{0, 1}n $→ C2[0]

Adversary A sees C1 = C1[0]C1[1] and C2 = C2[0]C2[1].

Suppose A knows that M1 = Y .

Can A determine whether M2 = Y or M2 = N?

22 / 116



Voting with CBC$

Suppose we encrypt M1,M2 ∈ {Y ,N} with CBC$.

EK

M1

C1[1]{0, 1}n $→ C1[0]

EK

M2

C2[1]{0, 1}n $→ C2[0]

Adversary A sees C1 = C1[0]C1[1] and C2 = C2[0]C2[1].

Suppose A knows that M1 = Y .

Can A determine whether M2 = Y or M2 = N?

NO!
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Voting with CBC$

If M1 = Y we have

EK

C1[1]

C1[0]⊕ Y

EK

C2[1]

C2[0] ⊕M2

A knows C1[0]C1[1] and C2[0]C2[1]. Now

• If C1[0] = C2[0] then A can deduce that
• If C2[1] = C1[1] then M2 = Y

• If C2[1] 6= C1[1] then M2 = N

• But the probability that C1[0] = C2[0] is very small.
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Assessing security

So CBC$ is better than ECB. But is it secure?

CBC$ is the world’s most widely used encryption scheme (SSL, SSH,
TLS, ...) so knowing whether it is secure is important

To answer this we first need to decide and formalize what we mean by
secure.
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Types of encryption schemes

Special purpose: Used in a specific setting, to encrypt data of some
known format or distribution. Comes with a

WARNING! only use under conditions X.

General purpose: Used to encrypt in many different settings, where the
data format and distribution are not known in advance.

We want general purpose schemes because

• They can be standardized and broadly used.

• Once a scheme is out there, it gets used for everything anyway.

• General purpose schemes are easier to use and less subject to
mis-use: it is hard for application designers to know whether
condition X is met.
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Security requirements

A priori information: What the adversary already knows about the data
from the context. For example, it is drawn from {Y ,N}

Data distribution or format: The data may be English or not; may have
randomness or not; ...

Security should not rely on assumptions about these things.
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E-mail encryption

E-mail data could be

• English text

• A pdf or executable file

• Votes

Want security in all these cases.
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Security requirements

Suppose sender computes

C1
$
←EK (M1) ; · · · ; Cq

$
←EK (Mq)

Adversary A has C1, . . . ,Cq

What if A

Retrieves K Bad!
Retrieves M1 Bad!

But also ...
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Security requirements

We want to hide all partial information about the data stream.

Examples of partial information:

• Does M1 = M2?

• What is first bit of M1?

• What is XOR of first bits of M1,M2?
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Security requirements

We want to hide all partial information about the data stream.

Examples of partial information:

• Does M1 = M2?

• What is first bit of M1?

• What is XOR of first bits of M1,M2?

Something we won’t hide: the length of the message
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What we seek

We want a single “master” property MP of an encryption scheme such
that

• MP can be easily specified

• We can evaluate whether a scheme meets it

• MP implies ALL the security conditions we want: it guarantees that
a ciphertext reveals NO partial information about the plaintext.

Thus a scheme having MP means not only that if adversary has
C1

$←EK (M1) and C2
$←EK (M2) then

• It can’t get M1

• It can’t get 1st bit of M1

• It can’t get XOR 1st bits of M1,M2

but in fact implies “all” such information about M1,M2 is protected.
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Seeking MP

So what is the master property MP?

It is a notion we call indistinguishability (IND). We will define

• IND-CPA: Indistinguishability under chosen-plaintext attack

• IND-CCA: Indistinguishability under chosen-ciphertext attack
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Plan

• Define IND-CPA

• Examples of non-IND-CPA schemes

• See why IND-CPA is a “master” property, namely why it implies
that ciphertexts leak no partial information about plaintexts

• Examples of IND-CPA schemes

• IND-CCA
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Intuition for definition of IND

Consider encrypting one of two possible message streams, either

M1
0 , ...,Mq

0

or
M1

1 , ...,Mq
1

Adversary, given ciphertexts and both data streams, has to figure out
which of the two streams was encrypted.
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ind-cpa-adversaries

Let SE = (K, E ,D) be an encryption scheme

An ind-cpa adversary A has an oracle LR

• It can make a query M0,M1 consisting of any two equal-length
messages

• It can do this many times

• Each time it gets back a ciphertext

• It eventually outputs a bit

d ←−

A

M1
0 ,M1

1
-

C1
�

...

M
q
0 ,Mq

1
-

Cq
�

LR
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ind-cpa-adversaries

Let SE = (K, E ,D) be an encryption scheme

Left world

A
M0,M1

-

C
�

LR
C

$←EK (M0)

Right world

A
M0,M1

-

C
�

LR
C

$←EK (M1)

Intended meaning:
A’s output d I think I am in the

1 Right world

0 Left world

The harder it is for A to guess world it is in, the more “secure” SE is as
an encryption scheme.
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The games

Let SE = (K, E ,D) be an encryption scheme

Game LeftSE

procedure Initialize
K

$←K

procedure LR(M0,M1)

Return C
$←EK (M0)

Game RightSE

procedure Initialize
K

$←K

procedure LR(M0,M1)

Return C
$←EK (M1)

Associated to SE ,A are the probabilities

Pr
[

LeftASE⇒1
]

Pr
[

RightASE⇒1
]

that A outputs 1 in each world. The (ind-cpa) advantage of A is

Advind-cpa
SE (A) = Pr

[

RightASE⇒1
]

− Pr
[

LeftASE⇒1
]

36 / 116



Example

Let E : {0, 1}k × {0, 1}128 → {0, 1}128 be a block cipher and let
SE = (K, E ,D) be defined by

Alg K
K

$
←{0, 1}k

return K

Alg EK (M)
return EK (M)

Alg DK (M)
return E−1

K (M)

This scheme encrypts only 1-block messages.

Succinctly: EK (M) = EK (M)

37 / 116



Example

Let EK (M) = EK (M) and let A be the following ind-cpa adversary

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0

Left world

A M0,M1
-

C
�

LR
C ← EK (M0)

Right world

A M0,M1
-

C
�

LR
C ← EK (M1)

Then

Pr
[

LeftASE ⇒ 1
]

= Pr
[

RightASE ⇒ 1
]

=
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Example

Let EK (M) = EK (M)

Left world

A M0,M1
-

C
�

LR
C ← EK (M0)

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0
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Example

Let EK (M) = EK (M)

Left world

A M0,M1
-

C
�

LR
C ← EK (M0)

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0

What happens

• C1 = EK (0n) = EK (0n)

• C2 = EK (1n) = EK (1n) 6= EK (0n)

• so C1 6= C2 and A returns 0

so
Pr

[

LeftASE ⇒ 1
]

= 0
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�

LR
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What happens
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so
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Example

Let EK (M) = EK (M)

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0

Advind-cpa
SE (A) = Pr

[

RightASE ⇒ 1
]

− Pr
[

LeftASE ⇒ 1
]

= 1− 0

= 1
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The measure of success

Let SE = (K, E ,D) be an encryption scheme and A be an ind-cpa
adversary. Then

Advind-cpa
SE (A) = Pr

[

RightASE⇒1
]

− Pr
[

LeftASE⇒1
]

is a number between −1 and 1.

A “large” (close to 1) advantage means

• A is doing well

• SE is not secure

A “small” (close to 0 or ≤ 0) advantage means

• A is doing poorly

• SE resists the attack A is mounting
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IND-CPA security

Adversary advantage depends on its

• strategy

• resources: Running time t and number q of oracle queries

Security: SE is IND-CPA (i.e. secure)

if Advind-cpa
SE (A) is “small” for ALL A that use “practical” amounts of

resources.

Example: 80-bit security could mean that for all n = 1, . . . , 80 we have

Advind-cpa
SE (A) ≤ 2−n

for any A with time and number of oracle queries at most 280−n.

Insecurity: SE is not IND-CPA (i.e. insecure) if there exists A using
“few” resources that achieves “high” advantage.
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ECB is not IND-CPA-secure

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Recall that ECB
mode defines symmetric encryption scheme SE = (K, E ,D) with

EK (M) = EK (M[1])EK (M[2]) · · · EK (M[m])
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ECB is not IND-CPA-secure

Let EK (M) = EK (M[1]) · · · EK (M[m])

Left world

A
M0,M1

-

C
�

LR
C

$←EK (M0)

Right world

A
M0,M1

-

C
�

LR
C

$←EK (M1)

Can we design A so that

Advind-cpa
SE (A) = Pr

[

RightASE⇒1
]

− Pr
[

LeftASE⇒1
]

is close to 1?
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ECB is not IND-CPA-secure

Let EK (M) = EK (M[1]) · · · EK (M[m])

Left world

A
M0,M1

-

C
�

LR
C

$←EK (M0)

Right world

A
M0,M1

-

C
�

LR
C

$←EK (M1)

Can we design A so that

Advind-cpa
SE (A) = Pr

[

RightASE⇒1
]

− Pr
[

LeftASE⇒1
]

is close to 1?

Exploitable weakness of SE : M1 = M2 implies EK (M1) = EK (M2).
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ECB is not IND-CPA-secure

Let EK (M) = EK (M[1]) · · · EK (M[m]).
Left world

A M0,M1
-

C
�

LR
C ← EK (M0)

Right world

A M0,M1
-

C
�

LR
C ← EK (M1)

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0
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ECB is not IND-CPA-secure: Right world analysis

E is defined by EK (M) = EK (M[1]) · · · EK (M[m]).

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0

Game RightSE

procedure Initialize
K

$←K

procedure LR(M0,M1)
Return EK (M1)

Right world

A
M0,M1

-

C
�

LR
C ← EK (M1)

Then
Pr

[

RightASE⇒1
]

=

47 / 116



ECB is not IND-CPA-secure: Right world analysis

E is defined by EK (M) = EK (M[1]) · · · EK (M[m]).

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0

Game RightSE

procedure Initialize
K

$←K

procedure LR(M0,M1)
Return EK (M1)

Right world

A
M0,M1

-

C
�

LR
C ← EK (M1)

Then
Pr

[

RightASE⇒1
]

= 1

because C1 = EK (0n) = EK (0n) = C2.
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ECB is not IND-CPA-secure: Left world analysis

E is defined by EK (M) = EK (M[1]) · · · EK (M[m]).

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0

Game LeftSE

procedure Initialize
K

$
←K

procedure LR(M0,M1)
Return EK (M0)

Left world

A
M0,M1

-

C
�

LR
C ← EK (M0)
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]

=
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ECB is not IND-CPA-secure: Left world analysis

E is defined by EK (M) = EK (M[1]) · · · EK (M[m]).

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0

Game LeftSE

procedure Initialize
K

$
←K

procedure LR(M0,M1)
Return EK (M0)

Left world

A
M0,M1

-

C
�

LR
C ← EK (M0)

Then
Pr

[

LeftASE⇒1
]

= 0

because C1 = EK (0n) 6= EK (1n) = C2.
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ECB is not IND-CPA secure

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0

Advind-cpa
SE (A) =

1
︷ ︸︸ ︷

Pr
[

RightASE = 1
]

−

0
︷ ︸︸ ︷

Pr
[

RightASE = 1
]

= 1

And A is very efficient, making only two queries.

Thus ECB is not IND-CPA secure.
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Why is IND-CPA the “master” property?

We claim that if encryption scheme SE = (K, E ,D) is IND-CPA secure
then the ciphertext hides ALL partial information about the plaintext.

For example, from C1
$←EK (M1) and C2

$←EK (M2) the adversary
cannot

• get M1

• get 1st bit of M1

• get XOR of the 1st bits of M1,M2

• etc.

Why is this true?
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XOR-insecurity implies IND-CPA-insecurity

Let lsb(M) denote the last bit of M

Suppose we are given an adversary B such that

EK (M1)
$→ C1 →

EK (M2)
$
→ C2 →

B
→ lsb(M1)⊕ lsb(M2)

for all M1,M2. Then we claim we can design an ind-cpa adversary A

such that
Advind-cpa

SE (A) = 1 ,

meaning SE is not IND-CPA secure.

Thus:

XOR-insecurity ⇒ IND-CPA-insecurity

IND-CPA-security ⇒ XOR-security

51 / 116



XOR-insecurity implies IND-CPA-insecurity

Left world

A M0,M1
-

C
�

LR
C ← EK (M0)

Right world

A M0,M1
-

C
�

LR
C ← EK (M1)

adversary A
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XOR-insecurity implies IND-CPA-insecurity

Left world

A M0,M1
-

C
�

LR
C ← EK (M0)

Right world

A M0,M1
-

C
�

LR
C ← EK (M1)

adversary A

• Makes two LR queries

• The left messages are M1
0 = 0n and M2

0 = 0n.
Why? Because lsb(0n)⊕ lsb(0n) = 0

• The right messages are M1
1 = 0n and M2

1 = 1n.
Why? Because lsb(0n)⊕ lsb(1n) = 1

• Gets back 2 ciphertexts C1,C2

• Runs B(C1,C2) to compute lsb(M1
b)⊕ lsb(M2

b) which equals b,
indiciating whether Left or Right world
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XOR-insecurity implies IND-CPA-insecurity

Left world

A M0,M1
-

C
�

LR
C ← EK (M0)

Right world

A M0,M1
-

C
�

LR
C ← EK (M1)

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(0n, 1n)

d
$← B(C1,C2) ; return d
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XOR-insecurity implies IND-CPA-insecurity

Left world

A M0,M1
-

C
�

LR
C ← EK (M0)

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(0n, 1n)

d
$
← B(C1,C2) ; return d

What happens:

• C1
$←EK (0n) and C2

$←EK (0n)

• The first bits of the encrypted messages XOR to 0

• so B returns 0

so
Pr

[

LeftASE ⇒ 1
]

= 0
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XOR-insecurity implies IND-CPA-insecurity

adversary A

C1 ← LR(0n, 0n) ; C2 ← LR(0n, 1n)

d
$← B(C1,C2) ; return d

Right world

A M0,M1
-

C
�

LR
C ← EK (M1)

What happens:

• C1
$
←EK (0n) and C2

$
←EK (1n)

• The first bits of the encrypted messages XOR to 1

• so B returns 1

so
Pr

[

RightASE ⇒ 1
]

= 1
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XOR-insecurity implies IND-CPA-insecurity

So

Advind-cpa
SE (A) = Pr

[

RightASE ⇒ 1
]

− Pr
[

LeftASE ⇒ 1
]

= 1− 0

= 1

as claimed
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Alternative formulation of advantage

Let SE = (K, E ,D) be a symmetric encryption scheme and A an
adversary.

Game GuessSE

procedure Initialize
K

$
←K ; b

$
←{0, 1}

procedure LR(M0,M1)

return C
$←EK (Mb)

procedure Finalize(b′)
return (b = b′)

Proposition: Advind-cpa
SE (A) = 2 · Pr

[

GuessASE⇒true
]

− 1.

Proof: Observe

Pr
[
b′ = 1 | b = 1

]
= Pr

[

RightASE⇒1
]

Pr
[
b′ = 1 | b = 0

]
= Pr

[

LeftASE⇒1
]
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Proof (continued)

Pr
[

Guess
A
SE⇒true

]

= Pr
[
b = b

′
]

= Pr
[
b = b

′ | b = 1
]
· Pr [b = 1] + Pr

[
b = b

′ | b = 0
]
· Pr [b = 0]

= Pr
[
b = b

′ | b = 1
]
·
1

2
+ Pr

[
b = b

′ | b = 0
]
·
1

2

= Pr
[
b
′ = 1 | b = 1

]
·
1

2
+ Pr

[
b
′ = 0 | b = 0

]
·
1

2

= Pr
[
b
′ = 1 | b = 1

]
·
1

2
+

(
1− Pr

[
b
′ = 1 | b = 0

])
·
1

2

=
1

2
+

1

2
·
(
Pr

[
b
′ = 1 | b = 1

]
− Pr

[
b
′ = 1 | b = 0

])

=
1

2
+

1

2
·
(

Pr
[

Right
A
SE⇒1

]

− Pr
[

Left
A
SE⇒1

])

=
1

2
+

1

2
· Advind-cpa

SE
(A) .
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Security of CTRC

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Sender maintains
a counter ctr, initially 0. The scheme is SE = (K, E ,D) where

Alg EK (M)
C [0]← ctr
for i = 1, . . . ,m do

P [i ]← EK (〈ctr + i〉)
C [i ]← P [i ]⊕M[i ]

ctr ← ctr + m

return C

Question: Is SE IND-CPA secure?

We cannot expect so if E is “bad”. So, let’s ask:

Question: Assuming E is good (a PRF) is SE IND-CPA secure?
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IND-CPA security of CTRC

SE = (K, E ,D) CTRC mode relative to block cipher E .

Question: If E is a PRF then is SE ind-cpa SECURE?

Answer: YES

And we can prove that the above answer is correct.

The above

• means CTRC has no “structural” weaknesses.

• Is not a triviality because it was not true for ECB.
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Implications

Fact: If E is secure (PRF) then CTRC mode is a secure (IND-CPA)
encryption scheme.

This means CTRC is a good, general purpose encryption scheme.

Ciphertexts leak NO partial information about messages.

Provides security regardless of message distribution. Votes can be
securely encrypted.

We do not need to look for attacks on the scheme. We are guaranteed
there are no attacks as long as E is secure.
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Intuition for IND-CPA security of CTRC

Consider the CTRC scheme with EK replaced by a random function Fn.

Alg EFn(M)
C [0]← ctr
for i = 1, . . . ,m do

P [i ]← Fn(〈ctr + i〉)
C [i ]← P [i ]⊕M[i ]

ctr ← ctr + m
return C

Alg DFn(C )
ctr ← C [0]
for i = 1, . . . ,m do

P [i ]← Fn(〈ctr + i〉)
M[i ]← P [i ]⊕ C [i ]

return M

Analyzing this is a thought experiment, but we can ask whether it is
IND-CPA secure.

If so, the assumption that E is a PRF says the real CTRC is IND-CPA
secure.
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CTRC with a random function

Alg EFn(M)
C [0]← ctr
for i = 1, . . . ,m do

P [i ]← Fn(〈ctr + i〉)
C [i ]← P [i ]⊕M[i ]

ctr ← ctr + m

return C

Since Fn is random, the sequence P [1] · · ·P [m] is random and the above
is just one-time pad encryption, which is certainly IND-CPA secure.

So CTRC with a random function is IND-CPA secure.
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IND-CPA security of CTRC

Theorem: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions
and let SE = (K, E ,D) be the corresponding CTRC mode symmetric
encryption scheme. Let A be an ind-cpa adversary making at most q LR
queries totalling at most σ blocks. Then there is a prf-adversary B such
that

Advind-cpa
SE (A) ≤ 2 ·Advprf

E (B).

Furthermore B makes at most σ oracle queries and runs in time at most
t + Θ(q + nσ).
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IND-CPA security of CTRC

Theorem: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions
and let SE = (K, E ,D) be the corresponding CTRC mode symmetric
encryption scheme. Let A be an ind-cpa adversary making at most q LR
queries totalling at most σ blocks. Then there is a prf-adversary B such
that

Advind-cpa
SE (A) ≤ 2 ·Advprf

E (B).

Furthermore B makes at most σ oracle queries and runs in time at most
t + Θ(q + nσ).

Implication:

E a PRF ⇒ Advprf
E (B) small

⇒ Advind-cpa
SE (A) small

⇒ SE IND-CPA secure
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Proof by reduction

A’s world

B runs A, itself replying to A’s oracle queries
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Some notation

‖M‖n = number of n-bit blocks in M.

That is, M = M[1]...M[m] where m = ‖M‖n.

〈j〉 denotes the n-bit binary encoding of integer j ∈ {0, ..., 2n − 1}.
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Games for CTRC security proof

Game G0

procedure Initialize
K

$←{0, 1}k ; b
$←{0, 1}

ctr ← 0

procedure LR(M0,M1)
C [0]← ctr ;m ← ‖Mb‖n
for i = 1, ...,m do

P [〈ctr + i〉]← EK (〈ctr + i〉)
C [i ]← P [〈ctr + i〉] ⊕ Mb[i ]

ctr ← ctr + m

return C

procedure Finalize(b′)
return (b = b′)

Game G1

procedure Initialize
b

$←{0, 1}; ctr ← 0

procedure LR(M0,M1)
C [0]← ctr ;m← ‖Mb‖n
for i = 1, ...,m do

P [〈ctr + i〉] $←{0, 1}n

C [i ]← P [〈ctr + i〉] ⊕ Mb[i ]
ctr ← ctr + m

return C

procedure Finalize(b′)
return (b = b′)
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Analysis

Claim 1: There is a prf-adversary B such that

Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

]

≤ Advprf
E

(B).
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Analysis

Claim 1: There is a prf-adversary B such that

Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

]

≤ Advprf
E

(B).

adversary B

b
$←{0, 1}; ctr ← 0;

b′ $← ALR

If (b = b′) then return 1
Else return 0

subroutine LR(M0,M1)
C [0]← ctr ;m ← ‖Mb‖n
for i = 1, ...,m do

P [〈ctr + i〉]← Fn(〈ctr + i〉)
C [i ]← P [〈ctr + i〉] ⊕ Mb[i ]

ctr ← ctr + m

return C

If Fn = EK then B is providing A the environment of game G0 so

Pr[RealBE⇒1] = Pr[GA
0 ⇒ true]

If Fn is random then B is providing A the environment of game G1 so

Pr[RandB
E⇒1] = Pr[GA

1 ⇒ true]
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Analysis

Claim 1: There is a prf-adversary B such that

Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

]

≤ Advprf
E

(B).

adversary B

b
$←{0, 1}; ctr ← 0;

b′ $
← ALR

If (b = b′) then return 1
Else return 0

subroutine LR(M0,M1)
C [0]← ctr ;m ← ‖Mb‖n
for i = 1, ...,m do

P [〈ctr + i〉]← Fn(〈ctr + i〉)
C [i ]← P [〈ctr + i〉] ⊕ Mb[i ]

ctr ← ctr + m

return C

Thus

Advprf
E (B) = Pr

[

RealBE 1⇒1
]

− Pr
[

RandB
E⇒1

]

= Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

]

which proves Claim 1.
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Analysis

Pr[GA
0 ⇒ true] = Pr[GA

1 ⇒ true] +
(

Pr[GA
0 ⇒ true]− Pr[GA

1 ⇒ true]
)

︸ ︷︷ ︸

≤ Advprf

E
(B)

So,

Advind-cpa
SE (A) = 2 · Pr[GA

0 ⇒ true]− 1

≤ 2 ·

(

Pr[GA
1 ⇒ true] + Advprf

E
(B)

)

− 1

= 2 ·Advprf
E (B) + 2Pr[GA

1 ⇒ true]− 1
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Analysis

Pr[GA
0 ⇒ true] = Pr[GA

1 ⇒ true] +
(

Pr[GA
0 ⇒ true]− Pr[GA

1 ⇒ true]
)

︸ ︷︷ ︸

≤ Advprf

E
(B)

So,

Advind-cpa
SE (A) = 2 · Pr[GA

0 ⇒ true]− 1

≤ 2 ·

(

Pr[GA
1 ⇒ true] + Advprf

E
(B)

)

− 1

= 2 ·Advprf
E (B) + 2Pr[GA

1 ⇒ true]− 1

Claim 2: Pr[GA
1 ⇒ true] = 1

2
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Analysis

Pr[GA
0 ⇒ true] = Pr[GA

1 ⇒ true] +
(

Pr[GA
0 ⇒ true]− Pr[GA

1 ⇒ true]
)

︸ ︷︷ ︸

≤ Advprf

E
(B)

So,

Advind-cpa
SE (A) = 2 · Pr[GA

0 ⇒ true]− 1

≤ 2 ·

(

Pr[GA
1 ⇒ true] + Advprf

E
(B)

)

− 1

= 2 ·Advprf
E (B) + 2Pr[GA

1 ⇒ true]− 1

Claim 2: Pr[GA
1 ⇒ true] = 1

2

So, Advind-cpa
SE (A) ≤ 2 ·Advprf

E
(B)
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Proof of Claim 2 in CTRC analysis

Game G1

procedure Initialize

b
$
←{0, 1}; ctr ← 0

procedure LR(M0, M1)
C [0]← ctr ;m← ‖Mb‖n
for i = 1, ..., m do

P[〈ctr + i〉] $←{0, 1}n

C [i]← P[〈ctr + i〉] ⊕ Mb[i]
ctr ← ctr + m

return C

procedure Finalize(b′)
return (b = b

′)

Game G2

procedure Initialize

b
$
←{0, 1}; ctr ← 0

procedure LR(M0, M1)
C [0]← ctr ;m← ‖M0‖n
for i = 1, ..., m do

C [i]
$←{0, 1}n

return C

procedure Finalize(b′)
return (b = b

′)

Claim 2: Pr[GA
1 ⇒ true] = 1

2
.

Proof: LR in G2 does not use bit b so

Pr[GA
1 ⇒ true] = Pr[GA

2 ⇒ true] =
1

2
.
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IND-CPA security of CTRC

Theorem: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions
and let SE = (K, E ,D) be the corresponding CTRC mode symmetric
encryption scheme. Let A be an ind-cpa adversary making at most q LR
queries totalling at most σ blocks. Then there is a prf-adversary B such
that

Advind-cpa
SE (A) ≤ 2 ·Advprf

E
(B).

Furthermore B makes at most σ oracle queries and runs in time at most
t + Θ(q + nσ).
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Birthday attack on CBC$

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Let
SE = (K, E ,D) be the CBC$ mode.

Suppose we are encrypting 1 block messages M,M ′ :

EK

M

C [1]{0, 1}n
$
→ C [0]

EK

M ′

C ′[1]{0, 1}n
$
→ C ′[0]

Observation: If C [0] = C ′[0] then

C [1] = C ′[1] iff M = M ′
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Birthday attack on CBC$

If 1 block messages are encrypted under CBC$, then message equality
can be detected whenever the IVs are the same.

But if ≥ 2n/2 messages are encrypted, we expect by the birthday
paradox to see collisions in IVs, so we will be able to break the scheme.
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Birthday attack on CBC$

Left world

A
M0,M1

-

C
�

LR
C

$
←EK (M0)

Right world

A
M0,M1

-

C
�

LR
C

$←EK (M1)

adversary A

for i = 1, ..., q do

Ci [0]Ci [1]
$← LR(〈i〉, 〈0〉)

S ← {(j , ℓ) : Cj [0] = Cℓ[0] and 1 ≤ j < ℓ ≤ q}
If S 6= ∅, then

(j , ℓ)
$← S

If Cj [1] = Cℓ[1] then return 1
return 0
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Birthday attack on CBC$: Right world analysis

adversary A

for i = 1, ..., q do

Ci [0]Ci [1]
$
← LR(〈i〉, 〈0〉)

S ← {(j , ℓ) : Cj [0] = Cℓ[0] and

1 ≤ j < ℓ ≤ q}
If S 6= ∅, then

(j , ℓ)
$← S

If Cj [1] = Cℓ[1] then
return 1

return 0

Right world

A
M0,M1

-

C
�

LR
C ← EK (M1)
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Birthday attack on CBC$: Right world analysis

adversary A

for i = 1, ..., q do

Ci [0]Ci [1]
$
← LR(〈i〉, 〈0〉)

S ← {(j , ℓ) : Cj [0] = Cℓ[0] and

1 ≤ j < ℓ ≤ q}
If S 6= ∅, then

(j , ℓ)
$← S

If Cj [1] = Cℓ[1] then
return 1

return 0

Right world

A
M0,M1

-

C
�

LR
C ← EK (M1)

If Cj [0] = Cℓ[0] then

Cj [1] = EK (〈0〉 ⊕ Cj [0]) = EK (〈0〉 ⊕ Cℓ[0]) = Cℓ[1]

so
Pr

[

RightASE⇒1
]

= Pr [S 6= ∅] = C (2n, q)
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Birthday attack on CBC$: Left world analysis

adversary A

for i = 1, ..., q do

Ci [0]Ci [1]
$
← LR(〈i〉, 〈0〉)

S ← {(j , ℓ) : Cj [0] = Cℓ[0] and

1 ≤ j < ℓ ≤ q}
If S 6= ∅, then

(j , ℓ)
$← S

If Cj [1] = Cℓ[1] then
return 1

return 0

Left world

A
M0,M1

-

C
�

LR
C ← EK (M0)
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Birthday attack on CBC$: Left world analysis

adversary A

for i = 1, ..., q do

Ci [0]Ci [1]
$
← LR(〈i〉, 〈0〉)

S ← {(j , ℓ) : Cj [0] = Cℓ[0] and

1 ≤ j < ℓ ≤ q}
If S 6= ∅, then

(j , ℓ)
$← S

If Cj [1] = Cℓ[1] then
return 1

return 0

Left world

A
M0,M1

-

C
�

LR
C ← EK (M0)

If Cj [0] = Cℓ[0] then

Cj [1] = EK (〈j〉 ⊕ Cj [0]) 6= EK (〈ℓ〉 ⊕ Cℓ[0]) = Cℓ[1]

so
Pr

[

LeftASE⇒1
]

= 0.
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Birthday attack on CBC$

adversary A

for i = 1, ..., q do

Ci [0]Ci [1]
$← LR(〈i〉, 〈0〉)

S ← {(j , ℓ) : Cj [0] = Cℓ[0] and

1 ≤ j < ℓ ≤ q}
If S 6= ∅, then

(j , ℓ)
$
← S

If Cj [1] = Cℓ[1] then
return 1

return 0

Advind-cpa
SE (A) = Pr

[

RightASE⇒1
]

− Pr
[

LeftASE⇒1
]

= C (2n, q)− 0

≥ 0.3 ·
q(q − 1)

2n

77 / 116



Birthday attack on CBC$

Conclusion: CBC$ can be broken (in the IND-CPA sense) in about 2n/2

queries, where n is the block length of the underlying block cipher,
regardless of the cryptanalytic strength of the block cipher.
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Security of CBC$

So far: A q-query adversary can break CBC$ with advantage ≈ q2

2n+1

Question: Is there any better attack?
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Security of CBC$

So far: A q-query adversary can break CBC$ with advantage ≈ q2

2n+1

Question: Is there any better attack?

Answer: NO!

We can prove that the best q-query attack short of breaking the block
cipher has advantage at most

σ2

2n

where σ is the total number of blocks encrypted.

Example: If q 1-block messages are encrypted then σ = q so the
adversary advantage is not more than q2/2n.
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Security of CBC$

Fact: If E is secure (PRF) then CBC$ mode can be used to securely
encrypt up to 2n/2 blocks, where n is the block length of the block
cipher.

This is not much for DES (n = 64, 2n/2 = 232) but a lot for AES
(n = 128, 2n/2 = 264)

This means CBC$ is a good, general purpose encryption scheme.

Ciphertexts leak NO partial information about messages.

Provides security regardless of message distribution. Votes can be
securely encrypted.

We do not need to look for attacks on the scheme. We are guaranteed
there are no attacks as long as E is secure.
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Security of CBC$

Theorem: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher and
SE = (K, E ,D) the corresponding CBC$ symmetric encryption scheme.
Let A be an ind-cpa adversary against SE that has running time t and
makes at most q LR queries, these totalling at most σ blocks. Then
there is a prf-adversary B against E such that

Advind-cpa
SE (A) ≤ 2 ·Advprf

E (B) +
σ2

2n

Furthermore, B makes at most σ oracle queries and has running time
t + Θ(σ · n).
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Games for CBC$ Security Proof

Game G0

procedure Initialize
K

$←{0, 1}k ; b
$←{0, 1};S ← ∅

procedure LR(M0,M1)

m← ‖Mb‖n; C [0]
$← {0, 1}n

for i = 1, ..., n do

P ← C [i − 1]⊕Mb[i ]
if P 6∈ S then T[P ]← EK (P)
C [i ]← T [P ]
S ← S ∪ {P}

return C

procedure Finalize(b′)
return (b = b′)

Game G1

procedure Initialize
b

$
←{0, 1} ; S ← ∅

procedure LR(M0,M1)

m← ‖Mb‖n; C [0]
$←{0, 1}n

for i = 1, ..., n do

P ← C [i − 1]⊕Mb[i ]

if P /∈ S then T[P ]
$
←{0, 1}n

C [i ]← T[P ]
S ← S ∪ {P}

return C

procedure Finalize(b′)
return (b = b′)
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Security of CBC$

Then
Advind-cpa

SE (A) = 2 · Pr
[

GA
0 ⇒ true

]

− 1

But

Pr
[

GA
0 ⇒ true

]

= Pr
[

GA
1 ⇒ true

]

+
(

Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

])

Claim 1: We can design prf-adversary B so that

Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

]

≤ Advprf
E (B)

Claim 2: Pr
[

GA
1 ⇒ true

]

≤
1

2
+ σ2 · 2−n−1

So

Advind-cpa
SE (A) ≤ 2 ·

(
1

2
+

σ2

2n+1

)

− 1 + 2 · Advprf
E

(B)

=
σ2

2n
+ 2 · Advprf

E (B)
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Analysis

Claim 1: We can design prf-adversary B so that:

Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

]

≤ Advprf
E

(B)
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Analysis

Claim 1: We can design prf-adversary B so that:

Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

]

≤ Advprf
E

(B)

adversary B

b
$←{0, 1} ; S ← ∅

b′ $← ALR

if (b = b′) then return 1
else return 0

subroutine LR(M0,M1)

m← ‖Mb‖n; C [0]
$
←{0, 1}n

for i = 1, ...,m do

P ← C [i − 1]⊕Mb[i ]
if P /∈ S then T [P ]← Fn(P)
C [i ]← T [P ]
S ← S ∪ {P}

return C

Pr
[

RealBE ⇒ 1
]

= Pr
[

GA
0 ⇒ true

]

Pr
[

RandB
E ⇒ 1

]

= Pr
[

GA
1 ⇒ true

]
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Analysis

Claim 2: Pr
[

GA
1 ⇒ true

]

≤
1

2
+

σ2

2n+1
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Introducing “bad”

Game G1

procedure Initialize

b
$←{0, 1} ; S ← ∅

procedure LR(M0, M1)

m← ‖Mb‖n; C [0]
$
←{0, 1}n

for i = 1, ..., n do

P ← C [i − 1]⊕Mb[i]

If P /∈ S then T[P]
$←{0, 1}n

C [i]← T[P]

S ← S ∪ {P}

return C

procedure Finalize(b′)

return (b = b
′)

Game G2 , G3

procedure Initialize

b
$
←{0, 1} ; S ← ∅

procedure LR(M0, M1)

m← ‖Mb‖n; C [0]
$←{0, 1}n

for i = 1, ..., n do

P ← C [i − 1]⊕Mb[i]

C [i]
$←{0, 1}n

If P ∈ S then
bad← true ; C [i]← T[P]

T[P]← C [i]

S ← S ∪ {P}

return C

procedure Finalize(b′)

return (b = b
′)

Pr
[

GA
1 ⇒ true

]

= Pr
[

GA
2 ⇒ true

]
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So far..

Claim 2: Pr[GA
1 ⇒ true] ≤ 1

2 + σ2

2n+1

Pr[GA
1 ⇒ true] = Pr[GA

2 ⇒ true]

= Pr[GA
3 ⇒ true] + (Pr[GA

2 ⇒ true]− Pr[GA
3 ⇒ true])
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So far..

Claim 2: Pr[GA
1 ⇒ true] ≤ 1

2 + σ2

2n+1

Pr[GA
1 ⇒ true] = Pr[GA

2 ⇒ true]

= Pr[GA
3 ⇒ true] + (Pr[GA

2 ⇒ true]− Pr[GA
3 ⇒ true])

Will show:

• Pr[GA
3 ⇒ true] = 1

2

• Pr[GA
2 ⇒ true]− Pr[GA

3 ⇒ true] ≤ σ2

2n+1
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Analysis of G3

Game G3

procedure Initialize

b
$
←{0, 1} ; S ← ∅

procedure Finalize(b′)

return (b = b
′)

procedure LR(M0, M1)

m← ‖Mb‖n; C [0]
$
←{0, 1}n

for i = 1, ..., n do

P ← C [i − 1]⊕Mb[i]

C [i]
$←{0, 1}n

If P ∈ S then bad← true

T[P]← C [i]

S ← S ∪ {P}

return C

Ciphertext C in G3 is always random, independently of b, so

Pr
[

GA
3 ⇒ true

]

=
1

2
.
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Fundamental Lemma of game playing

Games G ,H are identical-until-bad if their code differs only in
statements following the setting of bad to true.

Lemma: If G ,H are identical-until-bad, then for any adversary A and
any y ∣

∣
∣Pr

[

GA ⇒ y
]

− Pr
[

HA ⇒ y
]∣
∣
∣ ≤ Pr

[

HA sets bad
]
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Using the fundamental lemma

Game G2 , G3

procedure Initialize

b
$←{0, 1} ; S ← ∅

procedure Finalize(b′)

return (b = b
′)

procedure LR(M0, M1)

m← ‖Mb‖n; C [0]
$←{0, 1}n

for i = 1, ..., n do

P ← C [i − 1]⊕Mb[i]

C [i]
$←{0, 1}n

If P ∈ S then
bad← true ; C [i]← T[P]

T[P]← C [i]

S ← S ∪ {P}

return C

G2 and G3 are identical-until-bad, so Fundamental Lemma implies

Pr
[

GA
2 ⇒ true

]

− Pr
[

GA
3 ⇒ true

]

≤ Pr
[

GA
3 sets bad

]

.
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Bounding the probability of bad in G3

Game G3

procedure Initialize

b
$
←{0, 1} ; S ← ∅

procedure LR(M0, M1)

m← ‖Mb‖n; C [0]
$←{0, 1}n

for i = 1, ..., m do

P ← C [i − 1]⊕Mb[i]

C [i]
$←{0, 1}n

If P ∈ S then bad← true

T[P]← C [i]

S ← S ∪ {P}

return C

procedure Finalize(b′)

return (b = b
′)

Game G4

procedure Initialize

b
$
←{0, 1} ; S ← ∅

procedure LR(M0, M1)

m← ‖M0‖n

for i = 1, ..., m do

P
$←{0, 1}n

C [i − 1]← P ⊕Mb[i]

If P ∈ S then bad← true

S ← S ∪ {P}

C [m]
$
←{0, 1}n

return C

procedure Finalize(b′)

return (b = b
′)

Pr
[

GA
3 sets bad

]

= Pr
[

GA
4 sets bad

]
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Bounding the probability of bad in G4

The ℓ-th time the if-statement is executed, it has probability

ℓ− 1

2n

of setting bad. Thus

Pr
[

GA
4 sets bad

]

≤
σ∑

ℓ=1

ℓ− 1

2n

=
σ(σ − 1)

2n+1

≤
σ2

2n+1
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How many LR queries?

The IND-CPA definition allows the adversary multiple queries to its LR
oracle. This models the adversary distinguishing between whether the
messages encrypted were one stream

M1
0 , . . . ,Mq

0

or another stream
M1

1 , . . . ,Mq
1

It turns out that allowing only one LR query captures the same security
requirement up to a factor q in the advantage, as long as the adversary
has a (plain) encryption oracle as well.

This can simplify analyses and the proof will illustrate the hybrid
technique.
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Find-then-guess

Let SE = (K, E ,D) be a symmetric encryption scheme.

Game FTGLeftSE

procedure Initialize
K

$←K

procedure LR(M0,M1)

return C
$←EK (M0)

procedure Enc(M)

return C
$←EK (M)

Game FTGRightSE

procedure Initialize
K

$←K

procedure LR(M0,M1)

return C
$←EK (M1)

procedure Enc(M)

return C
$←EK (M)

Adversary B is allowed only one query to its LR oracle.

Advftg
SE(B) = Pr

[

FTGRightBSE ⇒ 1
]

− Pr
[

FTGLeftBSE ⇒ 1
]
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Find-then-guess

Proposition: Let SE = (K, E ,D) be a symmetric encryption scheme
and A an ind-cpa adversary making q oracle queries and having running
time at most t. Then there is a ftg adversary B making one query to its
LR oracle and q queries to its encryption oracle, such that

Advind-cpa
SE (A) ≤ q ·Advftg

SE(B).

Furthermore, the running time of B is that of A.
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Hybrid Technique: illustration

Suppose A makes queries

(M1
0 ,M1

1 ), (M2
0 ,M2

1 ), (M3
0 ,M3

1 ), (M4
0 ,M4

1 )

Then we will define games G0,G1,G2,G3,G4 so that

i Messages encrypted in GA
i

0 M1
1 ,M2

1 ,M3
1 ,M4

1

1 M1
0 ,M2

1 ,M3
1 ,M4

1

2 M1
0 ,M2

0 ,M3
1 ,M4

1

3 M1
0 ,M2

0 ,M3
0 ,M4

1

4 M1
0 ,M2

0 ,M3
0 ,M4

0
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Hybrid Technique

Game Gi (0 ≤ i ≤ q)

procedure Initialize
K

$
←K; ℓ← 0

procedure LR(M0,M1)
ℓ← ℓ + 1
If ℓ > i then C

$← EK (M1) else

C
$←EK (M0)

Return C

Suppose A makes LR queries (M1
0 ,M1

1 ), . . . , (Mq
0 ,Mq

1 ). Then in GA
i the

messages encrypted are

M1
0 , . . . ,M i

0,M
i+1
1 , . . . ,Mq

1

Let
Pi = Pr

[

GA
i ⇒ 1

]

.
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Properties of the hybrid games

In GA
0 the messages encrypted are M1

1 , . . . ,Mq
1 , so

Pr
[

RightASE ⇒ 1
]

= P0.

In GA
q the messages encrypted are M1

0 , . . . ,Mq
0 , so

Pr
[

LeftASE ⇒ 1
]

= Pq.

So,

Advind-cpa
SE (A) = P0 − Pq

= (P0 − P1) + (P1 − P2) + . . . + (Pq−1 − Pq)

If P0 − Pq is large, so is at least one term in the sum. We design B to
have advantage that term.
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Design of B

adversary B

ℓ← 0
g

$←{1, . . . , q}

b′ $← AELR(·,·)

Return b′

subroutine ELR

ℓ← ℓ + 1
If ℓ > g then c

$←EK (M1)

If ℓ = g then c
$
← LR(M0,M1)

If ℓ < g then c
$←EK (M0)

Suppose A’s queries are (M1
0 ,M1

1 ), . . . , (Mq
0 ,Mq

1 ) and suppose B picks
g = i . Then the messages encrypted are

M1
0 , . . . ,M i−1

0 ,M i
b,M

i+1
1 , . . . ,Mq

1

so

Pr
[

FTGRightBSE ⇒ 1 | g = i
]

=

Pr
[

FTGLeftBSE ⇒ 1 | g = i
]

=
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Design of B

adversary B

ℓ← 0
g

$←{1, . . . , q}

b′ $← AELR(·,·)

Return b′

subroutine ELR

ℓ← ℓ + 1
If ℓ > g then c

$←EK (M1)

If ℓ = g then c
$
← LR(M0,M1)

If ℓ < g then c
$←EK (M0)

Suppose A’s queries are (M1
0 ,M1

1 ), . . . , (Mq
0 ,Mq

1 ) and suppose B picks
g = i . Then the messages encrypted are

M1
0 , . . . ,M i−1

0 ,M i
b,M

i+1
1 , . . . ,Mq

1

so

Pr
[

FTGRightBSE ⇒ 1 | g = i
]

= Pi−1

Pr
[

FTGLeftBSE ⇒ 1 | g = i
]

= Pi
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Analysis of B

Advftg
SE(B) = Pr

[

FTGRightBSE ⇒ 1
]

− Pr
[

FTGLeftBSE ⇒ 1
]

=

q
∑

i=1

Pr
[

FTGRightBSE ⇒| g = i
]

· Pr [g = i ]

−

q
∑

i=1

Pr
[

FTGLeftBSE ⇒ 1 | g = i
]

· Pr [g = i ]

=

q
∑

i=1

Pi−1 ·
1

q
−

q
∑

i=1

Pi ·
1

q
=

1

q

q
∑

i=1

(Pi−1 − Pi )

=
1

q
(P0 − Pq) =

1

q
Advind-cpa

SE (A)

as desired.
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Identification

ATM card contains a key K
$←K known also to Bank, where

SE = (K, E ,D) is a symmetric encryption scheme.
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Attack Setting

Adversary transmits Alice’s identity, but how can it answer the challenge
(meaning decrypt C ) without knowing Alice’s key?
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Active Attack

Tries to get K or learn how to decrypt by creating ciphertexts and
getting the card to decrypt them.

This is called a chosen ciphertext attack.
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Chosen-ciphertext attacks

New capability: Adversary has access to a decryption oracle

C −→
M ←−

Dec

What is the adversary’s goal?

In our example it was to get the key K , but based on the principles we
have discussed before we would like to ask for more: no partial
information on un-decrypted messages is leaked by the ciphertexts.
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ind-cca adversaries

Let SE = (K, E ,D) be an encryption scheme. An ind-cca adversary A

• Has access to a LR oracle

• Has access to a decryption oracle Dec

• Outputs a bit

A

d

C

C ′

M ′

M0,M1

LR

Dec
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IND-CCA

Let SE = (K, E ,D) be an encryption scheme and A an ind-cca
adversary.

Left world

C

C ′

M ′

M0,M1

C
$←EK (M0)

A

d

LR

Dec

Right world

C

C ′

M ′

M0,M1

C
$←EK (M1)

A

d

LR

Dec

Intended meaning:
A’s output d I think I am in the

1 Right world

0 Left world

The harder it is for A to guess world it is in, the more “secure” SE is as
an encryption scheme. 106 / 116



The games

Let SE = (K, E ,D) be a symmetric encryption scheme and let A be an
adversary. Consider

Game LeftSE

procedure Initialize
K

$
←K

procedure LR(M0,M1)

Return C
$←EK (M0)

procedure Dec(C )
return M ← DK (C )

Game RightSE

procedure Initialize
K

$
←K

procedure LR(M0,M1)

Return C
$←EK (M1)

procedure Dec(C )
return M ← DK (C )

Associated to SE ,A are the probabilities

Pr
[

LeftASE⇒1
]

Pr
[

RightASE⇒1
]

that A outputs 1 in each world. The (ind-cca) advantage of A is

Advind-cca
SE (A) = Pr

[

RightASE⇒1
]

− Pr
[

LeftASE⇒1
]
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A problem

Game LeftSE

procedure Initialize
K

$←K

procedure LR(M0,M1)

Return C
$←EK (M0)

procedure Dec(C )
return M ← DK (C )

Game RightSE

procedure Initialize
K

$←K

procedure LR(M0,M1)

Return C
$←EK (M1)

procedure Dec(C )
return M ← DK (C )

We can ALWAYS design A with advantage 1, meaning ALL schemes are
insecure.
adversary A

C
$← LR(0n, 1n) ; M ← Dec(C )

if M = 0n then return 0 else return 1

Then

Pr
[

LeftASE⇒1
]

= 0 Pr
[

RightASE⇒1
]

= 1
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Avoiding the problem

Encryption can only hide information about un-decrypted messages!

We address this by making the following rule:

• An ind-cca adversary A is not allowed to query Dec on a ciphertext
previously returned by LR

Adversary from before breaks rule:

adversary A

C
$← LR(0n, 1n) ; M ← Dec(C )

if M = 0n then return 0 else return 1
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IND-CCA attack on CBC$

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher.

Alg EK (M)

C [0]
$←{0, 1}n ; for i = 1, . . . ,m do C [i ]← EK (M[i ]⊕ C [i − 1])

return C

Left world

C

C ′

M ′

M0,M1

C
$←EK (M0)

A

d

LR

Dec

Right world

C

C ′

M ′

M0,M1

C
$←EK (M1)

A

d

LR

Dec

Can we design A so that

Advind-cca
SE (A) = Pr

[

RightASE ⇒ 1
]

− Pr
[

LeftASE ⇒ 1
]

is close to 1?
110 / 116



IND-CCA attack on CBC$

What we would like to do:

adversary A

C
$
← LR(0n, 1n) ; M ← Dec(C )

if M = 0n then return 0 else return 1

but querying C is not allowed. Instead we will

C → ModifyC → C ′ → Dec → M ′ → ModifyM → M

so that M = DK (C ) but C ′ 6= C . Then

adversary A

C
$
← LR(0n, 1n)

C ′ ← ModifyC(C ) ; M ′ ← Dec(C ′) ; M ← ModifyM(M ′)
if M = 0n then return 0 else return 1
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The Modify process

Let ∆ 6= 0n be some block.

EK

C [1]

M

C [0]

EK

C [1]C [0]⊕∆

M ⊕∆
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The Modify process

Let ∆ 6= 0n be some block.

EK

C [1]

M

C [0]

EK

C [1]C [0]⊕∆

M ⊕∆

C [0]C [1] →
ModifyC

C ′[0]← C [0]⊕∆
→ C ′[0]C [1]

C ′[0]C [1]→ Dec → M ′ = M ⊕∆

M ′ →
ModifyM

M ← M ′ ⊕∆
→ M
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IND-CCA attack on CBC$: Right world analysis

adversary A

C [0]C [1]
$← LR(0n, 1n) ; ∆← 1n

C ′[0]← C [0] ⊕∆ ; M ′ ← Dec(C ′[0]C [1]) ; M ← M ′ ⊕∆
if M = 0n then return 0 else return 1

Game RightSE

procedure Initialize
K

$
←K

procedure LR(M0,M1)

Return C
$←EK (M0)

procedure Dec(C )
return M ← DK (C )

C

C ′

M ′

M0,M1

C
$← EK (M1)

A

d

LR

Dec

Then
Pr

[

RightASE ⇒ 1
]

=
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IND-CCA attack on CBC$: Right world analysis

adversary A

C [0]C [1]
$← LR(0n, 1n) ; ∆← 1n

C ′[0]← C [0] ⊕∆ ; M ′ ← Dec(C ′[0]C [1]) ; M ← M ′ ⊕∆
if M = 0n then return 0 else return 1

Game RightSE

procedure Initialize
K

$
←K

procedure LR(M0,M1)

Return C
$←EK (M0)

procedure Dec(C )
return M ← DK (C )

C

C ′

M ′

M0,M1

C
$← EK (M1)

A

d

LR

Dec

Then
Pr

[

RightASE ⇒ 1
]

= 1

because C [0]C [1]
$←EK (1n) so M = 1n 6= 0n.

113 / 116



IND-CCA attack on CBC$: Left world analysis

adversary A

C [0]C [1]
$← LR(0n, 1n) ; ∆← 1n

C ′[0]← C [0] ⊕∆ ; M ′ ← Dec(C ′[0]C [1]) ; M ← M ′ ⊕∆
if M = 0n then return 0 else return 1

Game LeftSE

procedure Initialize
K

$
←K

procedure LR(M0,M1)

Return C
$←EK (M0)

procedure Dec(C )
return M ← DK (C )

C

C ′

M ′

M0,M1

C
$← EK (M0)

A

d

LR

Dec

Then
Pr

[

LeftASE ⇒ 1
]

=
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IND-CCA attack on CBC$: Left world analysis

adversary A

C [0]C [1]
$← LR(0n, 1n) ; ∆← 1n

C ′[0]← C [0] ⊕∆ ; M ′ ← Dec(C ′[0]C [1]) ; M ← M ′ ⊕∆
if M = 0n then return 0 else return 1

Game LeftSE

procedure Initialize
K

$
←K

procedure LR(M0,M1)

Return C
$←EK (M0)

procedure Dec(C )
return M ← DK (C )

C

C ′

M ′

M0,M1

C
$← EK (M0)

A

d

LR

Dec

Then
Pr

[

LeftASE ⇒ 1
]

= 0

because C [0]C [1]
$←EK (1n) so M = 0n.
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IND-CCA attack on CBC

adversary A

C [0]C [1]
$← LR(0n, 1n) ; ∆← 1n

C ′[0]← C [0] ⊕∆ ; M ′ ← Dec(C ′[0]C [1]) ; M ← M ′ ⊕∆
if M = 0n then return 0 else return 1

Advind-cca
SE (A) =

1
︷ ︸︸ ︷

Pr
[

RightASE ⇒ 1
]

−

0
︷ ︸︸ ︷

Pr
[

LeftASE ⇒ 1
]

= 1

And A is very efficient, making only two queries.

Thus CBC$ is not IND-CCA secure.

115 / 116



Protecting against CCAs

Can you think of a way to design a scheme that is IND-CCA secure?

We will see such a scheme later, after we have some more tools.
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