
STREAM CIPHERS and PRGs

1 / 16



Stateful Generators

Initially, St is a random seed

G
StSt

X

Operation:

G G G
St[1] St[2] St[3]St[0]

X[1] X[2] X[3]

X [1]X [2]X [3]... is the output sequence and should be “pseudorandom”.

2 / 16



Notation

(X [1] . . . X [m],St)← G (St,m)

means we

• Run G with starting state St for m steps

• Let X [1] . . . X [m] be the output blocks produced

• Let St be the updated state

G

X[1]

St

G
St

X[m]

...

3 / 16



Usage for Encryption

Alice maintains a state StA and Bob maintains a state StB .
Initially: StA = StB is a random seed.

E(M[1] . . . M[m])
(X [1] . . . X [m],StA)← G (StA,m)
for i = 1, . . . ,m do

C [i ]← X [i ] ⊕ M[i ]

D(C [1] . . . C [m])
(X [1] . . . X [m],StB)← G (StB ,m)
for i = 1, . . . ,m do

M[i ]← X [i ] ⊕ C [i ]

Note that the states must be synchronized!

4 / 16



Usage for Pseudorandom Bit Generation

G is initialized with a random seed and its outputs are then used coins
for any purpose needing randomness, including:

• Keys

• IVs for block-cipher based encryption

• Nonces

• Simulations

5 / 16



Methods

• Linear Congruential Generators (LCGs)

• Linear Feedback Shift Registers (LFSRs)

These have

• Good statistical properties: #1’s ≈ #0’s; Chi-square; . . .

• But are predictable: Given some outputs can infer future ones

Predicatability can be exploited to break encryption privacy via a
chosen-message attack.

Cryptographic constructs

• (Alleged)-RC4

• SEAL (1.0, 2.0)

6 / 16



Theoretical Security Requirement

INDR : Indistinguishablity from random

• Pick a random seed St and let (X1[1] . . . X1[m],St)← G (St,m)

• Pick X0[1] . . . X0[m] at random

• Pick a challenge bit b at random

Xb[1] . . . Xb[m] A b′

A is trying to compute b.

G is secure if no practical A has high advantage.

7 / 16



Formalization

Let G be a stateful generator with seed length s and output-block
length n.

Game INDRG

procedure Initialize

St
$
←{0, 1}s ; b

$
←{0, 1}

procedure Next(m)
(X1[1] . . . X1[m],St)← G (St,m)

X0[1] . . . X0[m]
$
←{0, 1}nm

return Xb[1] . . . Xb[m]

procedure Finalize(b′)
return (b = b′)

The indr advantage of adversary A is

Advindr

G (A) = 2Pr
[

INDRA
G ⇒ true

]

− 1

8 / 16



Stream Ciphers / PRGs from Block Ciphers

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher, and define:

algorithm G (St)
(K , i)← St // Parse St as (K , i)

X ← EK (i + 1) ; return (X , (K , i + 1))

• State has the form (K , i) where K is a key for E and i is an n-bit
integer (0 ≤ i < 2n).

• Initial state is (K , 0) where K
$
←{0, 1}k .

E
(K,1)

X[2]

E
(K,0)

X[1]

(K,2) ...

9 / 16



Security of the CTR mode PRG

Fact: If E is a secure PRF, then G is an INDR secure PRG.

Similarly, other modes of operation of block ciphers also give rise to
PRGs.

10 / 16



ANSI X9.17 PRG

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher and define

algorithm G (St)
(K ,S)← St // Parse St as (K , S)

X ← EK (S);S ← EK (X ); return(X , (K ,S))

• state has the form (K ,S) where K is a key for E and S ∈ {0, 1}n

• Initial state has both K and S chosen at random.

E E

X[1]

(K,S0)
S1 E E

X[2]

(K,S1)
S1

(K,S2)

The standard uses E = DES in 2-key EDE mode.
Analysis: [DHL02]

11 / 16



Other Standards, Implementations

• Two PRGs are specified in FIPS-186, based on DES or SHA-1

• NIST SP 800-90 specifies hash-based, HMAC-based, CTR-based,
and ECC based generators.

• ANSI X9.31 and ANSI X9.62

• OpenSSL specifies a SHA-1 based PRG.

12 / 16



Forward Security

G G G
St[1] St[2] St[3]St[0]

X[1] X[2] X[3]

Suppose adversary obtains St2. Then

• It can compute X [3]X [4] . . .

• But can it compute X [1]X [2]?

Forward security requires that the answer to the latter question be
“NO”.
Important in the face of exposure due to malware and system
compromise.

13 / 16



Forward Security Failures

E
(K,1)

X[2]

E
(K,0)

X[1]

(K,2) ...

If adversary gets (K , 2) then it can compute

X [1] = EK (0) ; X [2] = EK (1).

Similar failures for ANSI X9.17.

14 / 16



A Forward Secure PRG [BY]

Let E : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher, and define:

algorithm G (K )
X ← EK (0) ; K ← EK (1) ; return (X ,K )

• State is a key K for E

• Initial state is a random K
$
← {0, 1}n.

E E

X[1]

0
K0

1
K1

E E

X[2]

0 1
K2

15 / 16



The Full Process

In practice, random number generation (RNG) involves

• Seeding

• PRG

Failures in RNG are common: Netscape, Debian Linux, ...
They arise from failures in either component.
In principle, we know how to design good PRGs.
But seeding remains a problem.

Typical methods:

• Maintain an “entropy pool” based on system events, user
keystrokes, ...

• Mix in more entropy as needed.

Example: OpenSSL
Alternative: Hardware RNGs

16 / 16


