PSEUDO-RANDOM FUNCTIONS

We studied security of a block cipher against key recovery.

But we saw that security against key recovery is not sufficient to ensure that natural usages of a block cipher are secure.

We want to answer the question:

```
What is a good block cipher?
```

where "good" means that natural uses of the block cipher are secure.

We could try to define "good" by a list of necessary conditions:

- Key recovery is hard
- Recovery of *M* from $C = E_{\mathcal{K}}(M)$ is hard

• . . .

But this is neither necessarily correct nor appealing.

Q: What does it mean for a program to be "intelligent" in the sense of a human?

Q: What does it mean for a program to be "intelligent" in the sense of a human?

イロト 不得 トイヨト イヨト

3

3/65

Possible answers:

- It can be happy
- It recognizes pictures
- It can multiply
- But only small numbers!
- •
- •

Q: What does it mean for a program to be "intelligent" in the sense of a human?

Possible answers:

- It can be happy
- It recognizes pictures
- It can multiply
- But only small numbers!
- •
- •

Clearly, no such list is a satisfactory answer to the question.

- Q: What does it mean for a program to be "intelligent" in the sense of a human?
- Turing's answer: A program is intelligent if its input/output behavior is indistinguishable from that of a human.

イロト イロト イヨト イヨト 二日

5/65

Behind the wall:

- Room 1: The program P
- Room 0: A human

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

The measure of "intelligence" of P is the extent to which the tester fails.

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

Clarification: Room numbers are in our head, not written on door!

Notion	Real object	ldeal object
Intelligence	Program	Human
PRF	Block cipher	?

Notion	Real object	ldeal object
Intelligence	Program	Human
PRF	Block cipher	Random function

A random function with *L*-bit outputs is implemented by the following box **Fn**, where T is initially \perp everywhere:

Fn


```
Game \operatorname{Rand}_{\{0,1\}^L}

procedure \operatorname{Fn}(x)

if \operatorname{T}[x] = \bot then \operatorname{T}[x] \xleftarrow{\hspace{0.1cm} {\scriptsize{5}}} \{0,1\}^L

return \operatorname{T}[x]
```

Adversary A

- Make queries to **Fn**
- Eventually halts with some output

We denote by

$$\mathsf{Pr}\left[\mathrm{Rand}^{\mathcal{A}}_{\{0,1\}'} \Rightarrow d
ight]$$

the probability that A outputs d

Game Rand_{
$$\{0,1\}^3$$
adversary Aprocedure $Fn(x)$ $\downarrow f T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} \{0,1\}^3$ $y \leftarrow Fn(01)$ return $T[x]$ $\downarrow f T[x] = 000$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{\mathcal{A}} \Rightarrow \mathsf{true}\right] =$$

Game Rand_{
$$\{0,1\}^3$$
adversary Aprocedure $Fn(x)$ $\downarrow f T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} \{0,1\}^3$ $y \leftarrow Fn(01)$ return $T[x]$ $\downarrow f T[x] = 000$

$$\Pr\left[\operatorname{Rand}_{\{0,1\}^3}^{\mathcal{A}} \Rightarrow \mathsf{true}\right] = 2^{-3}$$

$$\begin{array}{l} \text{Game } \operatorname{Rand}_{\{0,1\}^3} \\ \text{procedure } \mathbf{Fn}(x) \\ \text{if } \mathsf{T}[x] = \bot \text{ then } \mathsf{T}[x] \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0,1\}^3 \end{array} \begin{array}{|} \textbf{adversary } A \\ y_1 \leftarrow \mathsf{Fn}(00) \\ y_2 \leftarrow \mathsf{Fn}(11) \\ \text{return } (y_1 = 010 \land y_2 = 011) \end{array}$$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{\mathcal{A}} \Rightarrow \mathsf{true}\right] =$$

$$\begin{array}{l} \text{Game } \operatorname{Rand}_{\{0,1\}^3} \\ \text{procedure } \mathbf{Fn}(x) \\ \text{if } \mathsf{T}[x] = \bot \text{ then } \mathsf{T}[x] \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0,1\}^3 \\ \text{return } \mathsf{T}[x] \end{array} \begin{array}{l} \text{adversary } A \\ y_1 \leftarrow \mathsf{Fn}(00) \\ y_2 \leftarrow \mathsf{Fn}(11) \\ \text{return } (y_1 = 010 \land y_2 = 011) \end{array}$$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{\mathcal{A}} \Rightarrow \mathsf{true}\right] = 2^{-6}$$

$$\begin{array}{l} \text{Game } \operatorname{Rand}_{\{0,1\}^3} \\ \text{procedure } \mathbf{Fn}(x) \\ \text{if } \mathsf{T}[x] = \bot \text{ then } \mathsf{T}[x] \stackrel{\$}{\leftarrow} \{0,1\}^3 \end{array} \begin{array}{l} \text{adversary } A \\ y_1 \leftarrow \mathsf{Fn}(00) \\ y_2 \leftarrow \mathsf{Fn}(11) \\ \text{return } (y_1 \oplus y_2 = 101) \end{array}$$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{\mathcal{A}} \Rightarrow \mathsf{true}\right] =$$

$$\begin{array}{l} \text{Game } \operatorname{Rand}_{\{0,1\}^3} \\ \text{procedure } \mathbf{Fn}(x) \\ \text{if } \mathsf{T}[x] = \bot \text{ then } \mathsf{T}[x] \stackrel{\$}{\leftarrow} \{0,1\}^3 \end{array} \begin{array}{l} \text{adversary } A \\ y_1 \leftarrow \mathsf{Fn}(00) \\ y_2 \leftarrow \mathsf{Fn}(11) \\ \text{return } (y_1 \oplus y_2 = 101) \end{array}$$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{\mathcal{A}} \Rightarrow \mathsf{true}\right] = 2^{-3}$$

A family of functions $F : \text{Keys}(F) \times \text{Dom}(F) \rightarrow \text{Range}(F)$ is a two-argument map. For $K \in \text{Keys}(F)$ we let $F_K : \text{Dom}(F) \rightarrow \text{Range}(F)$ be defined by

$$\forall x \in \mathsf{Dom}(F) : F_{\mathcal{K}}(x) = F(\mathcal{K}, x)$$

Examples:

- DES: $Keys(F) = \{0, 1\}^{56}$, $Dom(F) = Range(F) = \{0, 1\}^{64}$
- Any block cipher: Dom(F) = Range(F) and each F_K is a permutation

Notion	Real object	ldeal object
PRF	Family of functions (eg. a block cipher)	Random function

F is a PRF if the input-output behavior of F_K looks to a tester like the input-output behavior of a random function.

Tester does not get the key K!

PRF-adversaries

Let $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \to \operatorname{Range}(F)$ be a family of functions.

A prf-adversary (our tester) has an oracle \mathbf{Fn} for a function from Dom(F) to Range(F). It can

- Make an oracle query x of its choice and get back Fn(x)
- Do this many times
- Eventually halt and output a bit d

・ロン ・四 と ・ ヨン ・ ヨン

Repeat queries

We said earlier that a random function must be consistent, meaning once it has returned y in response to x, it must return y again if queried again with the same x. This is why we have the "if" in the following: written as

Game	procedure Fn(x)
$\operatorname{Rand}_{Range}(F)$	$\begin{array}{l} \text{if } T[x] \neq \bot \text{ then } T[x] \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} Range(F) \\ Return T[x] \end{array}$

Henceforth we make a rule:

• A prf-adversary is not allowed to repeat an oracle query.

Then our game is:

Game Rand _{Range(F)}	procedure Fn (x) T[x] $\stackrel{s}{\leftarrow}$ Range(F) Return T[x]		
		(日)(四)(日)(日)	3

Let $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \to \operatorname{Range}(F)$ be a family of functions.

	Intended meaning:	
A's output d	I think I am in the	
1	Real world	
0	Ideal (Random) world	

The harder it is for A to guess world it is in, the "better" F is as a PRF.

The games

Let $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \to \operatorname{Range}(F)$ be a family of functions.

Game Real_F procedure Initialize $K \stackrel{\hspace{0.1em}{\leftarrow}}{\leftarrow} \operatorname{Keys}(F)$ procedure $\operatorname{Fn}(x)$ Return $F_K(x)$ Game $\operatorname{Rand}_{\operatorname{Range}(F)}$ **procedure \operatorname{Fn}(x)** $\operatorname{T}[x] \stackrel{\hspace{0.1em}{\scriptscriptstyle{\leftarrow}}}{\leftarrow} \operatorname{Range}(F)$ Return $\operatorname{T}[x]$

Associated to F, A are the probabilities

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] \qquad \Pr\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]$$

that A outputs 1 in each world. The advantage of A is

$$\mathsf{Adv}_{\mathsf{F}}^{\mathrm{prf}}(\mathsf{A}) = \mathsf{Pr}\left[\mathrm{Real}_{\mathsf{F}}^{\mathsf{A}} {\Rightarrow} 1\right] - \mathsf{Pr}\left[\mathrm{Rand}_{\mathsf{Range}(\mathsf{F})}^{\mathsf{A}} {\Rightarrow} 1\right]$$

Let $F: \{0,1\}^k \times \{0,1\}^{128} \to \{0,1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A if $Fn(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Let $F: \{0,1\}^k \times \{0,1\}^{128} \to \{0,1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A if $Fn(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Then

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] =$$

Let $F: \{0,1\}^k \times \{0,1\}^{128} \to \{0,1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A if $Fn(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Then

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] = 1$$

because the value returned by **Fn** will be $\mathbf{Fn}(0^{128}) = F_{\mathcal{K}}(0^{128}) = 0^{128}$ so *A* will always return 1.

Let $F: \{0,1\}^k \times \{0,1\}^{128} \to \{0,1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A if $Fn(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Game Rand
Range(F)Ideal (Random) worldprocedure Fn(x)AxFn $T[x] \stackrel{\$}{\leftarrow} \{0,1\}^L$ A $y \stackrel{\clubsuit}{\leftarrow} \{0,1\}^{128}$ Return T[x]Ax $y \stackrel{\$}{\leftarrow} \{0,1\}^{128}$

Then

$$\mathsf{Pr}\left[\mathrm{Rand}_{\mathsf{Range}(\mathit{F})}^{\mathcal{A}}{\Rightarrow}1\right] =$$

Let $F: \{0,1\}^k \times \{0,1\}^{128} \to \{0,1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A if $Fn(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Then

$$\mathsf{Pr}\left[\mathrm{Rand}_{\mathsf{Range}(F)}^{\mathcal{A}} \Rightarrow 1\right] = \mathsf{Pr}\left[\mathsf{Fn}(0^{128}) = 0^{128}\right] = 2^{-128}$$

because $\mathbf{Fn}(0^{128})$ is a random 128-bit string.

Let $F: \{0,1\}^k \times \{0,1\}^{128} \to \{0,1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A if $Fn(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Then

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(A) = \overbrace{\mathsf{Pr}\left[\mathrm{Real}_{F}^{A} \Rightarrow 1\right]}^{1} - \overbrace{\mathsf{Pr}\left[\mathrm{Rand}_{\mathsf{Range}(F)}^{A} \Rightarrow 1\right]}^{2^{-128}}$$
$$= 1 - 2^{-128}$$

Let $F : \text{Keys}(F) \times \text{Domain}(F) \rightarrow \text{Range}(F)$ be a family of functions and A a prf adversary. Then

is a number between -1 and 1.

- A "large" (close to 1) advantage means
 - A is doing well
 - F is not secure
- A "small" (close to 0 or \leq 0) advantage means
 - A is doing poorly
 - F resists the attack A is mounting

PRF security

Adversary advantage depends on its

- strategy
- resources: Running time t and number q of oracle queries

Security: *F* is a (secure) PRF if $Adv_F^{prf}(A)$ is "small" for ALL *A* that use "practical" amounts of resources.

Example: 80-bit security could mean that for all $n = 1, ..., 2^{80}$ we have

$$\mathsf{Adv}_{\mathcal{F}}^{\mathrm{prf}}(A) \leq 2^{-n}$$

for any A with time and number of oracle queries at most 2^{80-n} .

Insecurity: *F* is insecure (not a PRF) if there exists *A* using "few" resources that achieves "high" advantage.

Define $F : \{0,1\}^k \times \{0,1\}^{128} \to \{0,1\}^{128}$ by $F_K(x) = x$ for all k, x. Is F a secure PRF?

Can we design A so that

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(A) = \Pr\left[\mathrm{Real}_{F}^{A} \Rightarrow 1\right] - \Pr\left[\mathrm{Rand}_{\mathrm{Range}(F)}^{A} \Rightarrow 1\right]$$

is close to 1?

イロト イポト イヨト イヨト

25 / 65

Define $F : \{0,1\}^k \times \{0,1\}^{128} \to \{0,1\}^{128}$ by $F_K(x) = x$ for all k, x. Is F a secure PRF?

Can we design A so that

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(A) = \Pr\left[\mathrm{Real}_{F}^{A} \Rightarrow 1\right] - \Pr\left[\mathrm{Rand}_{\mathsf{Range}(F)}^{A} \Rightarrow 1\right]$$

is close to 1?

Exploitable weakness of F: $F_k(0^{128}) = 0^{128}$ for all k. We can determine which world we are in by testing whether $\mathbf{Fn}(0^{128}) = 0^{128}$.

・ロン ・四 と ・ ヨン ・ ヨン

26 / 65

Now F is defined by $F_{\mathcal{K}}(x) = x$.

adversary A if $Fn(0^{128}) = 0^{128}$ then return 1 else return 0

Example 1: Analysis

F is defined by $F_{\mathcal{K}}(x) = x$.

adversary A if $Fn(0^{128}) = 0^{128}$ then return 1 else return 0

We already analysed this and saw that

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] = 1 \qquad \Pr\left[\operatorname{Rand}_{\mathsf{Range}(F)}^{A} \Rightarrow 1\right] = 2^{-128}$$

27 / 65

Example 1: Conclusion

F is defined by
$$F_{\mathcal{K}}(x) = x$$
.

adversary A if $Fn(0^{128}) = 0^{128}$ then return 1 else return 0

Then

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(A) = \overbrace{\mathsf{Pr}\left[\mathrm{Real}_{F}^{A} \Rightarrow 1\right]}^{1} - \overbrace{\mathsf{Pr}\left[\mathrm{Rand}_{\mathsf{Range}(F)}^{A} \Rightarrow 1\right]}^{2^{-128}}$$
$$= 1 - 2^{-128}$$

and A is efficient.

Conclusion: F is not a secure PRF.

Example 2

Define $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ by $F_{\mathcal{K}}(x) = \mathcal{K} \oplus x$ for all \mathcal{K}, x . Is F a secure PRF?

Can we design A so that

$$\mathsf{Adv}_{\mathit{F}}^{\mathrm{prf}}(\mathit{A}) = \mathsf{Pr}\left[\mathrm{Real}_{\mathit{F}}^{\mathit{A}} {\Rightarrow} 1\right] - \mathsf{Pr}\left[\mathrm{Rand}_{\mathsf{Range}(\mathit{F})}^{\mathit{A}} {\Rightarrow} 1\right]$$

is close to 1?

Example 2

Define $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ by $F_{\mathcal{K}}(x) = \mathcal{K} \oplus x$ for all \mathcal{K}, x . Is F a secure PRF?

Can we design A so that

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(A) = \Pr\left[\mathrm{Real}_{F}^{A} \Rightarrow 1\right] - \Pr\left[\mathrm{Rand}_{\mathsf{Range}(F)}^{A} \Rightarrow 1\right]$$

is close to 1?

Exploitable weakness of F:

$$F_{\mathcal{K}}(0^{\ell})\oplus F_{\mathcal{K}}(1^{\ell})=(\mathcal{K}\oplus 0^{\ell})\oplus (\mathcal{K}\oplus 1^{\ell})=1^{\ell}$$

for all K. We can determine which world we are in by testing whether $\mathbf{Fn}(0^{\ell}) \oplus \mathbf{Fn}(1^{\ell}) = 1^{\ell} \oplus \mathbb{R}$ $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell} \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$ adversary \mathcal{A} if $\mathbf{Fn}(0^{\ell}) \oplus \mathbf{Fn}(1^{\ell}) = 1^{\ell}$ then return 1 else return 0

Example 2: Real world analysis

$$F: \ \{0,1\}^\ell \times \{0,1\}^\ell \to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$$

adversary A if $Fn(0^\ell)\oplus Fn(1^\ell)=1^\ell$ then return 1 else return 0

Example 2: Real world analysis

$$F: \ \{0,1\}^\ell \times \{0,1\}^\ell \to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$$

adversary A if $Fn(0^\ell)\oplus Fn(1^\ell)=1^\ell$ then return 1 else return 0

Then

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] =$$

Example 2: Real world analysis

$$F\colon \ \{0,1\}^\ell\times\{0,1\}^\ell\to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x)=\mathcal{K}\oplus x.$$

adversary A if $Fn(0^\ell)\oplus Fn(1^\ell)=1^\ell$ then return 1 else return 0

Then

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] = 1$$

because

$$\mathsf{Fn}(0^{\ell}) \oplus \mathsf{Fn}(1^{\ell}) = F_{\mathcal{K}}(0^{\ell}) \oplus F_{\mathcal{K}}(1^{\ell}) = (\mathcal{K} \oplus 0^{\ell}) \oplus (\mathcal{K} \oplus 1^{\ell}) = 1^{\ell}$$

31 / 65

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

$$F: \ \{0,1\}^\ell \times \{0,1\}^\ell \to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$$

adversary A if $Fn(0^{\ell}) \oplus Fn(1^{\ell}) = 1^{\ell}$ then return 1 else return 0

 $F: \ \{0,1\}^\ell \times \{0,1\}^\ell \to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$

adversary A if $Fn(0^{\ell}) \oplus Fn(1^{\ell}) = 1^{\ell}$ then return 1 else return 0

Then

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] =$$

 $F: \ \{0,1\}^\ell \times \{0,1\}^\ell \to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$

adversary A if $Fn(0^{\ell}) \oplus Fn(1^{\ell}) = 1^{\ell}$ then return 1 else return 0

Then

$$\mathsf{Pr}\left[\mathrm{Real}_{F}^{\mathcal{A}}{\Rightarrow}1
ight]=\mathsf{Pr}\left[\mathsf{Fn}(1^{\ell})\oplus\mathsf{Fn}(0^{\ell})=1^{\ell}
ight]=$$

・ロ ・ < 部 ・ < 画 ・ < 画 ・ < 画 ・ < 画 ・ 通 ・ 32 / 65
</p>

$$F: \ \{0,1\}^\ell \times \{0,1\}^\ell \to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$$

adversary A if $Fn(0^{\ell}) \oplus Fn(1^{\ell}) = 1^{\ell}$ then return 1 else return 0

Then

$$\mathsf{Pr}\left[\mathrm{Real}_{\textit{F}}^{\textit{A}} \Rightarrow 1\right] = \mathsf{Pr}\left[\textit{Fn}(1^{\ell}) \oplus \textit{Fn}(0^{\ell}) = 1^{\ell}\right] = 2^{-\ell}$$

because $\textbf{Fn}(0^\ell), \textbf{Fn}(1^\ell)$ are random $\ell\text{-bit strings}.$

 $F: \ \{0,1\}^\ell \times \{0,1\}^\ell \to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$

adversary A if $\mathsf{Fn}(0^\ell)\oplus\mathsf{Fn}(1^\ell)=1^\ell$ then return 1 else return 0

Then

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(A) = \overbrace{\mathsf{Pr}\left[\mathrm{Real}_{F}^{A} \Rightarrow 1\right]}^{1} - \overbrace{\mathsf{Pr}\left[\mathrm{Rand}_{\mathsf{Range}(F)}^{A} \Rightarrow 1\right]}^{2^{-\ell}}$$
$$= 1 - 2^{-\ell}$$

and A is efficient .

Conclusion: F is not a secure PRF.

Birthday Problem

q people $1, \ldots, q$ with birthdays

$$y_1,\ldots,y_q\in\{1\ldots,365\}$$

Assume each person's birthday is a random day of the year. Let

$$C(365, q) = \Pr[2 \text{ or more persons have same birthday}]$$

= $\Pr[y_1, \dots, y_q \text{ are not all different}]$

- What is the value of C(365, q)?
- How large does q have to be before C(365, q) is at least 1/2?

Birthday Problem

q people $1, \ldots, q$ with birthdays

$$y_1,\ldots,y_q\in\{1\ldots,365\}$$

Assume each person's birthday is a random day of the year. Let

 $C(365, q) = \Pr[2 \text{ or more persons have same birthday}]$ = $\Pr[y_1, \dots, y_q \text{ are not all different}]$

• What is the value of C(365, q)?

• How large does q have to be before C(365, q) is at least 1/2? Naive intuition:

- $C(365, q) \approx q/365$
- q has to be around 365

Birthday Problem

q people $1, \ldots, q$ with birthdays

$$y_1,\ldots,y_q\in\{1\ldots,365\}$$

Assume each person's birthday is a random day of the year. Let

 $C(365, q) = \Pr[2 \text{ or more persons have same birthday}]$ = $\Pr[y_1, \dots, y_q \text{ are not all different}]$

• What is the value of C(365, q)?

• How large does q have to be before C(365, q) is at least 1/2? Naive intuition:

- C(365, q) ≈ q/365
- q has to be around 365

The reality

- $C(365, q) \approx q^2/365$
- q has to be only around 23

Birthday collision bounds

C(365, q) is the probability that some two people have the same birthday in a room of q people with random birthdays

q	C(365, q)			
15	0.253			
18	0.347			
20	0.411			
21	0.444			
23	0.507			
25	0.569			
27	0.627			
30	0.706			
35	0.814			
40	0.891			
50	0.970			

Pick $y_1, \ldots, y_q \stackrel{\$}{\leftarrow} \{1, \ldots, N\}$ and let $C(N, q) = \Pr[y_1, \ldots, y_q \text{ not all distinct}]$ Birthday setting: N = 365 Pick $y_1, \ldots, y_q \stackrel{\$}{\leftarrow} \{1, \ldots, N\}$ and let $C(N, q) = \Pr[y_1, \ldots, y_q \text{ not all distinct}]$ Birthday setting: N = 365Fact: $C(N, q) \approx \frac{q^2}{2N}$

> <ロ > < 部 > < 言 > < 言 > こ > < の < で 36 / 65

Birthday collisions formula

Let
$$y_1, \dots, y_q \stackrel{\$}{\leftarrow} \{1, \dots, N\}$$
. Then
 $1 - C(N, q) = \Pr[y_1, \dots, y_q \text{ all distinct}]$
 $= 1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdot \dots \cdot \frac{N-(q-1)}{N}$
 $= \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$

SO

$$C(N,q) = 1 - \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 37 / 65

Let

Fact: Then

$$C(N,q) = \Pr[y_1,\ldots,y_q \text{ not all distinct}]$$

$$0.3 \cdot \frac{q(q-1)}{N} \leq C(N,q) \leq 0.5 \cdot \frac{q(q-1)}{N}$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

38 / 65

where the lower bound holds for $1 \le q \le \sqrt{2N}$.

$$\Pr[C_1 \lor C_2] = \Pr[C_1] + \Pr[C_2] - \Pr[C_1 \land C_2]$$

$$\leq \Pr[C_1] + \Pr[C_2]$$

More generally

 $\Pr[C_1 \lor C_2 \lor \cdots \lor C_q] \leq \Pr[C_1] + \Pr[C_2] + \cdots \Pr[C_q]$

$0+1+2+\cdots+(q-1) =$

$$0+1+2+\dots+(q-1)=rac{q(q-1)}{2}$$

<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 0 < 0 < 40 / 65

Birthday bounds

Let

$$C(N,q) = \Pr[y_1, \ldots, y_q \text{ not all distinct}]$$

Then

$$C(N,q) \leq 0.5 \cdot \frac{q(q-1)}{N}$$

Proof of this upper bound: Let C_i be the event that $y_i \in \{y_1, \ldots, y_{i-1}\}$. Then

$$C(N,q) = \Pr[C_1 \lor C_2, \dots, \lor C_q]$$

$$\leq \Pr[C_1] + \Pr[C_2] + \dots + \Pr[C_q]$$

$$\leq \frac{0}{N} + \frac{1}{N} + \dots + \frac{q-1}{N}$$

$$= \frac{q(q-1)}{2N}.$$

<ロト < 部 > < 言 > < 言 > 言 > の < で 41/65

Let
$$E: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$$
 be a block cipher.

$$A \xrightarrow{x} \xrightarrow{y} Fn \\ y \leftarrow E_K(x)$$

$$A \xrightarrow{x} \xrightarrow{y} Fn \\ y \xleftarrow{s} \{0,1\}^\ell$$

Can we design A so that

$$\mathsf{Adv}_{E}^{\mathrm{prf}}(A) = \Pr\left[\mathrm{Real}_{E}^{A} \Rightarrow 1\right] - \Pr\left[\mathrm{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]$$

is close to 1?

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ の へ ()
42 / 65

Defining property of a block cipher: E_K is a permutation for every K

So if x_1, \ldots, x_q are distinct then

- $\mathbf{Fn} = E_{\mathcal{K}} \Rightarrow \mathbf{Fn}(x_1), \dots, \mathbf{Fn}(x_q)$ distinct
- **Fn** random \Rightarrow **Fn**(x_1),..., **Fn**(x_q) not necessarily distinct

Let us turn this into an attack.

$$E: \ \{0,1\}^k imes \{0,1\}^\ell o \{0,1\}^\ell$$
 a block cipher

adversary A Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

Let $E: \{0,1\}^k \times \{0,1\}^\ell \rightarrow \{0,1\}^\ell$ be a block cipher

Game Real_Eadversary Aprocedure InitializeLet $x_1, \ldots, x_q \in \{0, 1\}^\ell$ be distinct $K \leftarrow {}^{s} \{0, 1\}^k$ If y_1, \ldots, y_q are all distinctprocedure Fn(x)then return 1 else return 0

・ロト ・四ト ・ヨト ・ヨト

45 / 65

Then

$$\Pr\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right] =$$

Let $E: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ be a block cipher

Game Real_Eadversary Aprocedure InitializeLet $x_1, \ldots, x_q \in \{0, 1\}^\ell$ be distinct $K \stackrel{s}{\leftarrow} \{0, 1\}^k$ for $i = 1, \ldots, q$ do $y_i \leftarrow \mathsf{Fn}(x_i)$ procedure $\mathsf{Fn}(x)$ if y_1, \ldots, y_q are all distinctReturn $E_K(x)$ then return 1 else return 0

Then

$$\Pr\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right] = 1$$

because y_1, \ldots, y_q will be distinct because E_K is a permutation.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 45 / 65

Ideal world analysis

Let $E: \{0,1\}^{K} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ be a block cipher

Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$ procedure $\operatorname{Fn}(x)$ $T[x] \stackrel{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}{\leftarrow} \{0,1\}^{\ell}$ Return T[x]

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

・ロン ・聞と ・ 思と ・ 思と

Then

$$\Pr\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{\mathcal{A}} \Rightarrow 1\right] = \Pr\left[y_1, \dots, y_q \text{ all distinct}\right]$$
$$= 1 - C(2^{\ell}, q)$$

because y_1, \ldots, y_q are randomly chosen from $\{0, 1\}^{\ell}$.

Birthday attack on a block cipher

$$E: \{0,1\}^k imes \{0,1\}^\ell
ightarrow \{0,1\}^\ell$$
 a block cipher

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

$$\mathbf{Adv}_{E}^{\mathrm{prf}}(A) = \overbrace{\mathsf{Pr}\left[\mathrm{Real}_{F}^{A} \Rightarrow 1\right]}^{1} - \overbrace{\mathsf{Pr}\left[\mathrm{Rand}_{\mathsf{Range}(F)}^{A} \Rightarrow 1\right]}^{1-C(2^{\ell},q)}$$
$$= C(2^{\ell},q)$$
$$\geq 0.3 \cdot \frac{q(q-1)}{2^{\ell}}$$

~	\sim
5	Ο
-	-

$$q \approx 2^{\ell/2} \Rightarrow \mathsf{Adv}_E^{\mathrm{prf}}(A) \approx 1$$
.

Conclusion: If $E : \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ is a block cipher, there is an attack on it as a PRF that succeeds in about $2^{\ell/2}$ queries.

Depends on block length, not key length!

	ℓ	$2^{\ell/2}$	Status
DES, 2DES, 3DES3	64	2 ³²	Insecure
AES	128	2 ⁶⁴	Secure

We have seen two possible metrics of security for a block cipher E

- KR-security: It should be hard to get K from input-output examples of E_K
- PRF-security: It should be hard to distinguish the input-output behavior of E_K from that of a random function.

Question: Is it possible for E to be

- PRF-secure, but
- NOT KR-secure?

Question: Is it possible for a block cipher E to be PRF-secure but not KR-secure?

Why do we care? Because we

- agreed that KR-security is necessary
- claim that PRF-security is sufficient

for secure use of E, so a YES answer would render our claim false.

Luckily the answer to the above question is NO.
Fact: PRF-security implies

- KR-security
- Many other security attributes

Why does PRF-security imply KR-security?

If you give me a method B to defeat KR-security I can design a method A to defeat PRF-security.

What A does:

- Use B to find key K'
- Test whether $\mathbf{Fn}(x) = F_{\mathcal{K}'}(x)$ for some new point x
- If this is true, decide it is in the Real world

Issues: To run *B*, adversary *A* must give it input-output examples under F_K .

We have A give B input-output examples under Fn. This is correct in the real world but not in the random world. Nonetheless we can show it works.

Key recovery security, formally

Let $F : Keys(F) \times Domain(F) \rightarrow Range(F)$ a family of functions Let B be an adversary

$Game\mathrm{KR}_{F}$	procedure Fn (x) return $F_{\mathcal{K}}(x)$
Focedure Initialize $\mathcal{K} \stackrel{s}{\leftarrow} \operatorname{Keys}(F)$	procedure Finalize(K') return ($K = K'$)

The kr-advantage of B is defined as

$$\operatorname{Adv}_{F}^{\operatorname{kr}}(B) = \operatorname{Pr}\left[\operatorname{KR}_{F}^{B} \Rightarrow \operatorname{true}\right]$$

The oracle allows a chosen message attack.

F is secure against key recovery if $\mathbf{Adv}_{F}^{\mathrm{kr}}(B)$ is "small" for all **B** of "practical" resources.

Let
$$k = L\ell$$
 and define $F = \{0, 1\}^k \times \{0, 1\}^\ell \to \{0, 1\}^L$ by

$$F_K(X) = \begin{bmatrix} K[1, 1] & K[1, 2] & \cdots & K[1, \ell] \\ K[2, 1] & K[2, 2] & \cdots & K[2, \ell] \\ \vdots & & \vdots \\ K[L, 1] & K[L, 2] & \cdots & K[L, \ell] \end{bmatrix} \cdot \begin{bmatrix} X[1] \\ X[2] \\ \vdots \\ X[\ell] \end{bmatrix} = \begin{bmatrix} Y[1] \\ Y[2] \\ \vdots \\ Y[L] \end{bmatrix}$$

Here the bits in the matrix are the bits in the key, and arithmetic is modulo two.

Question: Is F secure against key-recovery?

Let
$$k = L\ell$$
 and define $F = \{0, 1\}^k \times \{0, 1\}^\ell \to \{0, 1\}^L$ by

$$F_K(X) = \begin{bmatrix} K[1, 1] & K[1, 2] & \cdots & K[1, \ell] \\ K[2, 1] & K[2, 2] & \cdots & K[2, \ell] \\ \vdots & & \vdots \\ K[L, 1] & K[L, 2] & \cdots & K[L, \ell] \end{bmatrix} \cdot \begin{bmatrix} X[1] \\ X[2] \\ \vdots \\ X[\ell] \end{bmatrix} = \begin{bmatrix} Y[1] \\ Y[2] \\ \vdots \\ Y[L] \end{bmatrix}$$

Here the bits in the matrix are the bits in the key, and arithmetic is modulo two.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

55 / 65

Question: Is F secure against key-recovery?

Answer: NO

Example

For $1 \leq i \leq \ell$ let:

$$e_{j} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \quad j-1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

be the *j*-th unit vector.

$$F_{\mathcal{K}}(e_{j}) = \begin{bmatrix} \mathcal{K}[1,1] & \mathcal{K}[1,2] & \cdots & \mathcal{K}[1,\ell] \\ \mathcal{K}[2,1] & \mathcal{K}[2,2] & \cdots & \mathcal{K}[2,\ell] \\ \vdots & & \vdots \\ \mathcal{K}[L,1] & \mathcal{K}[L,2] & \cdots & \mathcal{K}[L,\ell] \end{bmatrix} \cdot \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} \mathcal{K}[1,j] \\ \mathcal{K}[2,j] \\ \vdots \\ \mathcal{K}[L,j] \end{bmatrix}$$

56 / 65

Adversary
$$B^{F_{K}}$$

 $K' \leftarrow \varepsilon \quad // \varepsilon$ is the empty string
for $j = 1, \dots, \ell$ do $y_{j} \leftarrow F_{K}(e_{j})$; $K' \leftarrow K' \parallel y_{j}$
return K'

Then

$$\operatorname{\mathsf{Adv}}_F^{\operatorname{kr}}(B) = 1$$
.

The time-complexity of B is $t = O(\ell^2 L)$ since it makes $q = \ell$ calls to its oracle and each computation of F_K takes $O(\ell L)$ time.

So F is insecure against key-recovery.

Our first example of a proof by reduction!

Given: $F : \{0,1\}^k \times \{0,1\}^\ell \rightarrow \{0,1\}^L$ Given: efficient KR-adversary *B* Construct: efficient PRF-adversary *A* such that:

$$\mathsf{Adv}_F^{\mathrm{kr}}(B) \leq \mathsf{Adv}_F^{\mathrm{prf}}(A) + \overline{\cdot}$$

How to infer that PRF-secure \Rightarrow KR-secure:

$$\begin{array}{ll} \mathsf{F} \text{ is PRF secure} & \Rightarrow \mathbf{Adv}_F^{\mathrm{prf}}(A) \text{ is small} \\ & \Rightarrow \mathbf{Adv}_F^{\mathrm{kr}}(B) \text{ is small} \\ & \Rightarrow F \text{ is KR-secure} \end{array}$$

 Our first example of a proof by reduction!

Given: $F : \{0,1\}^k \times \{0,1\}^\ell \rightarrow \{0,1\}^L$ Given: efficient KR-adversary *B* Construct: efficient PRF-adversary *A* such that:

$$\operatorname{\mathsf{Adv}}_F^{\operatorname{kr}}(B) \leq \operatorname{\mathsf{Adv}}_F^{\operatorname{prf}}(A) + \overline{\cdot}$$

イロト 不得下 イヨト イヨト 二日

59/65

Contrapositive:

 $\begin{array}{ll} \mathsf{F} \mbox{ not KR-secure } & \Rightarrow \mathbf{Adv}_{\mathcal{F}}^{\mathrm{kr}}(B) \mbox{ is big} \\ & \Rightarrow \mathbf{Adv}_{\mathcal{F}}^{\mathrm{prf}}(A) \mbox{ is big} \\ & \Rightarrow \mbox{ F is not PRF-secure } \end{array}$

A will run B as a subroutine

A itself answers B's oracle queries, giving B the impression that B is in its own correct world.

If F is a PRF then it is KR-secure

Given: $F : \{0,1\}^k \times \{0,1\}^\ell \rightarrow \{0,1\}^L$ Given: efficient KR-adversary *B* Construct: efficient PRF-adversary *A* such that:

$$\mathsf{Adv}_F^{\mathrm{kr}}(B) \leq \mathsf{Adv}_F^{\mathrm{prf}}(A) + \boxdot$$

Idea:

- A uses B to find key K'
- Tests whether K' is the right key

Issues:

- B needs an F_K oracle, which A only has in the real world
- How to test K'?

How they are addressed:

- A gives B its **Fn** oracle
- Test by seeing whether $F_{K'}$ agrees with **Fn** on a new point.

61/65

If F is a PRF then it is KR-secure

Given: $F : \{0,1\}^k \times \{0,1\}^\ell \rightarrow \{0,1\}^L$ Given: efficient KR-adversary *B* Construct: efficient PRF-adversary *A* such that:

$$\mathsf{Adv}_F^{\mathrm{kr}}(B) \leq \mathsf{Adv}_F^{\mathrm{prf}}(A) + \boxdot$$

adversary A $i \leftarrow 0$ $K' \leftarrow B^{\text{FnKRSim}}$ $x \stackrel{\$}{\leftarrow} \{0, 1\}^{\ell} - \{x_1, \dots, x_i\}$ if $F_{K'}(x) = \mathbf{Fn}(x)$ then return 1 else return 0 subroutine $\operatorname{FnKRSim}(x)$ $i \leftarrow i + 1$ $x_i \leftarrow x$ $y_i \leftarrow \operatorname{Fn}(x)$ return y_i

Analysis

adversary Asubr $i \leftarrow 0$ subr $K' \leftarrow B^{\operatorname{FnKRSim}}$ $i \leftarrow$ $x \stackrel{\$}{\leftarrow} \{0,1\}^{\ell} - \{x_1, \dots, x_i\}$ $x_i \leftarrow$ if $F_{K'}(x) = \operatorname{Fn}(x)$ then return 1 $y_i \leftarrow$ else return 0return 1

subroutine $\operatorname{FnKRSim}(x)$ $i \leftarrow i + 1$ $x_i \leftarrow x$ $y_i \leftarrow \operatorname{Fn}(x)$ return y_i

• If $\mathbf{Fn} = F_K$ then K' = K with probability the KR-advantage of B, so

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] \geq \operatorname{Adv}_{F}^{\operatorname{kr}}(B)$$

• If **Fn** is a random function, then due to the fact that $x \notin \{x_1, \ldots, x_i\},\$

$$\Pr\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{\mathcal{A}} \Rightarrow 1\right] = 2^{-L}$$

So $\operatorname{Adv}_F^{\operatorname{prf}}(A) \ge \operatorname{Adv}_F^{\operatorname{kr}}(B) - 2^{-L}$

Proposition: Let $F : \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^L$ be a family of functions, and B a kr-adversary making q oracle queries. Then there is a PRF adversary A making q + 1 oracle queries such that:

$$\operatorname{\mathsf{Adv}}_F^{\operatorname{kr}}(B) \leq \operatorname{\mathsf{Adv}}_F^{\operatorname{prf}}(A) + 2^{-L}$$

The running time of A is that of B plus $O(q(\ell + L))$ plus the time for one computation of F.

イロン イロン イヨン イヨン 三日

64/65

Implication:

F PRF-secure \Rightarrow *F* is KR-secure.

DES, AES are good block ciphers in the sense of being PRF-secure to the maximum extent possible.