
MESSAGE AUTHENTICATION

1 / 103

Integrity and authenticity

The goal is to ensure that

• M really originates with Alice and not someone else

• M has not been modified in transit

2 / 103

Integrity and authenticity example

Alice
Bob
(Bank)

Alice

Pay $100 to Charlie

-

Adversary Eve might

• Modify “Charlie” to “Eve”

• Modify “$100” to “$1000”

Integrity prevents such attacks.

3 / 103

Medical databases

Doctor

Reads FA

Modifies FA to F ′
A

Get Alice
-

FA�

Put: Alice, F ′
A-

Database

Alice FA

Bob FB

Alice F ′
A

Bob FB

4 / 103

Medical databases

Doctor

Reads FA

Modifies FA to F ′
A

Get Alice
-

FA�

Put: Alice, F ′
A-

Database

Alice FA

Bob FB

Alice F ′
A

Bob FB

Need to ensure

• doctor is authorized to get Alice’s file

• FA,F ′
A are not modified in transit

• FA is really sent by database

• F ′
A is really sent by (authorized) doctor

4 / 103

Symmetric Setting

We will study how to authenticate messages in the symmetric setting
where Sender and Receiver share a random key K not given to the
adversary.

5 / 103

Does privacy provide authenticity?

Let SE = (K, E ,D) be a (IND-CPA secure) symmetric encryption
scheme.

Say

M=“Pay $100 to Bob”

Adversary wants Receiver to get

M ′ =“Pay $1,000 to Bob”

Adversary needs to modify C to C ′ such that DK (C ′) = M ′.

Intuition: It is hard to modify C to ensure above, since modifying C

will result in DK (C) being garbled/random and Receiver will reject.
6 / 103

Counterexample: OTP

Say EK (M) = K ⊕M and DK (C) = K ⊕ C . Should assume adversary
knows M. Then it can let ∆ = M ⊕M ′ and

C ′ ← C ⊕∆

A

K

EM C C ′
D

K

M ⊕∆ = M ′

because
DK (C ⊕∆) = K ⊕ C ⊕∆ = M ⊕∆

7 / 103

Adding redundacy

Let SE = (K, E ,D) be a (IND-CPA secure) symmetric encryption

scheme. To send M, sender computes C
$←EK (0128||M) and sends C to

receiver.

Receiver gets C ′ and lets R ||M ← DK (C ′). If R = 0128 it outputs M

else ⊥.

Intuition: If C is modified to C ′ then most probably the first 128 bits
of DK (C ′) will not all be 0 and Receiver will reject.

However, OTP again provides a counterexample to show that this does
not provide integrity.

8 / 103

What went wrong?

Possible reaction: OTP is bad! Use CBC instead.

But CBC has similar problems.

9 / 103

What went wrong?

Possible reaction: OTP is bad! Use CBC instead.

But CBC has similar problems.

The real problem: There is no good reason to think that privacy
provides authenticity. Encryption is the wrong tool here.

To call an encryption scheme bad because it does not provide
authenticity is like calling a car bad because it does not fly. To fly you
need an airplane.

9 / 103

Message authentication schemes

A message authentication (MA) scheme MA = (K,T ,V) consists of
three algorithms:

We refer to T as the MAC or tag.

We let

• TK (·) = T (K , ·)

• VK (·) = V(K , ·, ·)

10 / 103

Consistency

Let MA = (K,T ,V) be any MA scheme. We require that for all
messages M,

VK (M,TK (M)) = 1

with probability one, where the probability is over the choice of K and
the coins of T .

That is, unaltered tags are accepted.

11 / 103

Example

Let E : {0, 1}k × B → B be a block cipher, where B = {0, 1}n. View a
message M ∈ B∗ as a sequence of n-bit blocks,

M = M[1] · · ·M[m]

Alg K
K

$←{0, 1}k

return K

Alg TK (M)
T ← 0n

for i = 1, . . . ,m do

T ← T ⊕ EK (M[i])
return T

Alg VK (M,T)
if T = TK (M) then

return 1
else return 0

+

M[1] M[2] M[m]

EK EK EK

TK (M)

12 / 103

Security: What the adversary gets

Certainly it knows the scheme MA = (K,T ,V)

We should also assume it can see a sequence (M1,T1), . . . , (Mq,Tq) of

correctly tagged messages sent by the sender, meaning Ti
$← TK (Mi) for

i = 1, . . . , q.

Some choices here

• Known message attack: Adversary does not influence choice of
M1, . . . ,Mq

• Chosen-message attack: Adversary chooses M1, . . . ,Mq

13 / 103

Security: Key-recovery

We certainly want to ensure that an adversary cannot recover the key.

But this condition, while necessary for security, is not sufficient.

14 / 103

Security: Forgery

We say that an adversary succeeds in forgery if it produces M ′,T ′ such
that

• Verifier accepts

V

K

1
M ′

T ′

• But sender never sent (tagged) M ′

We want to prevent forgery.

15 / 103

uf-cma adversaries

Let MA = (K,T ,V) be a MA scheme. A uf-cma adversary has oracles
Tag(·) = TK (·) and Verify(·, ·) = VK (·, ·).

A

M1

T1

Verify

d1

Tqs

Mqs

d1

M ′
qv

,T ′
qv

M ′
1,T

′
1

Tag

Tag represents the sender and Verify represents the receiver.

16 / 103

uf-cma adversaries

Let MA = (K,T ,V) be a MA scheme. A uf-cma adversary has oracles
Tag(·) = TK (·) and Verify(·, ·) = VK (·, ·).

A

M1

T1

Verify

d1

Tqs

Mqs

d1

M ′
qv

,T ′
qv

M ′
1,T

′
1

Tag

We want to say that A wins if it ever gets Verify to accept. But it can
do this trivially by sending, say, (M1,T1) to Verify. This however isn’t
really a forgery because M1 is authentic, meaning tagged by the sender.

17 / 103

UF-CMA

Let MA = (K,T ,V) be a MA scheme. A uf-cma adversary has oracles
Tag(·) = TK (·) and Verify(·, ·) = VK (·, ·).

A

M1

T1

Verify

d1

Tqs

Mqs

d1

M ′
qv

,T ′
qv

M ′
1,T

′
1

Tag

We say A wins if ∃i such that

• Verify(M ′
i ,T

′
i) returned 1, but

• A did not query M ′
i to Tag prior to querying M ′

i ,T
′
i to Verify

Security means that the adversary can’t get the receiver to accept a
message that was not already transmitted by the sender.

18 / 103

Definition: UF-CMA

Let MA = (K,T ,V) be a message authentication scheme and A a
uf-cma adversary.

Game UFCMAMA

procedure Initialize

K
$←K;S ← ∅

procedure Verify(M,T)
d ← VK (M,T)
If (d = 1 ∧M /∈ S) then win← true
return d

procedure Tag(M)

T
$←TK (M)

S ← S ∪ {M}
return T

procedure Finalize
return win

The uf-cma advantage of adversary A is

Advuf-cma
MA (A) = Pr

[

UFCMAA
MA ⇒ true

]

19 / 103

The measure of success

Let MA = (K,T ,V) be a message authentication scheme and A a
uf-cma adversary. Then

Advuf-cma
MA (A) = Pr

[

UFCMAA
MA⇒true

]

is a number between 0 and 1.

A “large” (close to 1) advantage means

• A is doing well

• MA is not secure

A “small” (close to 0) advantage means

• A is doing poorly

• MA resists the attack A is mounting

20 / 103

MAC security

Adversary advantage depends on its

• Strategy

• Resources: Running time t and numbers qs , qv of queries to the
Tag and Verify oracles, respectively.

Security: MA is a secure MA scheme (UF-CMA) if Advuf-cma
F (A) is

“small” for ALL A that use “practical” amounts of resources.

Insecurity: MA is insecure (not UF-CMA) if there exists A using
“few” resources that achieves “high” advantage.

21 / 103

Tag lengths

Suppose MA scheme MA has tags of length ℓ. Then one can forge
with probability q/2ℓ in q verification attempts:

adversary A

Let M be any message
For i = 1, . . . , q do d ← Verify(M, 〈i〉)

Here 〈i〉 is the ℓ-bit binary representation of i . The advantage of A is

Advuf-cma
MA (A) =

q

2ℓ
.

Conclusion: Tags have to be long enough.

For 80 bit security, tags have to be at least 80 bits.

22 / 103

MACs

Associate to a family of functions F : {0, 1}k × D → {0, 1}n the MA
scheme MA[F] = (K,T ,V) with

Alg K
K

$←{0, 1}k

return K

Alg T (K ,M)
T ← FK (M)
return T

Alg V(K ,M,T)
if T = FK (M) then return 1
else return 0

We refer to such a MA scheme as a MAC (message authentication
code). Its features are:

• Tag computation is deterministic and stateless.

• Verification is by tag re-computation.

Most MA scheme we will see will be MACs.

23 / 103

Example 1

Let E : {0, 1}k × B → B be a block cipher, where B = {0, 1}n. View a
message M ∈ B∗ as a sequence of n-bit blocks,

M = M[1] . . . M[m]

Consider the family of functions T : {0, 1}k × B∗ → B defined by

TK (M[1] . . . M[m]) = EK (M[1]) ⊕ · · · ⊕ EK (M[m]).

+

M[1] M[2] M[m]

EK EK EK

TK (M)

Is the MACMA[T] secure?
24 / 103

Example 1

+

M[1] M[2] M[m]

EK EK EK

TK (M)

Is there a way to produce a message M ′ and its correct tag T ′

• without knowing K

• possibly knowing a few input-output examples of TK?

25 / 103

Example 1

+

M[1] M[2] M[m]

EK EK EK

TK (M)

Weakness:
TK (XX) = EK (X)⊕ EK (X) = 0n

+

EK

XX

0n

EK

26 / 103

Example 1

Let T : {0, 1}k × B∗ → B be defined by

TK (M[1] . . . M[m]) = EK (M[1]) ⊕ · · · ⊕ EK (M[m])

and letMA[T] = (K,T ,V).

adversary A

M ← 0n||0n ; T ← 0n ; d ← Verify(M,T)

Then
TK (M) = EK (0n) ⊕ EK (0n) = 0n = T

so
Advuf-cma

MA[T](A) = 1

SoMA[T] is not UF-CMA secure.

27 / 103

Example 1

+

M[1] M[2] M[m]

EK EK EK

TK (M)

Another weakness:

TK (XY) = EK (X)⊕ EK (Y) = EK (Y)⊕ EK (X) = TK (YX)

+

EK

X Y

T

EK

+

EK

Y

T

X

EK

28 / 103

Example 1

Let T : {0, 1}k × B∗ → B be defined by

TK (M[1] . . . M[m]) = EK (M[1]) ⊕ · · · ⊕ EK (M[m])

and letMA[T] = (K,T ,V).

adversary A

T ← Tag(1n0n) ; d ← Verify(0n1n,T)

Then

TK (1n0n) = EK (1n) ⊕ EK (0n)

= EK (0n) ⊕ EK (1n)

= TK (0n1n)

so
Advuf-cma

MA[T](A) = 1

29 / 103

Example 2

Let E : {0, 1}k × Bn → Bn be a block cipher, where B = {0, 1}n. View
a message M ∈ B∗ as a sequence of ℓ-bit blocks,

M = M[1] . . . M[m]

where ℓ = n − 32. Let T : {0, 1}k × B∗ → B be defined by

TK (M[1] . . . M[m]) = EK (〈1〉||M[1]) ⊕ · · · ⊕ EK (〈m〉||M[m])

+

Ek Ek Ek

TK (M)

〈2〉 ‖M[2] 〈m〉 ‖M[m]〈1〉 ‖M[1]

Notation:
〈i〉 is the 32-bit binary
representation of the
block index i

30 / 103

Example 2

+

Ek Ek Ek

TK (M)

〈2〉 ‖M[2] 〈m〉 ‖M[m]〈1〉 ‖M[1]

TK (0ℓ||0ℓ) = EK (〈1〉||0ℓ) ⊕ EK (〈2〉||0ℓ)

6= 0n

TK (1ℓ||0ℓ) = EK (〈1〉||1ℓ) ⊕ EK (〈2〉||0ℓ)

6= EK (〈1〉||0ℓ) ⊕ EK (〈2〉||1ℓ)

= TK (0ℓ||1ℓ)

So previous attacks fail.
31 / 103

Example 2

+

EK

T

〈1〉 ‖ X 〈2〉 ‖ Y

EK

32 / 103

Example 2

+

EK

T

〈1〉 ‖ X 〈2〉 ‖ Y

EK

Weakness: suppose we have

T1 = TK (X1Y1) = EK (〈1〉 ‖ X1)⊕ EK (〈2〉 ‖ Y1)

T2 = TK (X1Y2) = EK (〈1〉 ‖ X1)⊕ EK (〈2〉 ‖ Y2)

T3 = TK (X2Y1) = EK (〈1〉 ‖ X2)⊕ EK (〈2〉 ‖ Y1)

Add these and we get

T1 ⊕ T2 ⊕ T3 = EK (〈1〉 ‖ X2)⊕ EK (〈2〉 ‖ Y2) = TK (X2Y2)

so we computed the tag of X2 ‖ Y2.
32 / 103

Attack on Example 2

Let T : {0, 1}k × B∗ → B be defined by

TK (M[1] . . . M[m]) = EK (〈1〉||M[1]) ⊕ · · · ⊕ EK (〈m〉||M[m])

and letMA[T] = (K,T ,V).

adversary A

Let x1, x2, y1, y2 be distinct ℓ-bit strings
T1 ← Tag(x1 ‖ y1) // T1 = EK (〈1〉 ‖ x1) ⊕ EK (〈2〉 ‖ y1)

T2 ← Tag(x1 ‖ y2) // T2 = EK (〈1〉 ‖ x1) ⊕ EK (〈2〉 ‖ y2)

T3 ← Tag(x2 ‖ y1) // T3 = EK (〈1〉 ‖ x2) ⊕ EK (〈2〉 ‖ y1)

T4 ← T1 ⊕ T2 ⊕ T3

d ← Verify(x2 ‖ y2,T4)

So
T4 = EK (〈1〉||x2) ⊕ EK (〈2〉||y2)

and
Advuf-cma

MA[T](A) = 1

33 / 103

UF-CMA

Adversary

• Is allowed a chosen-message attack (CMA)

• Yet should not succeed in existential forgery (UF)

A

M1

T1

Verify

d1

Tqs

Mqs

d1

M ′
qv

,T ′
qv

M ′
1,T

′
1

Tag

We say A wins if ∃i such that

• Verify(M ′
i ,T

′
i) returned 1, but

• A did not query M ′
i to Tag prior to querying M ′

i ,T
′
i to Verify.

34 / 103

Plan

• Replay

• Justifying UF

• Justifying CMA

35 / 103

Replay

Suppose Alice transmits (M1,T1) to Bank where M1 =“Pay $100 to
Bob”. Adversary

• Captures (M1,T1)

• Keeps re-transmitting it to bank

Result: Bob gets $100, $200, $300,...

Our notion of security does not ask for protection against replay.

Question: Why not?

Answer: Replay is best addressed as an add-on to standard message
authentication.

36 / 103

Preventing Replay Using Timestamps

Let TA be the time as per Alice’s local clock and TB the time as per
Bob’s local clock.

• Alice sends (M,TK (M),TA)

• Bob receives (M, tag ,T) and accepts iff VK (M, tag) = 1 and
|TB − T | ≤ ∆ where ∆ is a small threshold.

Does this work?

37 / 103

Preventing Replay Using Timestamps

Let TA be the time as per Alice’s local clock and TB the time as per
Bob’s local clock.

• Alice sends (M,TK (M),TA)

• Bob receives (M, tag ,T) and accepts iff VK (M, tag) = 1 and
|TB − T | ≤ ∆ where ∆ is a small threshold.

Does this work?

Obviously forgery is possible within a ∆ interval. But the main problem
is that TA is not authenticated, so adversary can transmit

(M,TK (M),T1), (M,TK (M),T2), . . .

for any times T1,T2, . . . of its choice, and Bob will accept.

37 / 103

Preventing Replay Using Timestamps

Let TA be the time as per Alice’s local clock and TB the time as per
Bob’s local clock.

• Alice sends (M,TK (M‖TA),TA)

• Bob receives (M, tag ,T) and accepts iff VK (M‖T , tag) = 1 and
|TB − T | ≤ ∆ where ∆ is a small threshold.

38 / 103

Preventing Replay Using Counters

Alice maintains a counter ctrA and Bob maintains a counter ctrB .
Initially both are zero.

• Alice sends (M,TK (M‖ctrA)) and then increments ctrA

• Bob receives (M, tag). If VK (M‖ctrB , tag) = 1 then Bob accepts
and increments ctrB .

Counters need to stay synchronized.

39 / 103

Types of message authentication schemes

Special purpose: Used in a specific setting, to authenticate data of some
known format or distribution. Comes with a

WARNING! only use under conditions X.

General purpose: Used to authenticate in many different settings, where
the data format and distribution are not known in advance.

We want general purpose schemes because

• They can be standardized and broadly used.

• Once a scheme is out there, it gets used for everything anyway.

• General purpose schemes are easier to use and less subject to
mis-use: it is hard for application designers to know whether
condition X is met.

40 / 103

Why UF-CMA?

A possible critique of existential forgery:

• In practice we usually care only that A cannot forge tags for
“important” or“meaningful” messages.

• Yet the UF-CMA definition declare A successful even if it forges the
tag of a “garbage” message

41 / 103

Why UF-CMA?

A possible critique of existential forgery:

• In practice we usually care only that A cannot forge tags for
“important” or“meaningful” messages.

• Yet the UF-CMA definition declare A successful even if it forges the
tag of a “garbage” message

Response: We want general purpose schemes!

• We cannot anticipate application contexts and it is dangerous to let
security depend on assumptions about message semantics.

• In fact, “random” messages are possible, for example
• Keys
• Executable files
• Scientific data being read by sensors

41 / 103

Why UF-CMA?

Possible critique of CMAs: They cannot be mounted in practice.

42 / 103

Why UF-CMA?

Possible critique of CMAs: They cannot be mounted in practice.

Response:

• Actually, they sometime can

• Security against CMA is important for security of some protocols
using MA

• Better safe than sorry

42 / 103

CMAs in “real life”

• Message forwarding: Charlie sends M to Alice who authenticates it
under a key K she shares with Bob, sending (M, τ) to the latter

• Notary public: Will authenticate any given data

43 / 103

CMAs in Protocols: Example

Alice’s smartcard contains a key K also held by Bank.

C
C

$←{0, 1}n

If VK (C ,T) = 1 allow
transaction

T

C

Alice Alice

T

Bank

K

Client Alice

T ← TK (C)

44 / 103

CMAs in Protocols: Example

Adversary card attemps to get Bank to accept under Alice’s name.

C
C

$
←{0, 1}n

If VK (C ,T) = 1 allow
transaction

T

C

Alice Alice

T

Bank

?

Adversary

45 / 103

CMAs in Protocols: Example

Trojan horse ATM can mount a CMA to try to find key K .

T

C

Alice
K

Client Alice

T ← TK (C)

Trojan horse ATM

46 / 103

Strong unforgeability

UF-CMA asks that adversary be unable to forge a tag for a “new”
message. SUF-CMA asks that adversary be unable to

• forge a tag for a “new”message

• forge a new tag even for an “old” message

“New message”: A message not authenticated by sender

“Old message”: A message authenticated by sender

“New tag”: Not a tag computed/sent by sender for this message

47 / 103

Definition: SUF-CMA

Let MA = (K,T ,V) be a message authentication scheme and A an
adversary,

Game SUFCMAMA

procedure Initialize

K
$←K;S ← ∅

procedure Verify(M,T)
d ← VK (M,T)
If (d = 1 ∧ (M,T) /∈ S) then win← true
return d

procedure Tag(M)

T
$←TK (M)

S ← S ∪ {(M,T)}
return T

procedure Finalize
return win

The suf-cma advantage of adversary A is

Advsuf-cma
MA (A) = Pr

[

SUFCMAA
MA ⇒ true

]

48 / 103

SUF-CMA⇒ UF-CMA

Any MA scheme MA = (K,T ,V) that is SUF-CMA scheme is also
UF-CMA scheme.

Why? Suppose A’s Tag queries are M1, . . . ,Mq, resulting in tags

T1
$
←TK (M1), . . . ,Tq

$
←TK (Mq)

Now suppose A queries Verify(M,T). Then

M /∈ {M1, . . . ,Mq} ⇒ (M,T) /∈ {(M1,T1), . . . , (Mq,Tq)}

So if A wins in game UFCMAMA it also wins in game SUFCMAMA.

Theorem: For any A,

Advuf-cma
MA (A) ≤ Advsuf-cma

MA (A)

49 / 103

Any PRF is a MAC

Let F : {0, 1}k × D → {0, 1}n be a family of functions.

Proposition: If F is a secure PRF then MA[F] is a secure (UF-CMA
and SUF-CMA) MAC.

50 / 103

Intuition for why PRFs are good MACs

• Random functions make good MACs

• PRFs are pretty much as good as random functions

51 / 103

Random functions are good MACs

Suppose Fn : D → {0, 1}n is random and consider A who

• Can query Fn at any points x1, . . . , xq ∈ D it likes

• To win, must output x ,T such that x /∈ {x1, . . . , xq} but
T = Fn(x)

Then,

Pr[A wins] =

52 / 103

Random functions are good MACs

Suppose Fn : D → {0, 1}n is random and consider A who

• Can query Fn at any points x1, . . . , xq ∈ D it likes

• To win, must output x ,T such that x /∈ {x1, . . . , xq} but
T = Fn(x)

Then,

Pr[A wins] =
1

2n

because A did not query Fn(x).

52 / 103

PRFs are nearly as good MACs as random functions

Suppose F : {0, 1}k × D → {0, 1}n and let K
$← {0, 1}k . Consider A

who

• Can query FK at any points x1, . . . , xq ∈ D it likes

• To win, must output x ,T such that x /∈ {x1, . . . , xq} but
T = FK (x)

If Pr[A wins] is significantly more then 2−n then we are detecting a
difference between FK and a random function.

53 / 103

PRFs are good MACs

Theorem [GGM86,BKR96]: Let F : {0, 1}k × D → {0, 1}n be a family
of functions and letMA[F] = (K,T ,V) be the associated MAC. Let A

be a uf-cma adversary making qs Tag queries and qv ≤ 2n/2 Verify
queries, and having running time t. Then there is a prf-adversary B

such that

Advsuf-cma
MA[F] (A) ≤ Advprf

F (B) +
2qv

2n
,

and B makes qs + qv Fn queries and has running time t plus some
overhead.

54 / 103

Games for proof

Game G0

procedure Initialize

K
$←{0, 1}k; S ← ∅

procedure Tag(M)
if T [M] = ⊥ then T [M]← FK (M)
S ← S ∪ {M}; return T [M]

procedure Verify(M , T ′)
if T [M] = ⊥ then T [M]← FK (M)
if T ′ = T [M] then d ← 1 else d ← 0
if (d = 1 ∧M /∈ S) then win ← true
return d

procedure Finalize
return win

Game G1

procedure Initialize
S ← ∅

procedure Tag(M)

if T [M] = ⊥ then T [M]
$←{0, 1}n

S ← S ∪ {M}; return T [M]

procedure Verify(M , T ′)

if T [M] = ⊥ then T [M]
$←{0, 1}n

if T ′ = T [M] then d ← 1 else d ← 0
if (d = 1 ∧M /∈ S) then win ← true
return d

procedure Finalize
return win

55 / 103

Adversary B

adversary B

S ← ∅
Run ATagSim(·),VerifySim(·,·)

if win then return 1
else return 0

subroutine TagSim(M)
if T [M] = ⊥ then T [M]← Fn(M)
S ← S ∪ {M}; return T [M]

subroutine VerifySim(M,T ′)
if T [M] = ⊥ then T [M]← Fn(M)
if T ′ = T [M] then d ← 1 else d ← 0
if (d = 1 ∧M /∈ S) then win ← true
return d

If Fn = FK then B is providing A the environment of game G0 so

Pr[RealBF⇒1] = Pr[GA
0 ⇒ true]

If Fn is random then B is providing A the environment of game G1 so

Pr[RandB
F⇒1] = Pr[GA

1 ⇒ true]

56 / 103

Analysis

Advprf
F

(B) = Pr
[

RealBF⇒1
]

− Pr
[

RandB
F⇒1

]

= Pr[GA
0 ⇒ true]− Pr[GA

1 ⇒ true]

Claim 1:
Pr[GA

0 ⇒ true] = Advsuf-cma
MA[F] (A)

Claim 2:

Pr[GA
1 ⇒ true] ≤

2qv

2n

57 / 103

Proof of Claim 1

Game G0

procedure Initialize

K
$←{0, 1}k; S ← ∅

procedure Tag(M)
if T [M] = ⊥ then T [M]← FK (M)
S ← S ∪ {M}; return T [M]

procedure Verify(M , T ′)
if T [M] = ⊥ then T [M]← FK (M)
if T ′ = T [M] then d ← 1 else d ← 0
if (d = 1 ∧M /∈ S) then win ← true
return d

procedure Finalize
return win

Game SUFCMAMA[F]

procedure Initialize

K
$←K; S ← ∅

procedure Tag(M)
T ← FK (M)
S ← S ∪ {M}; return T

procedure Verify(M , T ′)
if (T ′ = FK (M) ∧M /∈ S) then

win ← true
return d

procedure Finalize
return win

Claim 1: Pr[GA
0 ⇒ true] = Advsuf-cma

MA[F] (()A)

Proof: The above games are equivalent.

58 / 103

Proof of Claim 2

Game G1

procedure Initialize
S ← ∅

procedure Tag(M)
if T [M] = ⊥ then

T [M]
$
←{0, 1}n

S ← S ∪ {M}; return T [M]

procedure Verify(M,T ′)

if T [M] = ⊥ then T [M]
$←{0, 1}n

if T ′ = T [M] then d ← 1 else d ← 0
if (d = 1 ∧M /∈ S) then win ← true
return d

procedure Finalize
return win

Claim 2: Pr
[

GA
1 ⇒ true

]

≤ 2qv/2n

Proof: For a call Verify(M,T ′) to set win it must be that T ′ = T [M]
and M /∈ S . Assuming the latter,

Pr
[

T ′ = T [M]
]

=?

59 / 103

Proof of Claim 2

procedure Verify(M,T ′)

if T [M] = ⊥ then T [M]
$
←{0, 1}n

if T ′ = T [M] then d ← 1 else d ← 0
if (d = 1 ∧M /∈ S) then win ← true
return d

The probability that T ′ = T [M] with M /∈ S is 2−n for the first verify
call, but what about later? Best strategy for A is to pick some M /∈ S

and then query

Verify(M,T1),Verify(M,T2), . . .

where T1,T2, . . . are distinct. The probability that the i -th call sets win
is

1

2n − (i − 1)

60 / 103

Proof of Claim 2

Regardless of A’s strategy, the probability that the i -th Verify(M,T ′)
call with M /∈ S sets win is at most

1

2n − (i − 1)

Pr[GA
1 ⇒ true] ≤

qv
∑

i=1

1

2n − (i − 1)
≤

qv
∑

i=1

1

2n − (qv − 1)
≤

qv

2n − qv

But qv ≤ 2n/2 means 2n − qv ≥ 2n/2, so

Pr[GA
1 ⇒ true] ≤

2qv

2n

61 / 103

PRFs are good MACs

Theorem [GGM86,BKR96]: Let F : {0, 1}k × D → {0, 1}n be a family
of functions and letMA[F] = (K,T ,V) be the associated MAC. Let A

be a uf-cma adversary making qs Tag queries and qv ≤ 2n/2 Verify
queries, and having running time t. Then there is a prf-adversary B

such that

Advsuf-cma
MA[F] (A) ≤ Advprf

F (B) +
2qv

2n
,

and B makes qs + qv Fn queries and has running time t plus some
overhead.

62 / 103

Basic CBC MAC

Let E : {0, 1}k × B → B be a block cipher, where B = {0, 1}n. View a
message M ∈ B∗ as a sequence of n-bit blocks, M = M[1] . . . M[m].

The basic CBC MACMA[T] defines T : {0, 1}k × B∗ → B by

Alg TK (M)
C [0]← 0n

for i = 1, . . . ,m do C [i]← EK (C [i − 1] ⊕ M[i])
return C [m]

M[1] M[2] M[m]

EK EKEKEK

M[m − 1]

C [m] = TK (M)

63 / 103

Splicing attack on basic CBC MAC

Alg TK (M)
C [0]← 0n

for i = 1, . . . ,m do

C [i]← EK (C [i − 1] ⊕ M[i])
return C [m]

adversary A

Let x ∈ {0, 1}n

T1 ← Tag(x)
M ← x ||T1 ⊕ x

d ← Verify(M,T1)

Then,

x T1 ⊕ x

T1 T1

EK EK

TK (M) = EK (EK (x) ⊕ T1 ⊕ x)

= EK (T1 ⊕ T1 ⊕ x)

= EK (x)

= T1

64 / 103

Preventing the splicing attack

If all authenticated messages have the same number m of blocks then
the splicing attack does not apply, so in such a setting we could
continue to consider the basic CBC MAC.

But in many uses, we need to authenticate messages of varying lengths.
One popular solution has been the ECBC (encrypted CBC) MAC.

65 / 103

ECBC MAC

Let E : {0, 1}k × B → B be a block cipher, where B = {0, 1}n. The
encrypted CBC (ECBC) MACMA[T] is obtained by defining
T : {0, 1}2k × B∗ → B by

Alg TKin||Kout
(M)

C [0]← 0n

for i = 1, ...,m do

C [i]← EKin
(C [i − 1] ⊕ M[i])

T ← EKout
(C [m])

return T

EKin

M[1] M[2]

EKin
EKin

EKin

M[m]

EKout

M[m − 1]

TKin||Kout
(M)

66 / 103

MAC security

The splicing attack fails against the m-restricted basic CBC MAC and
the ECBC MAC.

But are there other attacks? Or are these MACs secure?

What’s the best attack, and can we prove it is so?

67 / 103

Birthday attacks on MACs

There is a large class of MACs, including

• The m-restricted basic CBC MAC

• ECBC MAC, CMAC, HMAC, ...

which are subject to a birthday attack that succeeds in forgery with
about q ≈ 2n/2 Tag queries and a few verification queries, where n is
the tag (output) length of the MAC.

Furthermore, we can typically show this is best possible, so the birthday
bound is the “true” indication of security.

The class of MACs in question are called iterated-MACs and work by
iterating some lower level primitive such as a block cipher or
compression function.

68 / 103

Security of iterated MACs

The number q of m-block messages that can be safely authenticated is
about 2n/2/m, where n is the block-length of the blockcipher, or the
length of the chaining input of the compression function.

MAC n m q

Basic DES-CBC-MAC 64 1024 222

DES-ECBC-MAC 64 1024 222

Basic AES-CBC-MAC 128 1024 254

AES-ECBC-MAC 128 1024 254

Basic AES-CBC-MAC 128 106 244

AES-ECBC-MAC 128 106 244

HMAC-SHA1 160 106 260

HMAC-SHA256 256 106 2108

m = 106 means message length 16Mbytes when n = 128.

69 / 103

The birthday attack

We now illustrate how the birthday attack works in a simple case,
namely the 3-restricted basic CBC MAC.

Here all messages in the adversary’s queries, both to the Tag oracle and
to the Verify oracle, must be exactly 3 blocks long.

70 / 103

Internal collisions

Let Mi = 〈1〉||ri ||0
n and Mj = 〈2〉||rj ||0

n.

EK EK EK EK EK EK

< 1 > < 2 > 0nri rj0n

Ci [1] Ci [2] Ci [3] Cj [1] Cj [2] Cj [3]

Internal Collision: Ci [2] = Cj [2]
Internal collisions can be detected by examining the MAC output,
because

Ci [2] = Cj [2] ⇐⇒ Ci [3] = Cj [3]

71 / 103

Exploiting internal collisions to forge

Suppose adversary A has the tags Ci [3] = Cj [3] of messages 〈1〉 ‖ ri ‖ 0n,
〈2〉 ‖ rj ‖ 0n that have an internal collision, namely Ci [2] = Cj [2].

EK EK EK EK EK EK

< 1 > < 2 > 0nri rj0n

Ci [1] Ci [2] Ci [3] Cj [1] Cj [2] Cj [3]

Then if 0n is changed to some other value x , the tags will continue to
be the same.

72 / 103

Exploiting internal collisions to forge

Suppose adversary A has the tags Ci [3] = Cj [3] of messages 〈1〉 ‖ ri ‖ 0n,
〈2〉 ‖ rj ‖ 0n that have an internal collision, namely Ci [2] = Cj [2].

EK EK EK EK EK EK

< 1 > < 2 >ri rjx x

Ci [1] Ci [2] Ci [3] Cj [1] Cj [2] Cj [3]

Then for any x we must have C ′
i [3] = C ′

j [3] meaning C ′
i [3] is the correct

tag for both messages 〈1〉 ‖ ri ‖ x and 〈2〉 ‖ rj ‖ x . Thus A can forge by
picking some x 6= 0n and

• Requesting tag of 〈1〉 ‖ ri ‖ x to get C ′
i [3]

• Calling Verify on 〈2〉 ‖ rj ‖ x and C ′
i [3]

72 / 103

Finding internal collisions

Query q 3-block messages

〈1〉||r1||0
n, 〈2〉||r2||0

n, . . . , 〈q〉||rq||0
n,

to get back tags
C1[3],C2[3], . . . ,Cq[3]

Hope to find i , j with 1 ≤ i < j ≤ q and

Ci [3] = Cj [3].

It follows that
Ci [2] = Cj [2].

EK EK EK EK EK EK

< 1 > < 2 > 0nri rj0n

Ci [1] Ci [2] Ci [3] Cj [1] Cj [2] Cj [3]
73 / 103

Birthday attack on 3-restricted basic CBC MAC

adversary A

for i = 1, . . . , q do

ri
$←{0, 1}n; Ci [3]← Tag(〈i〉||ri ||0

n)
S ← {(i , j) : 1 ≤ i < j ≤ q and Ci [3] = Cj [3]}
ifS 6= ∅ then

(i , j)
$← S

C ′
i [3]← Tag(〈i〉||ri ||1

n)
d ← Verify(〈j〉||rj ||1

n,C ′
i [3])

Previous discussion shows that if S 6= ∅ then A succeeds, so

Advuf-cma
MA[T](A) = Pr[S 6= ∅].

A birthday analysis can be used to show that

Pr[S 6= ∅] = C (2n, q) ≥ 0.3
q(q − 1)

2n

74 / 103

Truncation

The effectiveness of the birthday attack can be reduced by truncating
the MAC output to t ≤ n bits.

For example for n = 128 one might use t = 80.

The reason it helps is that internal collisions can no longer be
unambiguiously identified. (A MAC output collision does not necessarily
mean there was an internal collision.)

To be effective, truncation must be combined with “throttling,” which
restricts the attack to a small number of verification queries.

Truncation is an option with many standardized MACs.

A rigorous and tight quantitative analysis of the security of truncation is
lacking.

75 / 103

Security of basic CBC MAC

Question: Are there better-than-birthday attacks when authenticating
same-length messages?

Answer: NO
And we can prove the answer is correct.

Basic CBC MAC is a PRF (and hence a SUF-CMA MAC) if all
messages authenticated have the same length.

76 / 103

Security of basic CBC MAC

Theorem [BKR96]: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a family of
functions and m ≥ 1 an integer. Let Em : {0, 1}k × {0, 1}nm → {0, 1}n

be the family of functions defined by

Alg Em
K (M)

C [0]← 0n

for i = 1, ...,m do C [i]← EK (C [i − 1] ⊕ M[i])
return C [m]

Let A be a prf-adversary against Em that makes q oracle queries and
has running time t. Then there is a prf-adversary B against E such that

Advprf
Em(A) ≤ Advprf

E (B) +
q2m2

2n

and B makes at most qm oracle queries and has running time about t.

77 / 103

ECBC MAC

Let E : {0, 1}k × B → B be a block cipher, where B = {0, 1}n. The
encrypted CBC (ECBC) MACMA[T] is obtained by defining
T : {0, 1}2k × B∗ → B by

Alg TKin||Kout
(M)

C [0]← 0n

for i = 1, ...,m do

C [i]← EKin
(C [i − 1] ⊕ M[i])

T ← EKout
(C [m])

return T

EKin

M[1] M[2]

EKin
EKin

EKin

M[m]

EKout

M[m − 1]

TKin||Kout
(M)

78 / 103

Security of ECBC

• No splicing attack

• But birthday attack applies

Birthday attack turns out to be best possible: can securely authenticate
messages of varying lengths as long as total number of blocks is at most
2n/2

79 / 103

Security of ECBC

Theorem: Let E : {0, 1}k × B → B be a block cipher where
B = {0, 1}n. Define F : {0, 1}2k × B∗ → {0, 1}n by

Alg FKin||Kout
(M)

C [0]← 0n

for i = 1, ...,m do C [i]← EKin
(C [i−1] ⊕ M[i])

T ← EKout
(C [m])

return T

Let A be a prf-adversary against F that makes at most q oracle queries,
these totalling at most σ blocks, and has running time t. Then there is
a prf-adversary B against E such that

Advprf
F (A) ≤ Advprf

E (B) +
σ2

2n

and B makes at most σ oracle queries and has running time about t.

80 / 103

Non-full messages

So far we assumed messages have length a multiple of the block-length
of the block cipher. Call such messages full. How do we deal with
non-full messages?

M[1] M[2] M[3]

The obvious approach is padding.

M[1] M[2] M[3] 10*

This works, but if M was full, an extra block is needed

M[1] M[2] M[3] 10*

leading to an extra block cipher operation.

81 / 103

Costs

Handling length-variablity and non-full messages leads to two extra block
cipher invocations in ECBC MAC as compared to basic CBC MAC.

Also ECBC uses two block cipher keys and needs to rekey, which is
expensive.

Can we do better?

82 / 103

CMAC

Standards: NIST SP 800-38B, RFCs 4493, 4494, 4615

Features: Handles variable-length and non-full messages with

• Minimal overhead

• A single block cipher key

Security:

• Subject to a birthday attack

• Security proof shows there is no better attack

History: XCBC[BlRo], OMAC/OMAC1[IW]

83 / 103

CMAC Components and Setup

• E : {0, 1}n × {0, 1}n → {0, 1}n is a block cipher, in practice AES.

• CBCK (M) is the basic CBC MAC of a full message M under key
K ∈ {0, 1}n and using E .

• J ∈ {0, 1}n is a particular fixed constant.

CMAC uses its key K ∈ {0, 1}n to derive subkeys K1,K2 via

• K0 ← EK (0)

• if msb(K0) = 0 then K1 ← (K0 ≪ 1) else K1 ← (K0 ≪ 1) ⊕ J

• if msb(K1) = 0 then K2 ← (K1 ≪ 1) else K2 ← (K1 ≪ 1) ⊕ J

where x ≪ 1 means x left shifted by 1 bit, so that the msb vanishes and
the lsb becomes 0. These bit operations reflect simple finite-field
operations.

84 / 103

CMAC Algorithm

Alg CMACK (M)

M[1] . . . M[m − 1]M[m]← M // |M [m]| ≤ n

ℓ← |M[m]| // ℓ ≤ n

if ℓ = n then M[m]← K1 ⊕ M[m]
else M[m]← K2 ⊕ (M[m]‖10n−ℓ−1)
M ← M[1] . . . M[m − 1]M[m]
T ← CBCK (M)
return T

85 / 103

Parallelizable MACs?

The following MAC has the nice feature that the block cipher
computations can be done in parallel.

i i i

? ? ? ?

T

M[1] M[2] M[3] M[4]

EK EK EK EK

But we saw earlier that this is not secure!

Can we fix it?

86 / 103

PMAC [BlRo]

Features:

• Minimal overhead

• A single block cipher key

• Handles variable-length and non-full messages

• Parallelizable

Security:

• Subject to a birthday attack

• Security proof shows there is no better attack [BlRo]

87 / 103

Tweakable Block Ciphers [LRW]

A tweakable block cipher is a map

E : {0, 1}k × TwSp× {0, 1}n → {0, 1}n

such that
ET

K : {0, 1}n → {0, 1}n

is a permutation for every K ,T , where ET
K (X) = E (K ,T ,X).

With a single key one thus implicitly has a large number of maps

?

?

?

?

?

?

?

?

?

?

?

?

E 1
K E 2

K E 3
K E 4

K E 5
K E 6

K

These appear to be independent random permutations to an adversary
who does not know the key K , even if it can choose the tweaks and
inputs.

88 / 103

Tweakable Block Cipher Security, Formally

Let E : {0, 1}k ×TwSp×{0, 1}n → {0, 1}n be a tweakable block cipher

Game RealE

procedure Initialize
K

$←{0, 1}k

procedure Fn(T , x)
Return ET

K (x)

Game Rand{0,1}n

procedure Fn(T , x)

Y
$←{0, 1}n

Return Y

Associated to E ,A are the probabilities

Pr
[

RealAE⇒1
]

Pr
[

RandA
{0,1}n⇒1

]

that A outputs 1 in each world. The advantage of A is

Advprf
E

(A) = Pr
[

RealAE⇒1
]

− Pr
[

RandA
{0,1}n⇒1

]

89 / 103

PMAC Algorithm

E
4,1
K

i i i

? ? ?

?

-

M[1] M[2] M[3] M[4]

T

E
1,0
K

E
2,0
K

E
3,0
K

Illustrated for a full message of 4 blocks.

90 / 103

Building a Tweakable Block Cipher

We want to tweak block ciper E : {0, 1}k × TwSp× {0, 1}n → {0, 1}n

with TwSp = {1, . . . , 264}.

L← EK (0)
E i

K (x) = AESK (x ⊕ 2iL)

L→ 2L→ 4L→ · · ·

2∆ =

{

(∆≪ 1) if msb(∆) = 0

(∆≪ 1) ⊕ 8716 otherwise

l�
?

?

?

2iL

x

EK

E i
K (x)

Doubling is cheap: 0.3–0.8 cpb

Intuition: Hard for adversary to find distinct (x1, i1), (x2, i2) such that
x1 ⊕ 2i1L = x2 ⊕ 2i2L

91 / 103

PMAC Instantiated

M[1] M[2] M[3] M[4]

i i i

i

i i i

? ? ?

-

- - ---

-

?

EK EK EK

EK T

2L 22L 23L

24L

92 / 103

MACing with hash functions

The software speed of hash functions (MD5, SHA1) lead people in
1990s to ask whether they could be used to MAC.

But hash functions are keyless.

Question: How do we key hash functions to get MACs?

Proposal: Let H : D → {0, 1}n represent the hash function and set

TK (M) = H(K ||M)

Is this secure?

93 / 103

Extension attack

IV

M[1] M[m]K 〈m + 1〉

H(K ||M)h h h h

94 / 103

Extension attack

IV

M[1] M[m]K 〈m + 1〉

H(K ||M)h h h h h H(K ||M ′)

〈m + 2〉

Let M ′ = M||〈m + 1〉. Then

H(K ||M ′) = h(〈m + 2〉||H(K ||M))

so given the MAC H(K ||M) of M we can easily forge the MAC of M ′.

94 / 103

HMAC [BCK96]

Suppose H : D → {0, 1}160 is the hash function. HMAC has a 160-bit
key K . Let

Ko = opad ⊕ K ||0352 and Ki = ipad ⊕ K ||0352

where
opad = 5D and ipad = 36

in HEX. Then

HMACK (M) = H(Ko ||H(Ki ||M))

hhh

(((

- H

hhh

(((

- H
?

-

Ki‖M

Ko‖X HMACK (M)

95 / 103

HMAC

Features:

• Blackbox use of the hash function, easy to implement

• Fast in software

Usage:

• As a MAC for message authentication

• As a PRF for key derivation

Security:

• Subject to a birthday attack

• Security proof shows there is no better attack [BCK96,Be06]

Adoption and Deployment: HMAC is one of the most widely
standardized and used cryptographic constructs: SSL/TLS, SSH, IPSec,
FIPS 198, IEEE 802.11, IEEE 802.11b, ...

96 / 103

HMAC Security

Theorem: [BCK96] HMAC is a secure PRF assuming

• The compression function is a PRF

• The hash function is collision-resistant (CR)

But recent attacks show MD5 is not CR and SHA1 may not be either.

So are HMAC-MD5 and HMAC-SHA1 secure?

• No attacks so far, but

• Proof becomes vacuous!

Theorem: [Be06] HMAC is a secure PRF assuming only

• The compression function is a PRF

Current attacks do not contradict this assumption. This new result may
explain why HMAC-MD5 is standing even though MD5 is broken with
regard to collision resistance.

97 / 103

HMAC Recommendations

• Don’t use HMAC-MD5

• No immediate need to remove HMAC-SHA1

• Use HMAC-SHA256 for new applications

98 / 103

Paradigms for MACing

• Block cipher based: CBC-MAC, ECBC-MAC, CMAC, PMAC,
XCBC, OMAC, XOR-MAC, RMAC, . . .

• Hash function based: HMAC

• Carter-Wegman (CW) MACs: UMAC, Poly127-AES,
Poly1305-AES, . . .

CW MACs can be very fast.

99 / 103

AU Families

A family of functions H : Keys(H)× D → {0, 1}l is ǫ-AU if for all
distinct M1,M2,∈ D we have

Pr [HK (M1) = HK (M2)] ≤ ǫ

where the probability is over K
$← Keys(H).

This is a weak form of collision resistance in which the attacker must
select its collision M1,M2 without seeing the key K .

One can design fast, non-cryptographic ǫ-AU-families: NH [BHKKR],
Poly127 [Ber], Poly1305[Ber], . . .

100 / 103

NH [BHKKR]

w = 16, 32, or 64 // word size

M = M[1] · · ·M[m] // M [i] ∈ {0, . . . , 2w − 1}

K = K [1] · · ·K [m] // K [i] ∈ {0, . . . , 2w − 1}

Alg NHK (M)
for i = 1, . . . ,m/2 do

a[i]← (M[2i − 1] + K [2i − 1]) mod 2w

b[i]← (M[2i] + K [2i]) mod 2w

S ← (a[1]b[1] + · · ·+ a[m/2]b[m/2]) mod 22w

return S

This is ǫ-AU for ǫ = 2−w

Care or assembly code required to get 2w -bit product of w -bit operands.

101 / 103

From AU to MAC

H : Keys(H)× D → {0, 1}l an ǫ-AU family
F : Keys(F)× {0, 1}l → {0, 1}n a PRF (e.g. AES)
N : nonce, different for each message

Alg MAC(K1K2,N,M)
return (N,F (K1,N) ⊕ H(K2,M))

This is a UF-CMA-secure (nonce-based) MAC, assuming F is a PRF
and H is AU.

NH + HMAC-SHA1→ UMAC
Poly127 + AES→ Poly127-AES
Poly1305 + AES→ Poly1305-AES

102 / 103

Performance

Table shows Pentium-4 machine-cycles per byte for processing various
byte-length messages. UMAC here has a 96-bit tag while Poly127-AES
has a 128-bit tag.

44 64 256 552 1024 1500

UMAC 22 15 4.5 2.7 1.9 2.2

Poly127-AES 23 17 7.5 5.8 5.1 4.8

SHA1 76 34.5 23.6

This data is from the UMAC webpage. SHA1 speeds via OpenSSL.

103 / 103

