PSEUDO-RANDOM FUNCTIONS

1/65

Recall

We studied security of a block cipher against key recovery.

But we saw that security against key recovery is not sufficient to ensure
that natural usages of a block cipher are secure.

We want to answer the question:
What is a good block cipher?

where “good” means that natural uses of the block cipher are secure.

We could try to define “good” by a list of necessary conditions:
o Key recovery is hard
e Recovery of M from C = Ex(M) is hard

o ...
But this is neither necessarily correct nor appealing.

2/65

Turing Intelligence Test

Q: What does it mean for a program to be “intelligent” in the sense of
a human?

3/65

Turing Intelligence Test

Q: What does it mean for a program to be “intelligent” in the sense of
a human?

Possible answers:

e It can be happy

It recognizes pictures

It can multiply

But only small numbers!

3/65

Turing Intelligence Test

Q: What does it mean for a program to be “intelligent” in the sense of
a human?

Possible answers:

e It can be happy

It recognizes pictures

It can multiply

But only small numbers!

Clearly, no such list is a satisfactory answer to the question.

3/65

Turing Intelligence Test

Q: What does it mean for a program to be “intelligent” in the sense of
a human?

Turing's answer: A program is intelligent if its input/output behavior is
indistinguishable from that of a human.

4/65

Turing Intelligence Test

Room 0 Room 1

x /E
Da R

Opaque wall Opaque wall
Keyfoafd Keyboard
Tester Tester

A A

Behind the wall:
e Room 1: The program P

e Room 0: A human

5/65

Turing Intelligence Test

Room 0 Room 1
x /M
Opaque wall Opaque wall
Keyboard Keyboard
Tester Tester

Game:
e Put tester in room 0 and let it interact with object behind wall
e Put tester in rooom 1 and let it interact with object behind wall

e Now ask tester: which room was which?

6/65

Turing Intelligence Test

Room 0 Room 1
x /M
Opaque wall Opaque wall
Keyboard Keyboard
Tester Tester

Game:
e Put tester in room 0 and let it interact with object behind wall
e Put tester in rooom 1 and let it interact with object behind wall
e Now ask tester: which room was which?

The measure of “intelligence” of P is the extent to which the tester fails.

6/65

Turing Intelligence Test

Room 0 Room 1
Opaque wall Opaque wall
Keyboard Keyboard
Tester Tester

Game:
e Put tester in room 0 and let it interact with object behind wall
e Put tester in rooom 1 and let it interact with object behind wall
e Now ask tester: which room was which?

Clarification: Room numbers are in our head, not written on door!

7/65

Real versus ldeal

Notion

H Real object ‘ Ideal object

Intelligence
PRF

Program
Block cipher

Human
?

8/65

Real versus ldeal

Notion H Real object ‘ Ideal object
Intelligence Program Human
PRF Block cipher | Random function

8/65

Random functions

A random function with L-bit outputs is implemented by the following
box Fn, where T is initially L everywhere:

Fn
x If T[x] :$ 1 therz
Caller T[X] T[X] — {07]_}
— Return T[x]

9/65

Random function

Game Randq 1)

procedure Fn(x)
if T[x] = L then T[x] < {0,1}*
return T|[x]

Adversary A
e Make queries to Fn

e Eventually halts with some output

We denote by
Pr |Randfy,y = d

the probability that A outputs d

10 /65

Random function

Game Rand
He{o1) adversary A

!Jrocedure Fn(x) . 5 | v = Fn(01)
if Tix] = L then T[x] < {0,1}° | Lot ym (y = 000)
return T|[x]

Pr [Rand’{“071}3 = true| =

11/65

Random function

Game Randg 133

procedure Fn(x)
if T[x] = L then T[x] < {0,1}3
return T|[x]

Pr [Rand’{“071}3

adversary A
y «— Fn(Ol)
return (y = 000)

= true| =273

11/65

Random function

Game Randg 133 adversary A
procedure Fn(x) y1 < Fn(00)
if T[x] = L then T[x] < {0,1}3 | y2 < Fn(11)
return T[x] return (y; = 010 A y», = 011)

Pr [Rand’{“071}3 = true| =

12/65

Random function

Game Randg 133 adversary A
procedure Fn(x) y1 < Fn(00)
if T[x] = L then T[x] < {0,1}3 | y2 < Fn(11)
return T[x] return (y; = 010 A y», = 011)

Pr [Rand’{qo 1)3 = true| =27

12/65

Random function

Game Randg 133 adversary A
procedure Fn(x) y1 < Fn(00)
if T[x] = L then T[x] < {0,1}3 | y2 < Fn(11)
return T[x] return (y; © y2 = 101)

Pr [Rand’{“071}3 = true| =

13 /65

Random function

Game Randg 133 adversary A
procedure Fn(x) y1 < Fn(00)
if T[x] = L then T[x] < {0,1}3 | y2 < Fn(11)
return T[x] return (y; © y2 = 101)

Pr [Rand’{qo 1)3 = true| =273

13 /65

Function families

A family of functions F : Keys(F) x Dom(F) — Range(F) is a
two-argument map. For K € Keys(F) we let Fx : Dom(F) — Range(F)
be defined by

Vx € Dom(F) : Fx(x) = F(K,x)
Examples:

e DES: Keys(F) = {0,1}5¢, Dom(F) = Range(F) = {0,1}%*

e Any block cipher: Dom(F) = Range(F) and each Fi is a
permutation

14 /65

Real versus ldeal

Notion H Real object

Ideal object

PRF Family of functions
(eg. a block cipher)

Random function

F is a PRF if the input-output behavior of Fi looks to a tester like the
input-output behavior of a random function.

Tester does not get the key K!

15 /65

PRF-adversaries

Let F: Keys(F) x Dom(F) — Range(F) be a family of functions.
A prf-adversary (our tester) has an oracle Fn for a function from
Dom(F) to Range(F). It can

e Make an oracle query x of its choice and get back Fn(x)

e Do this many times

e Eventually halt and output a bit d

Fn

16 /65

Repeat queries

We said earlier that a random function must be consistent, meaning
once it has returned y in response to x, it must return y again if queried

again with the same x. This is why we have the “if” in the following:
written as

Game procedure Fn(x)
Randgrange(F) if T[x] # L then T[x] & Range(F)
Return T[x]

Henceforth we make a rule:

e A prf-adversary is not allowed to repeat an oracle query.
Then our game is:

Game procedure Fn(x)
Randrange(F) T[x] & Range(F)
Return T[x]

17/65

PRF-adversaries

Let F: Keys(F) x Dom(F) — Range(F) be a family of functions.

Ideal (Random) world

A X Fn
A y<i Range(F)

Intended meaning:
| think | am in the

Real world

Real world
X Fn
Al |y e Rl
A's output d
1
0

Ideal (Random) world

The harder it is for A to guess world it is in, the “better” F is as a PRF.

18 /65

Let F: Keys(F) x Dom(F) — Range(F) be a family of functions.

Game Realfg Game Randrange(F)
procedure Initialize procedure Fn(x)
K < Keys(F) T[x] < Range(F)
procedure Fn(x) Return T[x]

Return Fi(x)

Associated to F, A are the probabilities
Pr [Realf—il] ‘ Pr [Randéange(,_-):l]
that A outputs 1 in each world. The advantage of A is

Adv}"(A) = Pr [Realf=1] — Pr |Randflpgur) 1]

19/65

Let F: {0,1}% x {0,1}'% — {0,1}'?® be defined by Fx(x) = x. Let
prf-adversary A be defined by

adversary A
if Fn(0'?8) = 0'?8 then Ret 1 else Ret 0

Game Realf

procedure Initialize Real world

K <& {0,1}¥ A x Fn
procedure Fn(x) Yy Fk(x)

Return Fk(x)

20/65

Let F: {0,1}% x {0,1}'% — {0,1}'?® be defined by Fx(x) = x. Let
prf-adversary A be defined by

adversary A
if Fn(0'?®) = 0'?8 then Ret 1 else Ret 0

Game Realfr

procedure Initialize Real world
K < {0,1} A X Fn
procedure Fn(x) Y|y Fe(x)

Return Fg(x)

Then
Pr [Realé:> 1] =

20/65

Let F: {0,1}% x {0,1}'% — {0,1}'?® be defined by Fx(x) = x. Let
prf-adversary A be defined by

adversary A
if Fn(0'?8) = 0'?8 then Ret 1 else Ret 0

Game Realf

procedure Initialize Real world

K & {0,1}k A x Fn
procedure Fn(x) Yy Fk(x)

Return Fk(x)

Then
Pr [Realf—:ﬂ] =1

because the value returned by Fn will be Fn(0128) = F(0'28) = 0'?8 5o

A will always return 1.
20/65

Let F: {0,1}% x {0,1}'? — {0,1}'?8 be defined by Fi(x) = x. Let
prf-adversary A be defined by

adversary A
if Fn(0'?8) = 0'?8 then Ret 1 else Ret 0

Game Randgange(F) Ideal (Random) world
procedure Fn(x) X Fn

Tx] < {0,1}* A y | ye{op®
Return T[x]

Then
Pr [Randéange(,_—) =1 =

21/65

Let F: {0,1}% x {0,1}'% — {0,1}'?® be defined by Fx(x) = x. Let
prf-adversary A be defined by

adversary A
if Fn(0'?®) = 0'?8 then Ret 1 else Ret 0

Game Randrange(F) Ideal (Random) world
procedure Fn(x) x Fn

T[x] < {0, 1}t A y y < {0,1}128
Return T[x]

Then

Pr [Randg, g.(ry=1] = Pr [Fn(0'2%) = 012¢] — 27128

because Fn(0'%8) is a random 128-bit string.

21/65

Example: Advantage computation.

Let F: {0,1}% x {0,1}'% — {0,1}'?® be defined by Fx(x) = x. Let
prf-adversary A be defined by

adversary A
if Fn(0'?8) = 0'?8 then Ret 1 else Ret 0

Then
1 27128
AdvPi(A) = Pr [Realé:>1] —Pr [Randéange(f:)él
= 1-271%8

22/65

The measure of success

Let F: Keys(F) x Domain(F) — Range(F) be a family of functions
and A a prf adversary. Then

AdvY"(A) = Pr [Realf=1] — Pr |Randflpgur) 1]

is a number between —1 and 1.

A “large” (close to 1) advantage means
e Ais doing well
e F is not secure
A “small” (close to 0 or < 0) advantage means
e A is doing poorly
e [resists the attack A is mounting

23/65

PRF security

Adversary advantage depends on its
e strategy

e resources: Running time t and number g of oracle queries

Security: F is a (secure) PRF if Adv2™(A) is “small” for ALL A that
use “practical” amounts of resources.

Example: 80-bit security could mean that for all n =1,...,28 we have
f _
Advi (A) <277
for any A with time and number of oracle queries at most 280"

Insecurity: F is insecure (not a PRF) if there exists A using “few”
resources that achieves “high” advantage.

24/ 65

Example 1

Define F : {0,1}% x {0,1}128 — {0,1}'?® by Fk(x) = x for all k, x.
Is F a secure PRF?

Real Rand
A X Fn A X Fn
Y|y Fr(x) Yy | y<{o1*®

Can we design A so that
Adv}"(A) = Pr [Realf=1] — Pr |Randflpgur) 1|

is close to 17

25 /65

Example 1

Define F : {0,1}% x {0,1}128 — {0,1}'?® by Fk(x) = x for all k, x.
Is F a secure PRF?

Real Rand
A X Fn A X Fn
Y|y Fr(x) Yy | y<{o1*®

Can we design A so that
Adv}"(A) = Pr [Realf=1] — Pr |Randflpgur) 1|
is close to 17
Exploitable weakness of F: F,(0'28) = 0128 for all k. We can determine

which world we are in by testing whether Fn(0128) = 0128,

25 /65

Example 1

Real Rand
A X Fn A X Fn
Y|y Fr(x) | y<{011

Now F is defined by Fk(x) = x.

adversary A
if Fn(0'?®) = 0!?8 then return 1 else return 0

26 / 65

Example 1: Analysis

F is defined by Fx(x) = x.

adversary A
if Fn(0'28) = 0'?8 then return 1 else return 0

Real Rand
X Fn X Fn
Al e R |||] |y {0

We already analysed this and saw that

PriRealf=1] =1 | Pr[Randf, g p=1] =272

27/65

Example 1. Conclusion

F is defined by Fx(x) = x.

adversary A
if Fn(0'?®) = 0'?8 then return 1 else return 0

Then
1 27128
AdvPi(A) = Pr [Realé:>1] —Pr [Randfz‘ange(F):> 1
= 1-271%8

and A is efficient.

Conclusion: F is not a secure PRF.

28 /65

Example 2

Define F: {0,1} x {0,1} — {0,1}* by Fx(x) = K @ x for all K, x.
Is F a secure PRF?

Real Rand
A X Fn A X Fn
Y|y Fr(x) Y ye{o,1}

Can we design A so that
Adv}"(A) = Pr [Realf=1] — Pr |Randflpgur) 1]

is close to 17

29 /65

Example 2

Define F: {0,1} x {0,1} — {0,1}* by Fx(x) = K @ x for all K, x.
Is F a secure PRF?

Real Rand
A X Fn A X Fn
Y|y Fr(x) Y ye{o,1}

Can we design A so that
Adv}"(A) = Pr [Realf=1] — Pr |Randflpgur) 1]
is close to 17
Exploitable weakness of F:
Fk(0) @ Fx(1) = (K@) @ (K 1Y) =1°
for all K. We can determine which world we are in by testing whether

Fn(0°) @ Fn(1%) = 1¢.

29/65

Example 2: The adversary

F: {0,1} x {0,1}* — {0,1}* is defined by Fx(x) = K @ x.

adversary A
if Fn(0%) @ Fn(1%) = 1¢ then return 1 else return 0

30/65

Example 2: Real world analysis

F: {0,1}¢ x {0,1}* — {0,1}¢ is defined by Fx(x) = K @ x.

adversary A
if Fn(0%) @ Fn(1%) = 1¢ then return 1 else return 0

Game Realf

procedure Initialize Real world

K <& {0,1}¥ A X Fn
procedure Fn(x) Yy Fk(x)

Return Fk(x)

31/65

Example 2: Real world analysis

F: {0,1}¢ x {0,1}* — {0,1}¢ is defined by Fx(x) = K @ x.

adversary A
if Fn(0%) @ Fn(1%) = 1¢ then return 1 else return 0

Game Realf

procedure Initialize Real world

K <& {0,1}¥ A X Fn
procedure Fn(x) Yy Fk(x)

Return Fk(x)

Then
Pr [Realé—zﬂ] =

31/65

Example 2: Real world analysis

F: {0,1}¢ x {0,1}* — {0,1}¢ is defined by Fx(x) = K @ x.

adversary A
if Fn(0%) @ Fn(1%) = 1¢ then return 1 else return 0

Game Realf

procedure Initialize Real world

K <& {0,1}¥ A X Fn
procedure Fn(x) Yy Fk(x)

Return Fk(x)

Then
Pr [Realé—zﬂ] =1

because

Fn(0Y) @ Fn(1°) = F(09) @ Fk(1Y) = (Ka0) e (Ka1Y) =1°

31/65

Example 2: Ideal world analysis

F: {0,1} x {0,1}* — {0,1}* is defined by Fx(x) = K @ x.

adversary A
if Fn(0%) @ Fn(1%) = 1° then return 1 else return 0

Ideal (random) world

Game Randgange(F)

procedure Fn(x) A X, Fn

T[x] < {0, 1}¢ return T[x] y y <{0,1}¢

32/65

Example 2: Ideal world analysis

F: {0,1} x {0,1}* — {0,1}* is defined by Fx(x) = K @ x.

adversary A
if Fn(0%) @ Fn(1%) = 1° then return 1 else return 0

Game RandRange(F) Ideal (random) world
procedure Fn(x) A X . Fn ,
Tlx] < {0,1}¢ return T[] y y < {0,1}

Then
Pr [Realéj 1] =

32/65

Example 2: Ideal world analysis

F: {0,1} x {0,1}* — {0,1}* is defined by Fx(x) = K @ x.

adversary A
if Fn(0%) @ Fn(1%) = 1° then return 1 else return 0

Game RandRange(F) Ideal (random) world
procedure Fn(x) A X . Fn ,
Tlx] < {0,1}¢ return T[] y y < {0,1}

Then
Pr [Real,{l;q] = Pr [Fn(lf) @ Fn(0Y) = 1¢] =

32/65

Example 2: Ideal world analysis

F: {0,1} x {0,1}* — {0,1}* is defined by Fx(x) = K @ x.

adversary A
if Fn(0%) @ Fn(1%) = 1° then return 1 else return 0

Game RandRange(F) Ideal (random) world

procedure Fn(x) A X . Fn

T[x] < {0,1}¢ return T[x] y y < {0,1}
Then

Pr [Reald=1| = Pr [Fn(1) & Fn(0") = 1| = 2~

because Fn(0°), Fn(1%) are random /-bit strings.

32/65

Example 2: Conclusion

F: {0,1} x {0,1}* — {0,1}* is defined by Fx(x) = K @ x.

adversary A
if Fn(0%) @ Fn(1%) = 1° then return 1 else return 0

Then
1 2!
AdvPi(A) = Pr [Realé:>1] —Pr [Randfz‘ange(F):> 1
= 12

and A is efficient .

Conclusion: F is not a secure PRF.

33/65

Birthday Problem

q people 1,..., g with birthdays
Yi,---,¥q €{1...,365}
Assume each person's birthday is a random day of the year. Let
C(365,q) = Pr[2 or more persons have same birthday]

= Prly1,...,yq are not all different]

e What is the value of C(365,q)?
e How large does g have to be before C(365, q) is at least 1/27

34 /65

Birthday Problem

q people 1,..., g with birthdays
Yi,---,¥q €{1...,365}
Assume each person's birthday is a random day of the year. Let
C(365,q) = Pr[2 or more persons have same birthday]
= Prly1,...,yq are not all different]

e What is the value of C(365,q)?
e How large does g have to be before C(365, q) is at least 1/27

Naive intuition:
e ((365,q) ~ q/365
e g has to be around 365

34 /65

Birthday Problem

q people 1,..., g with birthdays

Yi,---,¥q €{1...,365}
Assume each person's birthday is a random day of the year. Let
C(365,q) = Pr[2 or more persons have same birthday]
= Prly1,...,yq are not all different]

e What is the value of C(365,q)?
e How large does g have to be before C(365, q) is at least 1/27

Naive intuition:
e (C(365,q) ~ q/365
e g has to be around 365
The reality
e C(365,q) ~ g°/365
e g has to be only around 23
34/65

Birthday collision bounds

C(365, q) is the probability that some two people have the same
birthday in a room of g people with random birthdays

q | €(365,9)
15| 0.253
18| 0.347
20 | 0411
21| 0.444
23| 0507
25 | 0.569
27| 0.627
30| 0.706
35| 0814
40 [0.891
50 | 0.970

35/65

Birthday Problem

Pickyl,...,yqi{l,...,N} and let
C(N,q) =Prly1,...,yq not all distinct]

Birthday setting: N = 365

36 /65

Birthday Problem

Pickyl,...,yqi{l,...,N} and let
C(N,q) =Prly1,...,yq not all distinct]

Birthday setting: N = 365
Fact: C(N,q) ~ %

36 /65

Birthday collisions formula

Let y1,...,Yq < {1,...,N}. Then

1-C(N,q) = Prly,...,yq all distinct]
N—1 N—2 N—(qg—1)
N N N

- 102

= 1.

SO

37/65

Birthday bounds

Let
C(N,q) =Prly1,...,yq not all distinct]

Fact: Then

q(g—1) q(g—1)
03 S5 < C(N.q) <05 = —

where the lower bound holds for 1 < g < v2N.

38/65

G
G

PriGGvG] = Pr[G]+Pr[G]—Pr[G A G
Pr[Gi] + Pr[C]

N

More generally
Pr[Cl\/ GV Cq] < PF[C1]+PF[C2]+---PF[Cq]

39/65

Arithmetic sums

0+1+2+--+(g—1)=

40 /65

Arithmetic sums

—1
041424 +(q—1) =291

40 /65

Birthday bounds

Let

C(N,q) =Prly1,...,yq not all distinct]

Then

Proof of this upper bound:
yi € {y17 . 7y,'_l}. Then

C(N,q)

C(N,q) <0.5-

<

IN

q(g—1)
N
Let C; be the event that

Pr[Cl\/CQ,...,\/Cq]
Pr(G]+Pr[G]+ ...+ Pr[Cq]
0,1, g1
TR m

q(g —1)
2N

41/65

Block ciphers as PRFs

Let £: {0,1}* x {0,1}* — {0,1}¢ be a block cipher.

Real Rand
A X Fn A X Fn
Y|y Ek(x) Y ye{o1}

Can we design A so that
AdvP(A) = Pr [Realéil} —Pr [Rand?071}[:>1]

is close to 17

42 /65

Block ciphers as PRFs

Defining property of a block cipher: Ek is a permutation for every K

So if xq,...,xq are distinct then
e Fn=Ex = Fn(x1),...,Fn(xg) distinct
e Fn random = Fn(x1),...,Fn(xq) not necessarily distinct

Let us turn this into an attack.

43/65

Birthday attack on a block cipher

E: {0,1}% x {0,1}* — {0,1}* a block cipher

adversary A

Let xi,...,x € {0,1}* be distinct
fori=1,...,q do y; < Fn(x;)

if y1,...,yq are all distinct then return 1
else return 0

44/65

Real world analysis

Let £: {0,1}* x {0,1}¢ — {0,1}¢ be a block cipher

Game Realg
procedure Initialize
K <& {0,1}k
procedure Fn(x)
Return Ex(x)

adversary A

Let xi,...,x € {0,1}* be distinct
fori=1,...,q do y; < Fn(x;)

if y1,...,yq are all distinct

then return 1 else return 0

Then

Pr [Real’éil] =

45/65

Real world analysis

Let £: {0,1}* x {0,1}¢ — {0,1}¢ be a block cipher

Game Realg adversary A

procedure Initialize Let X5 Xq € {0,1}* be distinct
K < {0,1}k for i=1,...,q do y; — Fn(x;)

’ if y1,...,yq are all distinct

procedure Fn(x) then return 1 else return 0

Return Ex(x)

Then
Pr [Real’éil] =1

because yi,. .., yq will be distinct because Ex is a permutation.

45/65

Ideal world analysis

Let £: {0,1}X x {0,1}* — {0,1}* be a block cipher

adversary A
Game Randyq 1y Let x1,...,xq € {0,1} be distinct
procedure Fn(x) fori=1,...,9 do y; < Fn(x;)
T[x] < {0,1} if y1,...,yq are all distinct
Return T[x] then return 1 else return 0
Then
Pr Rand’{AO’l}[:H = Prly1,...,yq all distinct]
= 1- C(2€7 q)
because y1, ..., yq are randomly chosen from {0, 1}4

46 /65

Birthday attack on a block cipher

E:{0,1}* x {0,1}¢ — {0,1}* a block cipher

adversary A
Let xi,...,x € {0,1}* be distinct
fori=1,...,q do y; < Fn(x;)

if y1,...,yq are all distinct then return 1 else return 0
1 1_C(2lvq)

rf
AdvPi(A) = Pr [Realé:>1] —Pr [Randéange(f:)él

= C(2%q)

q(g—1)

SO
rf
g~ 2% = AdvT(A) =~ 1.

47 /65

Birthday attack on a block cipher

Conclusion: If E : {0,1}% x {0,1}¢ — {0,1}* is a block cipher, there is
an attack on it as a PRF that succeeds in about 2¢/2 queries.

Depends on block length, not key length!
H L ‘ 2t/2 ‘ Status

DES,2DES,3DES3 || 64 | 23 | Insecure
AES 128 | 2°% | Secure

48 /65

KR-security versus PRF-security

We have seen two possible metrics of security for a block cipher E

e KR-security: It should be hard to get K from input-output
examples of Ex

e PRF-security: It should be hard to distinguish the input-output
behavior of Ex from that of a random function.

Question: Is it possible for E to be
e PRF-secure, but
e NOT KR-secure?

49 /65

KR-security versus PRF-security

Question: lIs it possible for a block cipher E to be PRF-secure but not
KR-secure?

Why do we care? Because we
o agreed that KR-security is necessary
e claim that PRF-security is sufficient

for secure use of E, so a YES answer would render our claim false.

Luckily the answer to the above question is NO.

50 /65

KR-security versus PRF-security

Fact: PRF-security implies
e KR-security

e Many other security attributes

51/65

Why does PRF-security imply KR-security?

Claim: KR-insecurity = PRF-insecurity

Real world Ideal (Random) world
X, Fn X Fn
A A : $
|y F(x) Y y < Range(F)

If you give me a method B to defeat KR-security | can design a method
A to defeat PRF-security.

What A does:
e Use B to find key K’
o Test whether Fn(x) = Fy/(x) for some new point x

e [f this is true, decide it is in the Real world

52/65

Why does PRF-security imply KR-security?

Issues: To run B, adversary A must give it input-output examples under
Fk.

We have A give B input-output examples under Fn. This is correct in
the real world but not in the random world. Nonetheless we can show it

works.

53/65

Key recovery security, formally

Let F : Keys(F) x Domain(F) — Range(F) a family of functions

Let B be an adversary

procedure Fn(x)

Game KRp return Fy(x)

procedure Initialize

- - ,
K & Keys(F) procedure Finalize(K’)

return (K = K’)

The kr-advantage of B is defined as
Advi(B) = Pr [KREzHrue}

The oracle allows a chosen message attack.

F is secure against key recovery if Advi¥(B) is “small” for all B of
“practical” resources.

54 /65

Let k = L¢ and define F = {0,1}* x {0,1}* — {0,1}} by

K[1,1] KI[1,2] --- KJ1,4] X[1] Y[1]

K[2,1] K[2,2] --- KJ[2,¢] X[2] Y[2]
Fr(X) = : : ’ : - :

K[L,1] KI[L,2] --- KJL/] X[Y[L]
Here the bits in the matrix are the bits in the key, and arithmetic is
modulo two.

Question: Is F secure against key-recovery?

55 /65

Let k = L¢ and define F = {0,1}* x {0,1}* — {0,1}} by

K[1,1] KI[1,2] --- KJ1,4] X[1] Y[1]

K[2,1] K[2,2] --- KJ[2,¢] X[2] Y[2]
Fr(X) = : : ’ : - :

K[L,1] KI[L,2] --- KJL/] X[Y[L]
Here the bits in the matrix are the bits in the key, and arithmetic is
modulo two.

Question: Is F secure against key-recovery?

Answer: NO

55 /65

For1 <</ let:

€ = 1
0
L o |
be the j-th unit vector.
o
K[1,1] KI[1,2] --- KJ1,/] | f([17[]
KLy Kk o KL] | KILJ

56 /65

KR attack on example

Adversary Bk
K’ <& /| eis the empty string
for j=1,...,0 doy; — Fk(e); K — K' ||y
return K’

Then
AdviF(B) = 1.

The time-complexity of B is t = O(¢2L) since it makes g = £ calls to its
oracle and each computation of Fx takes O(/L) time.

So F is insecure against key-recovery.

57 /65

If F is a PRF then it is KR-secure

Our first example of a proof by reduction!

Given: F:{0,1}% x {0,1}* — {0,1}*
Given: efficient KR-adversary B
Construct: efficient PRF-adversary A such that:

Advi¥(B) < Adv(A) +[]

How to infer that PRF-secure = KR-secure:

F is PRF secure = AdvP'(A) is small
= AdvZ(B) is small
= F is KR-secure

58 /65

If F is a PRF then it is KR-secure

Our first example of a proof by reduction!

Given: F:{0,1}% x {0,1}* — {0,1}*
Given: efficient KR-adversary B
Construct: efficient PRF-adversary A such that:

Advi¢(B) < Adv2'(A) +[]

Contrapositive:

F not KR-secure = Advi(B) is big
= Adv?(A) is big
= F is not PRF-secure

59 /65

How reductions work

A will run B as a subroutine

B's world: How A runs B
A
S simulation
D code
<+— Fn

L«
B N > FK more code...
L K' L b

A itself answers B's oracle queries, giving B the impression that B is in
its own correct world.

60 /65

If F is a PRF then it is KR-secure

Given: F:{0,1}% x {0,1}* — {0,1}*
Given: efficient KR-adversary B
Construct: efficient PRF-adversary A such that:

AdviE(B) < Adv2'(A) + [

Idea:

e A uses B to find key K’
e Tests whether K’ is the right key

Issues:
e B needs an Fy oracle, which A only has in the real world
e How to test K'?

How they are addressed:
e A gives B its Fn oracle

e Test by seeing whether Fyg: agrees with Fn on a new point.
61/65

If F is a PRF then it is KR-secure

Given: F:{0,1}% x {0,1}* — {0,1}*
Given: efficient KR-adversary B
Construct: efficient PRF-adversary A such that:

AdvE(B) < Adv2'(A) + [

adversary A

i—0 subroutine FnKRSim(x)
K — BFnKRSim e i+1
Xi{O,l}Ef{xl,...,x,-} Xj +— X

if Fx/(x) = Fn(x) then return 1 yi < Fn(x)

else return 0 return y;

62 /65

adversary A

i—0 subroutine FnKRSim(x)
K — BFnKRSim fe— i1

x & {0,1} — {x1,...,x} Xj «— X

if Fx/(x) = Fn(x) then return 1 yi < Fn(x)

else return 0 return y;

e If Fn = Fx then K’ = K with probability the KR-advantage of B,

SO
Pr {Realéél} > AdviS(B)

e If Fn is a random function, then due to the fact that
X g_ﬁ {Xla"'7xi}y
Pr [Randd, go(ry=1| =27+

So AdvP(A) > AdviE(B) — 2L

63/65

If F is PRF-secure then it is KR-secure

Proposition: Let F : {0,1}% x {0,1}¢ — {0,1}! be a family of
functions, and B a kr-adversary making g oracle queries. Then there is
a PRF adversary A making g + 1 oracle queries such that:

Advig(B) < AdvE(A) +27¢

The running time of A is that of B plus O(q(¢ + L)) plus the time for
one computation of F.
Implication:

F PRF-secure = F is KR-secure.

64/65

Our Assumptions

DES, AES are good block ciphers in the sense of being PRF-secure to
the maximum extent possible.

65/65

