
PSEUDO-RANDOM FUNCTIONS

1 / 65



Recall

We studied security of a block cipher against key recovery.

But we saw that security against key recovery is not sufficient to ensure
that natural usages of a block cipher are secure.

We want to answer the question:

What is a good block cipher?

where “good” means that natural uses of the block cipher are secure.

We could try to define “good” by a list of necessary conditions:

• Key recovery is hard

• Recovery of M from C = EK (M) is hard

• . . .

But this is neither necessarily correct nor appealing.

2 / 65



Turing Intelligence Test

Q: What does it mean for a program to be “intelligent” in the sense of
a human?

3 / 65



Turing Intelligence Test

Q: What does it mean for a program to be “intelligent” in the sense of
a human?

Possible answers:

• It can be happy

• It recognizes pictures

• It can multiply

• But only small numbers!

•
•

3 / 65



Turing Intelligence Test

Q: What does it mean for a program to be “intelligent” in the sense of
a human?

Possible answers:

• It can be happy

• It recognizes pictures

• It can multiply

• But only small numbers!

•
•

Clearly, no such list is a satisfactory answer to the question.

3 / 65



Turing Intelligence Test

Q: What does it mean for a program to be “intelligent” in the sense of
a human?

Turing’s answer: A program is intelligent if its input/output behavior is
indistinguishable from that of a human.

4 / 65



Turing Intelligence Test

Behind the wall:

• Room 1: The program P

• Room 0: A human

5 / 65



Turing Intelligence Test

Game:

• Put tester in room 0 and let it interact with object behind wall

• Put tester in rooom 1 and let it interact with object behind wall

• Now ask tester: which room was which?

6 / 65



Turing Intelligence Test

Game:

• Put tester in room 0 and let it interact with object behind wall

• Put tester in rooom 1 and let it interact with object behind wall

• Now ask tester: which room was which?

The measure of “intelligence” of P is the extent to which the tester fails.

6 / 65



Turing Intelligence Test

Game:

• Put tester in room 0 and let it interact with object behind wall

• Put tester in rooom 1 and let it interact with object behind wall

• Now ask tester: which room was which?

Clarification: Room numbers are in our head, not written on door!

7 / 65



Real versus Ideal

Notion Real object Ideal object

Intelligence Program Human
PRF Block cipher ?

8 / 65



Real versus Ideal

Notion Real object Ideal object

Intelligence Program Human
PRF Block cipher Random function

8 / 65



Random functions

A random function with L-bit outputs is implemented by the following
box Fn, where T is initially ⊥ everywhere:

Fn

Caller
x

-

T[x ]
�

If T[x ] = ⊥ then

T[x ]
$←{0, 1}L

Return T[x ]

9 / 65



Random function

Game Rand{0,1}L

procedure Fn(x)

if T[x ] = ⊥ then T[x ]
$←{0, 1}L

return T[x ]

Adversary A

• Make queries to Fn

• Eventually halts with some output

We denote by

Pr
[

RandA
{0,1}l ⇒ d

]

the probability that A outputs d

10 / 65



Random function

Game Rand{0,1}3

procedure Fn(x)

if T[x ] = ⊥ then T[x ]
$←{0, 1}3

return T[x ]

adversary A

y ← Fn(01)
return (y = 000)

Pr
[

RandA
{0,1}3 ⇒ true

]

=

11 / 65



Random function

Game Rand{0,1}3

procedure Fn(x)

if T[x ] = ⊥ then T[x ]
$←{0, 1}3

return T[x ]

adversary A

y ← Fn(01)
return (y = 000)

Pr
[

RandA
{0,1}3 ⇒ true

]

= 2−3

11 / 65



Random function

Game Rand{0,1}3

procedure Fn(x)

if T[x ] = ⊥ then T[x ]
$←{0, 1}3

return T[x ]

adversary A

y1 ← Fn(00)
y2 ← Fn(11)
return (y1 = 010 ∧ y2 = 011)

Pr
[

RandA
{0,1}3 ⇒ true

]

=

12 / 65



Random function

Game Rand{0,1}3

procedure Fn(x)

if T[x ] = ⊥ then T[x ]
$←{0, 1}3

return T[x ]

adversary A

y1 ← Fn(00)
y2 ← Fn(11)
return (y1 = 010 ∧ y2 = 011)

Pr
[

RandA
{0,1}3 ⇒ true

]

= 2−6

12 / 65



Random function

Game Rand{0,1}3

procedure Fn(x)

if T[x ] = ⊥ then T[x ]
$←{0, 1}3

return T[x ]

adversary A

y1 ← Fn(00)
y2 ← Fn(11)
return (y1 ⊕ y2 = 101)

Pr
[

RandA
{0,1}3 ⇒ true

]

=

13 / 65



Random function

Game Rand{0,1}3

procedure Fn(x)

if T[x ] = ⊥ then T[x ]
$←{0, 1}3

return T[x ]

adversary A

y1 ← Fn(00)
y2 ← Fn(11)
return (y1 ⊕ y2 = 101)

Pr
[

RandA
{0,1}3 ⇒ true

]

= 2−3

13 / 65



Function families

A family of functions F : Keys(F )× Dom(F )→ Range(F ) is a
two-argument map. For K ∈ Keys(F ) we let FK : Dom(F )→ Range(F )
be defined by

∀x ∈ Dom(F ) : FK (x) = F (K , x)

Examples:

• DES: Keys(F ) = {0, 1}56, Dom(F ) = Range(F ) = {0, 1}64
• Any block cipher: Dom(F ) = Range(F ) and each FK is a

permutation

14 / 65



Real versus Ideal

Notion Real object Ideal object

PRF Family of functions Random function
(eg. a block cipher)

F is a PRF if the input-output behavior of FK looks to a tester like the
input-output behavior of a random function.

Tester does not get the key K !

15 / 65



PRF-adversaries

Let F : Keys(F )× Dom(F )→ Range(F ) be a family of functions.

A prf-adversary (our tester) has an oracle Fn for a function from
Dom(F ) to Range(F ). It can

• Make an oracle query x of its choice and get back Fn(x)

• Do this many times

• Eventually halt and output a bit d

d ←−

A

x1
-

Fn(x1)
�

...
xq

-

Fn(xq)
�

Fn

16 / 65



Repeat queries

We said earlier that a random function must be consistent, meaning
once it has returned y in response to x , it must return y again if queried
again with the same x . This is why we have the “if” in the following:
written as

Game
RandRange(F )

procedure Fn(x)

if T[x ] 6= ⊥ then T[x ]
$← Range(F )

Return T[x ]

Henceforth we make a rule:

• A prf-adversary is not allowed to repeat an oracle query.

Then our game is:

Game
RandRange(F )

procedure Fn(x)

T[x ]
$← Range(F )

Return T[x ]

17 / 65



PRF-adversaries

Let F : Keys(F )× Dom(F )→ Range(F ) be a family of functions.

Real world

A
x

-

y
�

Fn
y ← FK (x)

Ideal (Random) world

A
x

-

y
�

Fn
y

$← Range(F )

Intended meaning:
A’s output d I think I am in the

1 Real world

0 Ideal (Random) world

The harder it is for A to guess world it is in, the “better” F is as a PRF.

18 / 65



The games

Let F : Keys(F )× Dom(F )→ Range(F ) be a family of functions.

Game RealF

procedure Initialize
K

$← Keys(F )

procedure Fn(x)
Return FK (x)

Game RandRange(F )

procedure Fn(x)

T[x ]
$← Range(F )

Return T[x ]

Associated to F ,A are the probabilities

Pr
[

RealAF⇒1
]

Pr
[

RandA
Range(F )⇒1

]

that A outputs 1 in each world. The advantage of A is

Advprf
F (A) = Pr

[

RealAF⇒1
]

− Pr
[

RandA
Range(F )⇒1

]

19 / 65



Example

Let F : {0, 1}k × {0, 1}128 → {0, 1}128 be defined by FK (x) = x . Let
prf-adversary A be defined by

adversary A

if Fn(0128) = 0128 then Ret 1 else Ret 0

Game RealF

procedure Initialize
K

$← {0, 1}k

procedure Fn(x)
Return FK (x)

Real world

A
x

-

y
�

Fn
y ← FK (x)

20 / 65



Example

Let F : {0, 1}k × {0, 1}128 → {0, 1}128 be defined by FK (x) = x . Let
prf-adversary A be defined by

adversary A

if Fn(0128) = 0128 then Ret 1 else Ret 0

Game RealF

procedure Initialize
K

$← {0, 1}k

procedure Fn(x)
Return FK (x)

Real world

A
x

-

y
�

Fn
y ← FK (x)

Then
Pr

[

RealAF⇒1
]

=

20 / 65



Example

Let F : {0, 1}k × {0, 1}128 → {0, 1}128 be defined by FK (x) = x . Let
prf-adversary A be defined by

adversary A

if Fn(0128) = 0128 then Ret 1 else Ret 0

Game RealF

procedure Initialize
K

$← {0, 1}k

procedure Fn(x)
Return FK (x)

Real world

A
x

-

y
�

Fn
y ← FK (x)

Then
Pr

[

RealAF⇒1
]

= 1

because the value returned by Fn will be Fn(0128) = FK (0128) = 0128 so
A will always return 1.

20 / 65



Example

Let F : {0, 1}k × {0, 1}128 → {0, 1}128 be defined by FK (x) = x . Let
prf-adversary A be defined by

adversary A

if Fn(0128) = 0128 then Ret 1 else Ret 0

Game RandRange(F )

procedure Fn(x)

T[x ]
$←{0, 1}L

Return T[x ]

Ideal (Random) world

A
x

-

y
�

Fn
y

$←{0, 1}128

Then
Pr

[

RandA
Range(F )⇒1

]

=

21 / 65



Example

Let F : {0, 1}k × {0, 1}128 → {0, 1}128 be defined by FK (x) = x . Let
prf-adversary A be defined by

adversary A

if Fn(0128) = 0128 then Ret 1 else Ret 0

Game RandRange(F )

procedure Fn(x)

T[x ]
$←{0, 1}L

Return T[x ]

Ideal (Random) world

A
x

-

y
�

Fn
y

$←{0, 1}128

Then

Pr
[

RandA
Range(F )⇒1

]

= Pr
[
Fn(0128) = 0128

]
= 2−128

because Fn(0128) is a random 128-bit string.

21 / 65



Example: Advantage computation.

Let F : {0, 1}k × {0, 1}128 → {0, 1}128 be defined by FK (x) = x . Let
prf-adversary A be defined by

adversary A

if Fn(0128) = 0128 then Ret 1 else Ret 0

Then

Advprf
F (A) =

1
︷ ︸︸ ︷

Pr
[

RealAF⇒1
]

−

2−128

︷ ︸︸ ︷

Pr
[

RandA
Range(F )⇒1

]

= 1− 2−128

22 / 65



The measure of success

Let F : Keys(F )×Domain(F )→ Range(F ) be a family of functions
and A a prf adversary. Then

Advprf
F (A) = Pr

[

RealAF⇒1
]

− Pr
[

RandA
Range(F )⇒1

]

is a number between −1 and 1.

A “large” (close to 1) advantage means

• A is doing well

• F is not secure

A “small” (close to 0 or ≤ 0) advantage means

• A is doing poorly

• F resists the attack A is mounting

23 / 65



PRF security

Adversary advantage depends on its

• strategy

• resources: Running time t and number q of oracle queries

Security: F is a (secure) PRF if Advprf
F (A) is “small” for ALL A that

use “practical” amounts of resources.

Example: 80-bit security could mean that for all n = 1, . . . , 280 we have

Advprf
F (A) ≤ 2−n

for any A with time and number of oracle queries at most 280−n.

Insecurity: F is insecure (not a PRF) if there exists A using “few”
resources that achieves “high” advantage.

24 / 65



Example 1

Define F : {0, 1}k × {0, 1}128 → {0, 1}128 by FK (x) = x for all k, x .
Is F a secure PRF?

Real

A
x

-

y
�

Fn
y ← FK (x)

Rand

A
x

-

y
�

Fn
y

$← {0, 1}128

Can we design A so that

Advprf
F (A) = Pr

[

RealAF⇒1
]

− Pr
[

RandA
Range(F )⇒1

]

is close to 1?

25 / 65



Example 1

Define F : {0, 1}k × {0, 1}128 → {0, 1}128 by FK (x) = x for all k, x .
Is F a secure PRF?

Real

A
x

-

y
�

Fn
y ← FK (x)

Rand

A
x

-

y
�

Fn
y

$← {0, 1}128

Can we design A so that

Advprf
F (A) = Pr

[

RealAF⇒1
]

− Pr
[

RandA
Range(F )⇒1

]

is close to 1?

Exploitable weakness of F : Fk(0128) = 0128 for all k. We can determine
which world we are in by testing whether Fn(0128) = 0128.

25 / 65



Example 1

Real

A
x

-

y
�

Fn
y ← FK (x)

Rand

A
x

-

y
�

Fn
y

$← {0, 1}128

Now F is defined by FK (x) = x .

adversary A

if Fn(0128) = 0128 then return 1 else return 0

26 / 65



Example 1: Analysis

F is defined by FK (x) = x .

adversary A

if Fn(0128) = 0128 then return 1 else return 0

Real

A
x

-

y
�

Fn
y ← FK (x)

Rand

A
x

-

y
�

Fn
y

$← {0, 1}128

We already analysed this and saw that

Pr
[

RealAF⇒1
]

= 1 Pr
[

RandA
Range(F )⇒1

]

= 2−128

27 / 65



Example 1: Conclusion

F is defined by FK (x) = x .

adversary A

if Fn(0128) = 0128 then return 1 else return 0

Then

Advprf
F (A) =

1
︷ ︸︸ ︷

Pr
[

RealAF⇒1
]

−

2−128

︷ ︸︸ ︷

Pr
[

RandA
Range(F )⇒1

]

= 1− 2−128

and A is efficient.

Conclusion: F is not a secure PRF.

28 / 65



Example 2

Define F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ by FK (x) = K ⊕ x for all K , x .
Is F a secure PRF?

Real

A
x

-

y
�

Fn
y ← FK (x)

Rand

A
x

-

y
�

Fn
y

$←{0, 1}ℓ

Can we design A so that

Advprf
F (A) = Pr

[

RealAF⇒1
]

− Pr
[

RandA
Range(F )⇒1

]

is close to 1?

29 / 65



Example 2

Define F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ by FK (x) = K ⊕ x for all K , x .
Is F a secure PRF?

Real

A
x

-

y
�

Fn
y ← FK (x)

Rand

A
x

-

y
�

Fn
y

$←{0, 1}ℓ

Can we design A so that

Advprf
F (A) = Pr

[

RealAF⇒1
]

− Pr
[

RandA
Range(F )⇒1

]

is close to 1?

Exploitable weakness of F :

FK (0ℓ)⊕ FK (1ℓ) = (K ⊕ 0ℓ)⊕ (K ⊕ 1ℓ) = 1ℓ

for all K . We can determine which world we are in by testing whether

Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ .
29 / 65



Example 2: The adversary

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A

if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

30 / 65



Example 2: Real world analysis

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A

if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Game RealF

procedure Initialize
K

$← {0, 1}k

procedure Fn(x)
Return FK (x)

Real world

A
x

-

y
�

Fn
y ← FK (x)

31 / 65



Example 2: Real world analysis

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A

if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Game RealF

procedure Initialize
K

$← {0, 1}k

procedure Fn(x)
Return FK (x)

Real world

A
x

-

y
�

Fn
y ← FK (x)

Then
Pr

[

RealAF⇒1
]

=

31 / 65



Example 2: Real world analysis

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A

if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Game RealF

procedure Initialize
K

$← {0, 1}k

procedure Fn(x)
Return FK (x)

Real world

A
x

-

y
�

Fn
y ← FK (x)

Then
Pr

[

RealAF⇒1
]

= 1

because

Fn(0ℓ)⊕ Fn(1ℓ) = FK (0ℓ)⊕ FK (1ℓ) = (K ⊕ 0ℓ)⊕ (K ⊕ 1ℓ) = 1ℓ

31 / 65



Example 2: Ideal world analysis

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A

if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Game RandRange(F )

procedure Fn(x)

T[x ]
$←{0, 1}ℓ return T[x ]

Ideal (random) world

A
x

-

y
�

Fn
y

$←{0, 1}ℓ

32 / 65



Example 2: Ideal world analysis

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A

if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Game RandRange(F )

procedure Fn(x)

T[x ]
$←{0, 1}ℓ return T[x ]

Ideal (random) world

A
x

-

y
�

Fn
y

$←{0, 1}ℓ

Then
Pr

[

RealAF⇒1
]

=

32 / 65



Example 2: Ideal world analysis

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A

if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Game RandRange(F )

procedure Fn(x)

T[x ]
$←{0, 1}ℓ return T[x ]

Ideal (random) world

A
x

-

y
�

Fn
y

$←{0, 1}ℓ

Then
Pr

[

RealAF⇒1
]

= Pr
[

Fn(1ℓ)⊕ Fn(0ℓ) = 1ℓ
]

=

32 / 65



Example 2: Ideal world analysis

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A

if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Game RandRange(F )

procedure Fn(x)

T[x ]
$←{0, 1}ℓ return T[x ]

Ideal (random) world

A
x

-

y
�

Fn
y

$←{0, 1}ℓ

Then
Pr

[

RealAF⇒1
]

= Pr
[

Fn(1ℓ)⊕ Fn(0ℓ) = 1ℓ
]

= 2−ℓ

because Fn(0ℓ),Fn(1ℓ) are random ℓ-bit strings.

32 / 65



Example 2: Conclusion

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A

if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Then

Advprf
F (A) =

1
︷ ︸︸ ︷

Pr
[

RealAF⇒1
]

−

2−ℓ

︷ ︸︸ ︷

Pr
[

RandA
Range(F )⇒1

]

= 1− 2−ℓ

and A is efficient .

Conclusion: F is not a secure PRF.

33 / 65



Birthday Problem

q people 1, . . . , q with birthdays

y1, . . . , yq ∈ {1 . . . , 365}

Assume each person’s birthday is a random day of the year. Let

C (365, q) = Pr [2 or more persons have same birthday]

= Pr [y1, . . . , yq are not all different]

• What is the value of C (365, q)?

• How large does q have to be before C (365, q) is at least 1/2?

34 / 65



Birthday Problem

q people 1, . . . , q with birthdays

y1, . . . , yq ∈ {1 . . . , 365}

Assume each person’s birthday is a random day of the year. Let

C (365, q) = Pr [2 or more persons have same birthday]

= Pr [y1, . . . , yq are not all different]

• What is the value of C (365, q)?

• How large does q have to be before C (365, q) is at least 1/2?

Naive intuition:

• C (365, q) ≈ q/365

• q has to be around 365

34 / 65



Birthday Problem

q people 1, . . . , q with birthdays

y1, . . . , yq ∈ {1 . . . , 365}

Assume each person’s birthday is a random day of the year. Let

C (365, q) = Pr [2 or more persons have same birthday]

= Pr [y1, . . . , yq are not all different]

• What is the value of C (365, q)?

• How large does q have to be before C (365, q) is at least 1/2?

Naive intuition:

• C (365, q) ≈ q/365

• q has to be around 365

The reality

• C (365, q) ≈ q2/365

• q has to be only around 23
34 / 65



Birthday collision bounds

C (365, q) is the probability that some two people have the same
birthday in a room of q people with random birthdays

q C (365, q)

15 0.253

18 0.347

20 0.411

21 0.444

23 0.507

25 0.569

27 0.627

30 0.706

35 0.814

40 0.891

50 0.970

35 / 65



Birthday Problem

Pick y1, . . . , yq
$←{1, . . . ,N} and let

C (N, q) = Pr [y1, . . . , yq not all distinct]

Birthday setting: N = 365

36 / 65



Birthday Problem

Pick y1, . . . , yq
$←{1, . . . ,N} and let

C (N, q) = Pr [y1, . . . , yq not all distinct]

Birthday setting: N = 365

Fact: C (N, q) ≈ q2

2N

36 / 65



Birthday collisions formula

Let y1, . . . , yq
$←{1, . . . ,N}. Then

1− C (N, q) = Pr [y1, . . . , yq all distinct]

= 1 · N − 1

N
· N − 2

N
· · · · · N − (q − 1)

N

=

q−1
∏

i=1

(

1− i

N

)

so

C (N, q) = 1−
q−1
∏

i=1

(

1− i

N

)

37 / 65



Birthday bounds

Let
C (N, q) = Pr [y1, . . . , yq not all distinct]

Fact: Then

0.3 · q(q − 1)

N
≤ C (N, q) ≤ 0.5 · q(q − 1)

N

where the lower bound holds for 1 ≤ q ≤
√

2N .

38 / 65



Union bound

C1

C2

Pr [C1 ∨ C2] = Pr [C1] + Pr [C2]− Pr [C1 ∧ C2]

≤ Pr [C1] + Pr [C2]

More generally

Pr [C1 ∨ C2 ∨ · · · ∨ Cq] ≤ Pr [C1] + Pr [C2] + · · ·Pr [Cq]

39 / 65



Arithmetic sums

0 + 1 + 2 + · · ·+ (q − 1) =

40 / 65



Arithmetic sums

0 + 1 + 2 + · · ·+ (q − 1) =
q(q − 1)

2

40 / 65



Birthday bounds

Let
C (N, q) = Pr [y1, . . . , yq not all distinct]

Then

C (N, q) ≤ 0.5 · q(q − 1)

N

Proof of this upper bound: Let Ci be the event that
yi ∈ {y1, . . . , yi−1}. Then

C (N, q) = Pr [C1 ∨ C2, . . . ,∨Cq]

≤ Pr [C1] + Pr [C2] + . . . + Pr [Cq]

≤ 0

N
+

1

N
+ . . . +

q − 1

N

=
q(q − 1)

2N
.

41 / 65



Block ciphers as PRFs

Let E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a block cipher.

Real

A
x

-

y
�

Fn
y ← EK (x)

Rand

A
x

-

y
�

Fn
y

$←{0, 1}ℓ

Can we design A so that

Advprf
E (A) = Pr

[

RealAE⇒1
]

− Pr
[

RandA
{0,1}ℓ⇒1

]

is close to 1?

42 / 65



Block ciphers as PRFs

Defining property of a block cipher: EK is a permutation for every K

So if x1, . . . , xq are distinct then

• Fn = EK ⇒ Fn(x1), . . . ,Fn(xq) distinct

• Fn random⇒ Fn(x1), . . . ,Fn(xq) not necessarily distinct

Let us turn this into an attack.

43 / 65



Birthday attack on a block cipher

E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ a block cipher

adversary A

Let x1, . . . , xq ∈ {0, 1}ℓ be distinct
for i = 1, . . . , q do yi ← Fn(xi )
if y1, . . . , yq are all distinct then return 1
else return 0

44 / 65



Real world analysis

Let E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a block cipher

Game RealE

procedure Initialize
K

$← {0, 1}k

procedure Fn(x)
Return EK (x)

adversary A

Let x1, . . . , xq ∈ {0, 1}ℓ be distinct
for i = 1, . . . , q do yi ← Fn(xi)
if y1, . . . , yq are all distinct
then return 1 else return 0

Then
Pr

[

RealAE⇒1
]

=

45 / 65



Real world analysis

Let E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a block cipher

Game RealE

procedure Initialize
K

$← {0, 1}k

procedure Fn(x)
Return EK (x)

adversary A

Let x1, . . . , xq ∈ {0, 1}ℓ be distinct
for i = 1, . . . , q do yi ← Fn(xi)
if y1, . . . , yq are all distinct
then return 1 else return 0

Then
Pr

[

RealAE⇒1
]

= 1

because y1, . . . , yq will be distinct because EK is a permutation.

45 / 65



Ideal world analysis

Let E : {0, 1}K × {0, 1}ℓ → {0, 1}ℓ be a block cipher

Game Rand{0,1}ℓ

procedure Fn(x)

T[x ]
$←{0, 1}ℓ

Return T[x ]

adversary A

Let x1, . . . , xq ∈ {0, 1}ℓ be distinct
for i = 1, . . . , q do yi ← Fn(xi)
if y1, . . . , yq are all distinct
then return 1 else return 0

Then

Pr
[

RandA
{0,1}ℓ⇒1

]

= Pr [y1, . . . , yq all distinct]

= 1− C (2ℓ, q)

because y1, . . . , yq are randomly chosen from {0, 1}ℓ.
46 / 65



Birthday attack on a block cipher

E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ a block cipher

adversary A

Let x1, . . . , xq ∈ {0, 1}ℓ be distinct
for i = 1, . . . , q do yi ← Fn(xi )
if y1, . . . , yq are all distinct then return 1 else return 0

Advprf
E (A) =

1
︷ ︸︸ ︷

Pr
[

RealAF⇒1
]

−

1−C(2ℓ,q)
︷ ︸︸ ︷

Pr
[

RandA
Range(F )⇒1

]

= C (2ℓ, q)

≥ 0.3 · q(q − 1)

2ℓ

so
q ≈ 2ℓ/2 ⇒ Advprf

E (A) ≈ 1 .

47 / 65



Birthday attack on a block cipher

Conclusion: If E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ is a block cipher, there is
an attack on it as a PRF that succeeds in about 2ℓ/2 queries.

Depends on block length, not key length!

ℓ 2ℓ/2 Status

DES, 2DES, 3DES3 64 232 Insecure

AES 128 264 Secure

48 / 65



KR-security versus PRF-security

We have seen two possible metrics of security for a block cipher E

• KR-security: It should be hard to get K from input-output
examples of EK

• PRF-security: It should be hard to distinguish the input-output
behavior of EK from that of a random function.

Question: Is it possible for E to be

• PRF-secure, but

• NOT KR-secure?

49 / 65



KR-security versus PRF-security

Question: Is it possible for a block cipher E to be PRF-secure but not
KR-secure?

Why do we care? Because we

• agreed that KR-security is necessary

• claim that PRF-security is sufficient

for secure use of E , so a YES answer would render our claim false.

Luckily the answer to the above question is NO.

50 / 65



KR-security versus PRF-security

Fact: PRF-security implies

• KR-security

• Many other security attributes

51 / 65



Why does PRF-security imply KR-security?

Claim: KR-insecurity ⇒ PRF-insecurity

Real world

A
x

-

y
�

Fn
y ← FK (x)

Ideal (Random) world

A
x

-

y
�

Fn
y

$← Range(F )

If you give me a method B to defeat KR-security I can design a method
A to defeat PRF-security.

What A does:

• Use B to find key K ′

• Test whether Fn(x) = FK ′(x) for some new point x

• If this is true, decide it is in the Real world

52 / 65



Why does PRF-security imply KR-security?

Issues: To run B , adversary A must give it input-output examples under
FK .

We have A give B input-output examples under Fn. This is correct in
the real world but not in the random world. Nonetheless we can show it
works.

53 / 65



Key recovery security, formally

Let F : Keys(F )×Domain(F )→ Range(F ) a family of functions

Let B be an adversary

Game KRF

procedure Initialize
K

$← Keys(F )

procedure Fn(x)
return FK (x)

procedure Finalize(K ′)
return (K = K ′)

The kr-advantage of B is defined as

Advkr
F (B) = Pr

[

KRB
F⇒true

]

The oracle allows a chosen message attack.

F is secure against key recovery if Advkr
F (B) is “small” for all B of

“practical” resources.

54 / 65



Example

Let k = Lℓ and define F = {0, 1}k × {0, 1}ℓ → {0, 1}L by

FK (X ) =








K [1, 1] K [1, 2] · · · K [1, ℓ]
K [2, 1] K [2, 2] · · · K [2, ℓ]

...
...

K [L, 1] K [L, 2] · · · K [L, ℓ]







·








X [1]
X [2]

...
X [ℓ]








=








Y [1]
Y [2]

...
Y [L]








Here the bits in the matrix are the bits in the key, and arithmetic is
modulo two.

Question: Is F secure against key-recovery?

55 / 65



Example

Let k = Lℓ and define F = {0, 1}k × {0, 1}ℓ → {0, 1}L by

FK (X ) =








K [1, 1] K [1, 2] · · · K [1, ℓ]
K [2, 1] K [2, 2] · · · K [2, ℓ]

...
...

K [L, 1] K [L, 2] · · · K [L, ℓ]







·








X [1]
X [2]

...
X [ℓ]








=








Y [1]
Y [2]

...
Y [L]








Here the bits in the matrix are the bits in the key, and arithmetic is
modulo two.

Question: Is F secure against key-recovery?

Answer: NO

55 / 65



Example

For 1 ≤ i ≤ ℓ let:

ej =











0
...
0







j − 1

1
0
..
.
0







ℓ − j











be the j-th unit vector.

FK (ej) =








K [1, 1] K [1, 2] · · · K [1, ℓ]
K [2, 1] K [2, 2] · · · K [2, ℓ]

...
...

K [L, 1] K [L, 2] · · · K [L, ℓ]







·











0
...
1
...
0











=








K [1, j]
K [2, j]

...
K [L, j]








56 / 65



KR attack on example

Adversary BFK

K ′ ← ε // ε is the empty string

for j = 1, . . . , ℓ do yj ← FK (ej ) ; K ′ ← K ′ ‖ yj

return K ′

Then

Advkr
F (B) = 1 .

The time-complexity of B is t = O(ℓ2L) since it makes q = ℓ calls to its
oracle and each computation of FK takes O(ℓL) time.

So F is insecure against key-recovery.

57 / 65



If F is a PRF then it is KR-secure

Our first example of a proof by reduction!

Given: F : {0, 1}k × {0, 1}ℓ → {0, 1}L
Given: efficient KR-adversary B

Construct: efficient PRF-adversary A such that:

Advkr
F (B) ≤ Advprf

F (A) + ·

How to infer that PRF-secure ⇒ KR-secure:

F is PRF secure ⇒ Advprf
F (A) is small

⇒ Advkr
F (B) is small

⇒ F is KR-secure

58 / 65



If F is a PRF then it is KR-secure

Our first example of a proof by reduction!

Given: F : {0, 1}k × {0, 1}ℓ → {0, 1}L
Given: efficient KR-adversary B

Construct: efficient PRF-adversary A such that:

Advkr
F (B) ≤ Advprf

F (A) + ·

Contrapositive:

F not KR-secure ⇒ Advkr
F (B) is big

⇒ Advprf
F (A) is big

⇒ F is not PRF-secure

59 / 65



How reductions work

A will run B as a subroutine

B’s world: How A runs B

A itself answers B’s oracle queries, giving B the impression that B is in
its own correct world.

60 / 65



If F is a PRF then it is KR-secure

Given: F : {0, 1}k × {0, 1}ℓ → {0, 1}L
Given: efficient KR-adversary B

Construct: efficient PRF-adversary A such that:

Advkr
F (B) ≤ Advprf

F (A) + ⊡

Idea:

• A uses B to find key K ′

• Tests whether K ′ is the right key

Issues:

• B needs an FK oracle, which A only has in the real world

• How to test K ′?

How they are addressed:

• A gives B its Fn oracle

• Test by seeing whether FK ′ agrees with Fn on a new point.
61 / 65



If F is a PRF then it is KR-secure

Given: F : {0, 1}k × {0, 1}ℓ → {0, 1}L
Given: efficient KR-adversary B

Construct: efficient PRF-adversary A such that:

Advkr
F (B) ≤ Advprf

F (A) + ⊡

adversary A

i ← 0
K ′ ← BFnKRSim

x
$←{0, 1}ℓ − {x1, . . . , xi}

if FK ′(x) = Fn(x) then return 1
else return 0

subroutine FnKRSim(x)
i ← i + 1
xi ← x

yi ← Fn(x)
return yi

62 / 65



Analysis

adversary A

i ← 0
K ′ ← BFnKRSim

x
$←{0, 1}ℓ − {x1, . . . , xi}

if FK ′(x) = Fn(x) then return 1
else return 0

subroutine FnKRSim(x)
i ← i + 1
xi ← x

yi ← Fn(x)
return yi

• If Fn = FK then K ′ = K with probability the KR-advantage of B ,
so

Pr
[

RealAF⇒1
]

≥ Advkr
F (B)

• If Fn is a random function, then due to the fact that
x /∈ {x1, . . . , xi},

Pr
[

RandA
Range(F )⇒1

]

= 2−L

So Advprf
F (A) ≥ Advkr

F (B)− 2−L

63 / 65



If F is PRF-secure then it is KR-secure

Proposition: Let F : {0, 1}k × {0, 1}ℓ → {0, 1}L be a family of
functions, and B a kr-adversary making q oracle queries. Then there is
a PRF adversary A making q + 1 oracle queries such that:

Advkr
F (B) ≤ Advprf

F (A) + 2−L

The running time of A is that of B plus O(q(ℓ + L)) plus the time for
one computation of F.

Implication:

F PRF-secure ⇒ F is KR-secure.

64 / 65



Our Assumptions

DES, AES are good block ciphers in the sense of being PRF-secure to
the maximum extent possible.

65 / 65


