STREAM CIPHERS and PRGs

Stateful Generators

Initially, St is a random seed

Operation:

X[1]X[2]X[3]... is the output sequence and should be "pseudorandom".

$$(X[1] \dots X[m], \operatorname{St}) \leftarrow G(\operatorname{St}, m)$$

means we

- Run G with starting state St for m steps
- Let *X*[1]...*X*[*m*] be the output blocks produced
- Let St be the updated state

Alice maintains a state St_A and Bob maintains a state St_B . Initially: $St_A = St_B$ is a random seed.

$$\begin{array}{l} \mathcal{E}(M[1] \dots M[m]) \\ (X[1] \dots X[m], \operatorname{St}_{A}) \leftarrow G(\operatorname{St}_{A}, m) \\ \text{for } i = 1, \dots, m \text{ do} \\ C[i] \leftarrow X[i] \oplus M[i] \end{array} \end{array} \begin{array}{l} \mathcal{D}(C[1] \dots C[m]) \\ (X[1] \dots X[m], \operatorname{St}_{B}) \leftarrow G(\operatorname{St}_{B}, m) \\ \text{for } i = 1, \dots, m \text{ do} \\ M[i] \leftarrow X[i] \oplus C[i] \end{array}$$

Note that the states must be synchronized!

G is initialized with a random seed and its outputs are then used coins for any purpose needing randomness, including:

イロト 不得下 イヨト イヨト 二日

5/16

- Keys
- IVs for block-cipher based encryption
- Nonces
- Simulations

- Linear Congruential Generators (LCGs)
- Linear Feedback Shift Registers (LFSRs)

These have

- Good statistical properties: #1's $\approx \#0$'s; Chi-square; ...
- But are predictable: Given some outputs can infer future ones

Predicatability can be exploited to break encryption privacy via a chosen-message attack.

Cryptographic constructs

- (Alleged)-RC4
- SEAL (1.0, 2.0)

INDR : Indistinguishablity from random

- Pick a random seed St and let $(X_1[1] \dots X_1[m], \operatorname{St}) \leftarrow G(\operatorname{St}, m)$
- Pick X₀[1]...X₀[m] at random
- Pick a challenge bit b at random

$$X_b[1] \dots X_b[m] \longrightarrow A \longrightarrow b'$$

A is trying to compute b.

G is secure if no practical A has high advantage.

Let G be a stateful generator with seed length s and output-block length n.

Game $\mathrm{INDR}_{\mathcal{G}}$

procedure Initialize
St $\stackrel{s}{\leftarrow} \{0,1\}^s$; $b \stackrel{s}{\leftarrow} \{0,1\}$ procedure Next(m)
 $(X_1[1] \dots X_1[m], St) \leftarrow G(St, m)$ procedure Finalize(b')
return (b = b') $X_0[1] \dots X_0[m] \stackrel{s}{\leftarrow} \{0,1\}^{nm}$
return $X_b[1] \dots X_b[m]$ procedure Finalize(b')

The indr advantage of adversary A is

$$\mathsf{Adv}_{\mathcal{G}}^{\mathrm{indr}}(\mathcal{A}) = 2 \operatorname{Pr}\left[\operatorname{INDR}_{\mathcal{G}}^{\mathcal{A}} \Rightarrow \mathsf{true}\right] - 1$$

Stream Ciphers / PRGs from Block Ciphers

Let $E : \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a block cipher, and define:

algorithm G(St) $(K, i) \leftarrow St \quad // \text{ Parse St as } (K, i)$ $X \leftarrow E_K(i+1); \text{ return } (X, (K, i+1))$

- State has the form (K, i) where K is a key for E and i is an n-bit integer (0 ≤ i < 2ⁿ).
- Initial state is (K, 0) where $K \stackrel{\$}{\leftarrow} \{0, 1\}^k$.

9/16

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fact: If *E* is a secure PRF, then *G* is an INDR secure PRG.

Similarly, other modes of operation of block ciphers also give rise to PRGs.

ANSI X9.17 PRG

Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher and define

algorithm G(St) $(K, S) \leftarrow St \quad // \text{ Parse St as } (K, S)$ $X \leftarrow E_K(S); S \leftarrow E_K(X); \operatorname{return}(X, (K, S))$

- state has the form (K, S) where K is a key for E and $S \in \{0, 1\}^n$
- Initial state has both K and S chosen at random.

The standard uses E = DES in 2-key EDE mode. Analysis: [DHL02]

- Two PRGs are specified in FIPS-186, based on DES or SHA-1
- NIST SP 800-90 specifies hash-based, HMAC-based, CTR-based, and ECC based generators.
- ANSI X9.31 and ANSI X9.62
- OpenSSL specifies a SHA-1 based PRG.

Suppose adversary obtains St_2 . Then

- It can compute *X*[3]*X*[4]...
- But can it compute X[1]X[2]?

Forward security requires that the answer to the latter question be "NO".

Important in the face of exposure due to malware and system compromise.

Forward Security Failures

If adversary gets (K, 2) then it can compute

$$X[1] = E_{\mathcal{K}}(0); X[2] = E_{\mathcal{K}}(1).$$

・ロン ・四 と ・ ヨン ・ ヨン

14/16

Similar failures for ANSI X9.17.

A Forward Secure PRG [BY]

Let $E : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a block cipher, and define:

algorithm G(K) $X \leftarrow E_K(0); K \leftarrow E_K(1);$ return (X, K)

- State is a key K for E
- Initial state is a random $K \stackrel{\{\stateleft}}{\leftarrow} \{0,1\}^n$.

・ロン ・四 と ・ ヨン ・ ヨン

15/16

In practice, random number generation (RNG) involves

- Seeding
- PRG

Failures in RNG are common: Netscape, Debian Linux, ... They arise from failures in either component. In principle, we know how to design good PRGs. But seeding remains a problem.

Typical methods:

- Maintain an "entropy pool" based on system events, user keystrokes, ...
- Mix in more entropy as needed.

Example: OpenSSL Alternative: Hardware RNGs