PSEUDO-RANDOM FUNCTIONS

Recall

We studied security of a block cipher against key recovery.
But we saw that security against key recovery is not sufficient to ensure that natural usages of a block cipher are secure.

We want to answer the question:

What is a good block cipher?

where "good" means that natural uses of the block cipher are secure.
We could try to define "good" by a list of necessary conditions:

- Key recovery is hard
- Recovery of M from $C=E_{K}(M)$ is hard
- ...

But this is neither necessarily correct nor appealing.

Turing Intelligence Test

Q: What does it mean for a program to be "intelligent" in the sense of a human?

Turing Intelligence Test

Q: What does it mean for a program to be "intelligent" in the sense of a human?

Possible answers:

- It can be happy
- It recognizes pictures
- It can multiply
- But only small numbers!

Turing Intelligence Test

Q: What does it mean for a program to be "intelligent" in the sense of a human?

Possible answers:

- It can be happy
- It recognizes pictures
- It can multiply
- But only small numbers!
-
-

Clearly, no such list is a satisfactory answer to the question.

Turing Intelligence Test

Q: What does it mean for a program to be "intelligent" in the sense of a human?

Turing's answer: A program is intelligent if its input/output behavior is indistinguishable from that of a human.

Turing Intelligence Test

Behind the wall:

- Room 1: The program P
- Room 0: A human

Turing Intelligence Test

Room 0

Room 1

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

Turing Intelligence Test

Room 0

Room 1

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

The measure of "intelligence" of P is the extent to which the tester fails.

Turing Intelligence Test

Room 0

Room 1

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

Clarification: Room numbers are in our head, not written on door!

Real versus Ideal

Notion	Real object	Ideal object
Intelligence	Program	Human
PRF	Block cipher	$?$

Real versus Ideal

Notion	Real object	Ideal object
Intelligence	Program	Human
PRF	Block cipher	Random function

Random functions

A random function with L-bit outputs is implemented by the following box $\mathbf{F n}$, where T is initially \perp everywhere:

Fn

$$
\begin{aligned}
& \text { If } \mathrm{T}[x]=\perp \text { then } \\
& \mathrm{T}[x] \stackrel{\varsigma}{\leftarrow}\{0,1\}^{L} \\
& \text { Return } \mathrm{T}[x]
\end{aligned}
$$

Random function

Game $\operatorname{Rand}_{\{0,1\}^{\iota}}$
procedure $\mathbf{F n}(x)$
if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{L}$
return $\mathrm{T}[x]$

Adversary A

- Make queries to Fn
- Eventually halts with some output

We denote by

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\prime}}^{A} \Rightarrow d\right]
$$

the probability that A outputs d

Random function

Game $\operatorname{Rand}_{\{0,1\}^{3}}$
procedure $\mathbf{F n}(x)$
if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{3}$
return $\mathrm{T}[x]$
adversary A
$y \leftarrow \mathbf{F n}(01)$
return $(y=000)$

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{3}}^{A} \Rightarrow \text { true }\right]=
$$

Random function

Game $\operatorname{Rand}_{\{0,1\}^{3}}$
procedure $\mathbf{F n}(x)$
if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{3}$
return $\mathrm{T}[x]$
adversary A
$y \leftarrow \mathbf{F n}(01)$
return $(y=000)$

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{3}}^{A} \Rightarrow \text { true }\right]=2^{-3}
$$

Random function

Game $\operatorname{Rand}_{\{0,1\}^{3}}$
procedure $\mathbf{F n}(\times)$
if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{3}$ return $\mathrm{T}[x]$

$\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{3}}^{A} \Rightarrow\right.$ true $]=$

Random function

Game $\operatorname{Rand}_{\{0,1\}^{3}}$
procedure $\mathbf{F n}(\times)$
if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{3}$ return $\mathrm{T}[x]$

$\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{3}}^{A} \Rightarrow\right.$ true $]=2^{-6}$

Random function

Game $\operatorname{Rand}_{\{0,1\}^{3}}$
procedure $\mathbf{F n}(\times)$
if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{3}$ return $\mathrm{T}[x]$

$$
\begin{aligned}
& \text { adversary } A \\
& y_{1} \leftarrow \mathbf{F n}(00) \\
& y_{2} \leftarrow \mathbf{F n}(11) \\
& \text { return }\left(y_{1} \oplus y_{2}=101\right)
\end{aligned}
$$

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{3}}^{A} \Rightarrow \text { true }\right]=
$$

Random function

Game $\operatorname{Rand}_{\{0,1\}^{3}}$
procedure $\mathbf{F n}(\times)$
if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{3}$ return $\mathrm{T}[x]$

$$
\begin{aligned}
& \text { adversary } A \\
& y_{1} \leftarrow \mathbf{F n}(00) \\
& y_{2} \leftarrow \mathbf{F n}(11) \\
& \text { return }\left(y_{1} \oplus y_{2}=101\right)
\end{aligned}
$$

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{3}}^{A} \Rightarrow \text { true }\right]=2^{-3}
$$

Function families

A family of functions $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$ is a two-argument map. For $K \in \operatorname{Keys}(F)$ we let $F_{K}: \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$ be defined by

$$
\forall x \in \operatorname{Dom}(F): F_{K}(x)=F(K, x)
$$

Examples:

- DES: $\operatorname{Keys}(F)=\{0,1\}^{56}, \operatorname{Dom}(F)=\operatorname{Range}(F)=\{0,1\}^{64}$
- Any block cipher: $\operatorname{Dom}(F)=$ Range (F) and each F_{K} is a permutation

Real versus Ideal

Notion	Real object	Ideal object
PRF	Family of functions	Random function
	(eg. a block cipher)	

F is a PRF if the input-output behavior of F_{K} looks to a tester like the input-output behavior of a random function.

Tester does not get the key K !

PRF-adversaries

Let $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$ be a family of functions.
A prf-adversary (our tester) has an oracle Fn for a function from $\operatorname{Dom}(F)$ to Range (F). It can

- Make an oracle query x of its choice and get back $\operatorname{Fn}(x)$
- Do this many times
- Eventually halt and output a bit d

Repeat queries

We said earlier that a random function must be consistent, meaning once it has returned y in response to x, it must return y again if queried again with the same x. This is why we have the "if" in the following: written as

$$
\begin{array}{ll}
\hline \text { Game } & \text { procedure } \operatorname{Fn}(x) \\
\operatorname{Rand}_{\text {Range }(F)} & \text { if } \mathrm{T}[x] \neq \perp \text { then } \mathrm{T}[x] \stackrel{\varsigma}{\leftarrow} \operatorname{Range}(F) \\
& \operatorname{Return} \mathrm{T}[x]
\end{array}
$$

Henceforth we make a rule:

- A prf-adversary is not allowed to repeat an oracle query. Then our game is:

$$
\begin{array}{ll}
\hline \text { Game } & \text { procedure } \operatorname{Fn}(x) \\
\text { Rand }_{\text {Range }(F)} & \mathrm{T}[x] \stackrel{\text { Range }}{ }(F) \\
& \text { Return } \mathrm{T}[x] \\
\hline
\end{array}
$$

PRF-adversaries

Let $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$ be a family of functions.

A's output d	Intended meaning: I think I am in the
1	Real world
0	Ideal (Random) world

The harder it is for A to guess world it is in, the "better" F is as a PRF.

The games

Let $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$ be a family of functions.

```
Game Real
procedure Initialize
K}\stackrel{\S}{\leftarrow}\operatorname{Keys(F)
procedure Fn(x)
Return \(F_{K}(x)\)
```

Game Rand Range(F)
procedure $\mathbf{F n}(x)$
$\mathrm{T}[x] \stackrel{\varsigma}{\leftarrow}$ Range (F)
Return T[x]

Associated to F, A are the probabilities

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] \quad \operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]
$$

that A outputs 1 in each world. The advantage of A is

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]
$$

Example

Let $F:\{0,1\}^{k} \times\{0,1\}^{128} \rightarrow\{0,1\}^{128}$ be defined by $F_{K}(x)=x$. Let prf-adversary A be defined by
adversary A
if $\mathbf{F n}\left(0^{128}\right)=0^{128}$ then Ret 1 else Ret 0

```
Game Real}\mp@subsup{F}{}{\prime
procedure Initialize
K}\stackrel{$}{\leftarrow}{0,1\mp@subsup{}}{}{k
procedure Fn(x)
Return FK
```

Real world

$$
\stackrel{x}{\underset{y}{y}} \stackrel{\begin{array}{c}
\text { Fn } \\
y \leftarrow F_{K}(x)
\end{array}}{\substack{\text { n } \\
\hline}}
$$

Example

Let $F:\{0,1\}^{k} \times\{0,1\}^{128} \rightarrow\{0,1\}^{128}$ be defined by $F_{K}(x)=x$. Let prf-adversary A be defined by
adversary A
if $\mathbf{F n}\left(0^{128}\right)=0^{128}$ then Ret 1 else Ret 0

> | Game Real $_{F}$ |
| :--- |
| procedure Initialize |
| $K \stackrel{\varsigma}{\hookleftarrow}\{0,1\}^{k}$ |
| procedure $\operatorname{Fn}(x)$ |
| Return $F_{K}(x)$ |

Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]=
$$

Example

Let $F:\{0,1\}^{k} \times\{0,1\}^{128} \rightarrow\{0,1\}^{128}$ be defined by $F_{K}(x)=x$. Let prf-adversary A be defined by
adversary A
if $\mathbf{F n}\left(0^{128}\right)=0^{128}$ then Ret 1 else Ret 0

```
Game Real \(F\)
procedure Initialize
\(K \stackrel{\S}{\leftarrow}\{0,1\}^{k}\)
procedure \(\mathbf{F n}(x)\)
Return \(F_{K}(x)\)
```

Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]=1
$$

because the value returned by $\mathbf{F n}$ will be $\mathbf{F n}\left(0^{128}\right)=F_{K}\left(0^{128}\right)=0^{128}$ so A will always return 1 .

Example

Let $F:\{0,1\}^{k} \times\{0,1\}^{128} \rightarrow\{0,1\}^{128}$ be defined by $F_{K}(x)=x$. Let prf-adversary A be defined by
adversary A
if $\mathbf{F n}\left(0^{128}\right)=0^{128}$ then Ret 1 else Ret 0

Ideal (Random) world

Then

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]=
$$

Example

Let $F:\{0,1\}^{k} \times\{0,1\}^{128} \rightarrow\{0,1\}^{128}$ be defined by $F_{K}(x)=x$. Let prf-adversary A be defined by
adversary A
if $\mathbf{F n}\left(0^{128}\right)=0^{128}$ then Ret 1 else Ret 0

```
Game Rand Range(F)
procedure \(\mathbf{F n}(x)\)
\(\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{L}\)
Return \(\mathrm{T}[x]\)
```

Ideal (Random) world

Then

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]=\operatorname{Pr}\left[\operatorname{Fn}\left(0^{128}\right)=0^{128}\right]=2^{-128}
$$

because $\mathbf{F n}\left(0^{128}\right)$ is a random 128 -bit string.

Example: Advantage computation.

Let $F:\{0,1\}^{k} \times\{0,1\}^{128} \rightarrow\{0,1\}^{128}$ be defined by $F_{K}(x)=x$. Let prf-adversary A be defined by
adversary A
if $\mathbf{F n}\left(0^{128}\right)=0^{128}$ then Ret 1 else Ret 0
Then

$$
\begin{aligned}
\operatorname{Adv}_{F}^{\operatorname{prf}}(A) & =\overbrace{\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]}^{1}-\overbrace{\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]}^{2^{-128}} \\
& =1-2^{-128}
\end{aligned}
$$

The measure of success

Let $F: \operatorname{Keys}(F) \times \operatorname{Domain}(F) \rightarrow \operatorname{Range}(F)$ be a family of functions and A a prf adversary. Then

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]
$$

is a number between -1 and 1 .
A "large" (close to 1) advantage means

- A is doing well
- F is not secure

A "small" (close to 0 or ≤ 0) advantage means

- A is doing poorly
- F resists the attack A is mounting

PRF security

Adversary advantage depends on its

- strategy
- resources: Running time t and number q of oracle queries

Security: F is a (secure) PRF if $\operatorname{Adv}_{F}^{\operatorname{prf}}(A)$ is "small" for $\operatorname{ALL} A$ that use "practical" amounts of resources.

Example: 80 -bit security could mean that for all $n=1, \ldots, 2^{80}$ we have

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A) \leq 2^{-n}
$$

for any A with time and number of oracle queries at most 2^{80-n}.
Insecurity: F is insecure (not a PRF) if there exists A using "few" resources that achieves "high" advantage.

Example 1

Define $F:\{0,1\}^{k} \times\{0,1\}^{128} \rightarrow\{0,1\}^{128}$ by $F_{K}(x)=x$ for all k, x. Is F a secure PRF?

Real

Rand
$A \underset{\square}{\stackrel{y}{y}} \begin{gathered}\text { Fn } \\ y \stackrel{5}{\leftarrow}\{0,1\}^{128}\end{gathered}$

Can we design A so that

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]
$$

is close to 1 ?

Example 1

Define $F:\{0,1\}^{k} \times\{0,1\}^{128} \rightarrow\{0,1\}^{128}$ by $F_{K}(x)=x$ for all k, x. Is F a secure PRF?

Real
$A \underset{\substack{y \\ \stackrel{y}{4}} \begin{array}{c}\text { Fn } \\ y \leftarrow F_{K}(x)\end{array}}{\substack{x \\ \hline}}$

Rand
$A \underset{\square}{\stackrel{y}{y}} \begin{gathered}\text { Fn } \\ y \stackrel{\varsigma}{\leftarrow}\{0,1\}^{128}\end{gathered}$

Can we design A so that

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]
$$

is close to 1 ?
Exploitable weakness of $F: F_{k}\left(0^{128}\right)=0^{128}$ for all k. We can determine which world we are in by testing whether $\mathbf{F n}\left(0^{128}\right)=0^{128}$.

Example 1

Now F is defined by $F_{K}(x)=x$.
adversary A
if $\mathbf{F n}\left(0^{128}\right)=0^{128}$ then return 1 else return 0

Example 1: Analysis

F is defined by $F_{K}(x)=x$.
adversary A
if $\mathbf{F n}\left(0^{128}\right)=0^{128}$ then return 1 else return 0

We already analysed this and saw that

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]=1 \quad \operatorname{Pr}\left[\operatorname{Rand}_{\text {Range }(F)}^{A} \Rightarrow 1\right]=2^{-128}
$$

Example 1: Conclusion

F is defined by $F_{K}(x)=x$.
adversary A
if $\mathbf{F n}\left(0^{128}\right)=0^{128}$ then return 1 else return 0

Then

$$
\begin{aligned}
\operatorname{Adv}_{F}^{\operatorname{prf}}(A) & =\overbrace{\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]}^{1}-\overbrace{\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]}^{2^{-128}} \\
& =1-2^{-128}
\end{aligned}
$$

and A is efficient.
Conclusion: F is not a secure PRF.

Example 2

Define $F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ by $F_{K}(x)=K \oplus x$ for all K, x. Is F a secure PRF?

Can we design A so that

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]
$$

is close to 1 ?

Example 2

Define $F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ by $F_{K}(x)=K \oplus x$ for all K, x. Is F a secure PRF?

Real
$A \underset{\substack{y \\ \hline}}{\substack{x \\ y \leftarrow F_{K}(x) \\ \hline}}$

Rand

A	$\xrightarrow[y]{\text { y }}$	Fn $y \stackrel{5}{\leftarrow}\{0,1\}^{\ell}$

Can we design A so that

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]
$$

is close to 1 ?
Exploitable weakness of F :

$$
F_{K}\left(0^{\ell}\right) \oplus F_{K}\left(1^{\ell}\right)=\left(K \oplus 0^{\ell}\right) \oplus\left(K \oplus 1^{\ell}\right)=1^{\ell}
$$

for all K. We can determine which world we are in by testing whether

$$
\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}
$$

Example 2: The adversary

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

Example 2: Real world analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$. adversary A if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

> | Game Real_{F} |
| :--- |
| procedure Initialize |
| $K \stackrel{\$}{\leftarrow}\{0,1\}^{k}$ |
| procedure $\operatorname{Fn}(x)$ |
| Return $F_{K}(x)$ |

Real world

Example 2: Real world analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$. adversary A if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

> | ${\text { Game } \operatorname{Real}_{F}}^{\text {procedure Initialize }}$ |
| :--- |
| $K \stackrel{\varsigma}{\varsigma}\{0,1\}^{k}$ |
| procedure $\operatorname{Fn}(x)$ |
| Return $F_{K}(x)$ |

Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]=
$$

Example 2: Real world analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

> Game Real ${ }_{F}$ procedure Initialize
> $K \stackrel{\S}{\leftarrow}\{0,1\}^{k}$ procedure $\mathbf{F n}(x)$ Return $F_{K}(x)$

Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]=1
$$

because

$$
\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=F_{K}\left(0^{\ell}\right) \oplus F_{K}\left(1^{\ell}\right)=\left(K \oplus 0^{\ell}\right) \oplus\left(K \oplus 1^{\ell}\right)=1^{\ell}
$$

Example 2: Ideal world analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

Game Rand Range(F)
procedure $\mathbf{F n}(x)$
$\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{\ell}$ return $\mathrm{T}[x]$
Ideal (random) world

$A \underset{y}{\stackrel{x}{\longleftrightarrow}}$| Fn |
| :---: |
| $y \stackrel{\Phi}{\rightleftarrows}\{0,1\}^{\ell}$ |

Example 2: Ideal world analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

Game Rand Range(F)
procedure $\mathbf{F n}(x)$
$T[x] \stackrel{\S}{\leftarrow}\{0,1\}^{\ell}$ return $T[x]$
Ideal (random) world
$A \underset{\substack{x}}{\underset{y}{x}} \begin{gathered}\text { Fn } \\ y \stackrel{\leftrightarrow}{4}\{0,1\}^{\ell}\end{gathered}$
Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]=
$$

Example 2: Ideal world analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

$$
\begin{aligned}
& \hline \text { Game } \operatorname{Rand}_{\text {Range }(F)} \\
& \text { procedure } \mathbf{F n}(x) \\
& \mathrm{T}[x] \stackrel{\S}{\hookleftarrow}\{0,1\}^{\ell} \text { return } \mathrm{T}[x]
\end{aligned}
$$

Ideal (random) world

Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathbf{F n}\left(1^{\ell}\right) \oplus \mathbf{F n}\left(0^{\ell}\right)=1^{\ell}\right]=
$$

Example 2: Ideal world analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

Game Rand Range(F) procedure $\mathbf{F n}(x)$
$\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{\ell}$ return $\mathrm{T}[x]$

Ideal (random) world

Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathbf{F n}\left(1^{\ell}\right) \oplus \mathbf{F n}\left(0^{\ell}\right)=1^{\ell}\right]=2^{-\ell}
$$

because $\mathbf{F n}\left(0^{\ell}\right), \mathbf{F n}\left(1^{\ell}\right)$ are random ℓ-bit strings.

Example 2: Conclusion

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

Then

$$
\begin{aligned}
\operatorname{Adv}_{F}^{\operatorname{prf}}(A) & =\overbrace{\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]}^{1}-\overbrace{\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]}^{2^{-\ell}} \\
& =1-2^{-\ell}
\end{aligned}
$$

and A is efficient.
Conclusion: F is not a secure PRF.

Birthday Problem

q people $1, \ldots, q$ with birthdays

$$
y_{1}, \ldots, y_{q} \in\{1 \ldots, 365\}
$$

Assume each person's birthday is a random day of the year. Let

$$
\begin{aligned}
C(365, q) & =\operatorname{Pr}[2 \text { or more persons have same birthday }] \\
& =\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { are not all different }\right]
\end{aligned}
$$

- What is the value of $C(365, q)$?
- How large does q have to be before $C(365, q)$ is at least $1 / 2$?

Birthday Problem

q people $1, \ldots, q$ with birthdays

$$
y_{1}, \ldots, y_{q} \in\{1 \ldots, 365\}
$$

Assume each person's birthday is a random day of the year. Let

$$
\begin{aligned}
C(365, q) & =\operatorname{Pr}[2 \text { or more persons have same birthday }] \\
& =\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { are not all different }\right]
\end{aligned}
$$

- What is the value of $C(365, q)$?
- How large does q have to be before $C(365, q)$ is at least $1 / 2$?

Naive intuition:

- $C(365, q) \approx q / 365$
- q has to be around 365

Birthday Problem

q people $1, \ldots, q$ with birthdays

$$
y_{1}, \ldots, y_{q} \in\{1 \ldots, 365\}
$$

Assume each person's birthday is a random day of the year. Let

$$
\begin{aligned}
C(365, q) & =\operatorname{Pr}[2 \text { or more persons have same birthday }] \\
& =\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { are not all different }\right]
\end{aligned}
$$

- What is the value of $C(365, q)$?
- How large does q have to be before $C(365, q)$ is at least $1 / 2$?

Naive intuition:

- $C(365, q) \approx q / 365$
- q has to be around 365

The reality

- $C(365, q) \approx q^{2} / 365$
- q has to be only around 23

Birthday collision bounds

$C(365, q)$ is the probability that some two people have the same birthday in a room of q people with random birthdays

q	$C(365, q)$
15	0.253
18	0.347
20	0.411
21	0.444
23	0.507
25	0.569
27	0.627
30	0.706
35	0.814
40	0.891
50	0.970

Birthday Problem

Pick $y_{1}, \ldots, y_{q} \stackrel{\oiint}{\leftarrow}\{1, \ldots, N\}$ and let

$$
C(N, q)=\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { not all distinct }\right]
$$

Birthday setting: $N=365$

Birthday Problem

Pick $y_{1}, \ldots, y_{q} \stackrel{\oiint}{\leftarrow}\{1, \ldots, N\}$ and let

$$
C(N, q)=\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { not all distinct }\right]
$$

Birthday setting: $N=365$
Fact: $C(N, q) \approx \frac{q^{2}}{2 N}$

Birthday collisions formula

Let $y_{1}, \ldots, y_{q} \stackrel{\S}{\leftarrow}\{1, \ldots, N\}$. Then

$$
\begin{aligned}
1-C(N, q) & =\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { all distinct }\right] \\
& =1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdots \cdots \frac{N-(q-1)}{N} \\
& =\prod_{i=1}^{q-1}\left(1-\frac{i}{N}\right)
\end{aligned}
$$

SO

$$
C(N, q)=1-\prod_{i=1}^{q-1}\left(1-\frac{i}{N}\right)
$$

Birthday bounds

Let

$$
C(N, q)=\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { not all distinct }\right]
$$

Fact: Then

$$
0.3 \cdot \frac{q(q-1)}{N} \leq C(N, q) \leq 0.5 \cdot \frac{q(q-1)}{N}
$$

where the lower bound holds for $1 \leq q \leq \sqrt{2 N}$.

Union bound

$$
\begin{aligned}
\operatorname{Pr}\left[C_{1} \vee C_{2}\right] & =\operatorname{Pr}\left[C_{1}\right]+\operatorname{Pr}\left[C_{2}\right]-\operatorname{Pr}\left[C_{1} \wedge C_{2}\right] \\
& \leq \operatorname{Pr}\left[C_{1}\right]+\operatorname{Pr}\left[C_{2}\right]
\end{aligned}
$$

More generally

$$
\operatorname{Pr}\left[C_{1} \vee C_{2} \vee \cdots \vee C_{q}\right] \leq \operatorname{Pr}\left[C_{1}\right]+\operatorname{Pr}\left[C_{2}\right]+\cdots \operatorname{Pr}\left[C_{q}\right]
$$

Arithmetic sums

$$
0+1+2+\cdots+(q-1)=
$$

Arithmetic sums

$$
0+1+2+\cdots+(q-1)=\frac{q(q-1)}{2}
$$

Birthday bounds

Let

$$
C(N, q)=\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { not all distinct }\right]
$$

Then

$$
C(N, q) \leq 0.5 \cdot \frac{q(q-1)}{N}
$$

Proof of this upper bound: Let C_{i} be the event that $y_{i} \in\left\{y_{1}, \ldots, y_{i-1}\right\}$. Then

$$
\begin{aligned}
C(N, q) & =\operatorname{Pr}\left[C_{1} \vee C_{2}, \ldots, \vee C_{q}\right] \\
& \leq \operatorname{Pr}\left[C_{1}\right]+\operatorname{Pr}\left[C_{2}\right]+\ldots+\operatorname{Pr}\left[C_{q}\right] \\
& \leq \frac{0}{N}+\frac{1}{N}+\ldots+\frac{q-1}{N} \\
& =\frac{q(q-1)}{2 N} .
\end{aligned}
$$

Block ciphers as PRFs

Let $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher.

Real

$A \underset{\substack{x}}{\substack{\text { Fn } \\ y \leftarrow E_{K}(x) \\ \hline}}$

Rand

Can we design A so that

$$
\operatorname{Adv}_{E}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]
$$

is close to 1 ?

Block ciphers as PRFs

Defining property of a block cipher: E_{K} is a permutation for every K
So if x_{1}, \ldots, x_{q} are distinct then

- $\mathbf{F n}=E_{K} \Rightarrow \mathbf{F n}\left(x_{1}\right), \ldots, \boldsymbol{F n}\left(x_{q}\right)$ distinct
- $\mathbf{F n}$ random $\Rightarrow \mathbf{F n}\left(x_{1}\right), \ldots, \boldsymbol{F n}\left(x_{q}\right)$ not necessarily distinct

Let us turn this into an attack.

Birthday attack on a block cipher

$E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ a block cipher
adversary A
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct
for $i=1, \ldots, q$ do $y_{i} \leftarrow \mathbf{F n}\left(x_{i}\right)$
if y_{1}, \ldots, y_{q} are all distinct then return 1 else return 0

Real world analysis

Let $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher

Game Real ${ }_{E}$
procedure Initialize
$K \longleftarrow\{0,1\}^{k}$
procedure $\operatorname{Fn}(x)$
Return $E_{K}(x)$

adversary A
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct for $i=1, \ldots, q$ do $y_{i} \leftarrow \mathbf{F n}\left(x_{i}\right)$ if y_{1}, \ldots, y_{q} are all distinct then return 1 else return 0

Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right]=
$$

Real world analysis

Let $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher

```
Game Real E
procedure Initialize
```

$K \stackrel{\S}{\leftarrow}\{0,1\}^{k}$
procedure $\mathbf{F n}(x)$
Return $E_{K}(x)$
adversary A
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct for $i=1, \ldots, q$ do $y_{i} \leftarrow \mathbf{F n}\left(x_{i}\right)$ if y_{1}, \ldots, y_{q} are all distinct then return 1 else return 0

Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right]=1
$$

because y_{1}, \ldots, y_{q} will be distinct because E_{K} is a permutation.

Ideal world analysis

Let $E:\{0,1\}^{K} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher

Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$	adversary A procedure $\operatorname{Fn}(x)$ $\mathrm{T}[x] \leftarrow\{0,1\}^{\ell}$ Return $\mathrm{T}[x]$
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct for $i=1, \ldots, q$ do $y_{i} \leftarrow \mathbf{F n}\left(x_{i}\right)$	
if y_{1}, \ldots, y_{q} are all distinct	
then return 1 else return 0	

Then

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right] & =\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { all distinct }\right] \\
& =1-C\left(2^{\ell}, q\right)
\end{aligned}
$$

because y_{1}, \ldots, y_{q} are randomly chosen from $\{0,1\}^{\ell}$.

Birthday attack on a block cipher

$E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ a block cipher
adversary A
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct
for $i=1, \ldots, q$ do $y_{i} \leftarrow \mathbf{F n}\left(x_{i}\right)$
if y_{1}, \ldots, y_{q} are all distinct then return 1 else return 0

$$
\begin{aligned}
\operatorname{Adv}_{E}^{\mathrm{prf}}(A) & =\overbrace{\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]}^{1}-\overbrace{\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]}^{1-C\left(2^{\ell}, q\right)} \\
& =C\left(2^{\ell}, q\right) \\
& \geq 0.3 \cdot \frac{q(q-1)}{2^{\ell}}
\end{aligned}
$$

so

$$
q \approx 2^{\ell / 2} \Rightarrow \operatorname{Adv}_{E}^{\mathrm{prf}}(A) \approx 1
$$

Birthday attack on a block cipher

Conclusion: If $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is a block cipher, there is an attack on it as a PRF that succeeds in about $2^{\ell / 2}$ queries.
Depends on block length, not key length!

	ℓ	$2^{\ell / 2}$	Status
DES, 2DES, 3DES3	64	2^{32}	Insecure
AES	128	2^{64}	Secure

KR-security versus PRF-security

We have seen two possible metrics of security for a block cipher E

- KR-security: It should be hard to get K from input-output examples of E_{K}
- PRF-security: It should be hard to distinguish the input-output behavior of E_{K} from that of a random function.

Question: Is it possible for E to be

- PRF-secure, but
- NOT KR-secure?

KR-security versus PRF-security

Question: Is it possible for a block cipher E to be PRF-secure but not KR-secure?

Why do we care? Because we

- agreed that KR-security is necessary
- claim that PRF-security is sufficient for secure use of E, so a YES answer would render our claim false.

Luckily the answer to the above question is NO.

KR-security versus PRF-security

Fact: PRF-security implies

- KR-security
- Many other security attributes

Why does PRF-security imply KR-security?

Claim: KR-insecurity \Rightarrow PRF-insecurity

Ideal (Random) world

If you give me a method B to defeat KR-security I can design a method A to defeat PRF-security.

What A does:

- Use B to find key K^{\prime}
- Test whether $\operatorname{Fn}(x)=F_{K^{\prime}}(x)$ for some new point x
- If this is true, decide it is in the Real world

Why does PRF-security imply KR-security?

Issues: To run B, adversary A must give it input-output examples under F_{K}.

We have A give B input-output examples under Fn. This is correct in the real world but not in the random world. Nonetheless we can show it works.

Key recovery security, formally

Let $F: \operatorname{Keys}(F) \times \operatorname{Domain}(F) \rightarrow \operatorname{Range}(F)$ a family of functions
Let B be an adversary

$$
\begin{aligned}
& {\text { Game } \mathrm{KR}_{F}}_{\text {procedure Initialize }} \begin{array}{l}
\text { § } \operatorname{Keys}(F)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { procedure } \mathbf{F n}(x) \\
& \text { return } F_{K}(x) \\
& \text { procedure Finalize }\left(K^{\prime}\right) \\
& \text { return }\left(K=K^{\prime}\right) \\
& \hline
\end{aligned}
$$

The kr-advantage of B is defined as

$$
\operatorname{Adv}_{F}^{\mathrm{kr}}(B)=\operatorname{Pr}\left[\mathrm{KR}_{F}^{B} \Rightarrow \operatorname{true}\right]
$$

The oracle allows a chosen message attack.
F is secure against key recovery if $\mathbf{A d v}{ }_{F}^{\mathrm{kr}}(B)$ is "small" for all B of "practical" resources.

Example

Let $k=L \ell$ and define $F=\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$ by
$F_{K}(X)=\left[\begin{array}{cccc}K[1,1] & K[1,2] & \cdots & K[1, \ell] \\ K[2,1] & K[2,2] & \cdots & K[2, \ell] \\ \vdots & & & \vdots \\ K[L, 1] & K[L, 2] & \cdots & K[L, \ell]\end{array}\right] \cdot\left[\begin{array}{c}X[1] \\ X[2] \\ \vdots \\ X[\ell]\end{array}\right]=\left[\begin{array}{c}Y[1] \\ Y[2] \\ \vdots \\ Y[L]\end{array}\right]$
Here the bits in the matrix are the bits in the key, and arithmetic is modulo two.

Question: Is F secure against key-recovery?

Example

Let $k=L \ell$ and define $F=\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$ by
$F_{K}(X)=\left[\begin{array}{cccc}K[1,1] & K[1,2] & \cdots & K[1, \ell] \\ K[2,1] & K[2,2] & \cdots & K[2, \ell] \\ \vdots & & & \vdots \\ K[L, 1] & K[L, 2] & \cdots & K[L, \ell]\end{array}\right] \cdot\left[\begin{array}{c}X[1] \\ X[2] \\ \vdots \\ X[\ell]\end{array}\right]=\left[\begin{array}{c}Y[1] \\ Y[2] \\ \vdots \\ Y[L]\end{array}\right]$
Here the bits in the matrix are the bits in the key, and arithmetic is modulo two.

Question: Is F secure against key-recovery?
Answer: NO

Example

For $1 \leq i \leq \ell$ let:

$$
\left.e_{j}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right\} \quad \begin{array}{c}
\\
0-1 \\
\end{array}\right]
$$

be the j-th unit vector.

$$
F_{K}\left(e_{j}\right)=\left[\begin{array}{cccc}
K[1,1] & K[1,2] & \cdots & K[1, \ell] \\
K[2,1] & K[2,2] & \cdots & K[2, \ell] \\
\vdots & & & \vdots \\
K[L, 1] & K[L, 2] & \cdots & K[L, \ell]
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
K[1, j] \\
K[2, j] \\
\vdots \\
K[L, j]
\end{array}\right]
$$

KR attack on example

Adversary $B^{F_{K}}$
$K^{\prime} \leftarrow \varepsilon \quad / / \varepsilon$ is the empty string for $j=1, \ldots, \ell$ do $y_{j} \leftarrow F_{K}\left(e_{j}\right) ; K^{\prime} \leftarrow K^{\prime} \| y_{j}$ return K^{\prime}

Then

$$
\boldsymbol{\operatorname { A d v }}_{F}^{\mathrm{kr}}(B)=1
$$

The time-complexity of B is $t=O\left(\ell^{2} L\right)$ since it makes $q=\ell$ calls to its oracle and each computation of F_{K} takes $O(\ell L)$ time.

So F is insecure against key-recovery.

If F is a PRF then it is KR-secure

Our first example of a proof by reduction!
Given: $F:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$
Given: efficient KR-adversary B
Construct: efficient PRF-adversary A such that:

$$
\mathbf{A d v}_{F}^{\mathrm{kr}}(B) \leq \mathbf{A} \mathbf{d v}_{F}^{\mathrm{prf}}(A)+\square
$$

How to infer that PRF-secure $\Rightarrow \mathrm{KR}$-secure:

$$
\begin{aligned}
\mathrm{F} \text { is PRF secure } & \Rightarrow \boldsymbol{A d v}_{F}^{\operatorname{prf}}(A) \text { is small } \\
& \Rightarrow \boldsymbol{A d v}_{F}^{\mathrm{kr}}(B) \text { is small } \\
& \Rightarrow F \text { is KR-secure }
\end{aligned}
$$

If F is a PRF then it is KR-secure

Our first example of a proof by reduction!
Given: $F:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$
Given: efficient KR-adversary B
Construct: efficient PRF-adversary A such that:

$$
\mathbf{A d v}_{F}^{\mathrm{kr}}(B) \leq \mathbf{A} \mathbf{d v}_{F}^{\operatorname{prf}}(A)+\square
$$

Contrapositive:

$$
\begin{aligned}
\text { F not KR-secure } & \Rightarrow \boldsymbol{A d v}_{F}^{\mathrm{kr}}(B) \text { is big } \\
& \Rightarrow \boldsymbol{A d v}_{F}^{\mathrm{prf}}(A) \text { is big } \\
& \Rightarrow \mathrm{F} \text { is not } \mathrm{PRF} \text {-secure }
\end{aligned}
$$

How reductions work

A will run B as a subroutine

A itself answers B 's oracle queries, giving B the impression that B is in its own correct world.

If F is a PRF then it is KR-secure

Given: $F:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$
Given: efficient KR-adversary B
Construct: efficient PRF-adversary A such that:

$$
\mathbf{A d v}_{F}^{\mathrm{kr}}(B) \leq \mathbf{A} \mathbf{d v}_{F}^{\operatorname{prf}}(A)+\odot
$$

Idea:

- A uses B to find key K^{\prime}
- Tests whether K^{\prime} is the right key

Issues:

- B needs an F_{K} oracle, which A only has in the real world
- How to test K^{\prime} ?

How they are addressed:

- A gives B its Fn oracle
- Test by seeing whether $F_{K^{\prime}}$ agrees with F_{n} on a new point.

If F is a PRF then it is $K R$-secure

Given: $F:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$
Given: efficient KR-adversary B
Construct: efficient PRF-adversary A such that:

$$
\mathbf{A d v}_{F}^{\mathrm{kr}}(B) \leq \mathbf{A} \mathbf{d v}_{F}^{\mathrm{prf}}(A)+\square
$$

adversary A
$i \leftarrow 0$
$K^{\prime} \leftarrow B^{\text {FnKRSim }}$
$x \leftarrow_{\leftarrow}^{\ddagger}\{0,1\}^{\ell}-\left\{x_{1}, \ldots, x_{i}\right\}$
if $F_{K^{\prime}}(x)=\mathbf{F n}(x)$ then return 1 else return 0
subroutine FnKRSim(x)
$i \leftarrow i+1$
$x_{i} \leftarrow x$
$y_{i} \leftarrow \mathbf{F n}(x)$
return y_{i}

Analysis

adversary A
$i \leftarrow 0$
$K^{\prime} \leftarrow B^{\text {FnKRSim }}$
$x \stackrel{\S}{\leftarrow}\{0,1\}^{\ell}-\left\{x_{1}, \ldots, x_{i}\right\}$
if $F_{K^{\prime}}(x)=\mathbf{F n}(x)$ then return 1 else return 0
subroutine FnKRSim(x)
$i \leftarrow i+1$
$X_{i} \longleftarrow X$
$y_{i} \leftarrow \mathbf{F n}(x)$
return y_{i}

- If $\mathbf{F n}=F_{K}$ then $K^{\prime}=K$ with probability the KR-advantage of B, so

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] \geq \mathbf{A d v}_{F}^{\mathrm{kr}}(B)
$$

- If $\mathbf{F n}$ is a random function, then due to the fact that $x \notin\left\{x_{1}, \ldots, x_{i}\right\}$,

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]=2^{-L}
$$

So $\boldsymbol{A d v}_{F}^{\mathrm{prf}}(A) \geq \boldsymbol{A d v}_{F}^{\mathrm{kr}}(B)-2^{-L}$

If F is PRF-secure then it is KR-secure

Proposition: Let $F:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$ be a family of functions, and B a kr-adversary making q oracle queries. Then there is a PRF adversary A making $q+1$ oracle queries such that:

$$
\boldsymbol{A d v}_{F}^{\mathrm{kr}}(B) \leq \boldsymbol{A d v}_{F}^{\mathrm{prf}}(A)+2^{-L}
$$

The running time of A is that of B plus $O(q(\ell+L))$ plus the time for one computation of F.

Implication:
F PRF-secure $\Rightarrow F$ is KR-secure.

Our Assumptions

DES, AES are good block ciphers in the sense of being PRF-secure to the maximum extent possible.

