Key Distribution

Ragesh Jaiswal

CSE, IIT Delhi

Diffie Hellman Key Exchange

Both parties share $g^{(xy)}$ which is the secret key for the session.

Diffie Hellman Key Exchange

The adversary will be able to read all messages being exchanged between Alice and Bob

Key Distribution in Public Key Setting

• Public key cryptography:

pa, Cert

Key Distribution in Public Key Setting

• Public key cryptography:

pa, Cert

(sa, pa)

Key Distribution: Kerberos

Best understood using a dialogue in four scenes

Authentication Service

S

 $Ticket_{XY} = \{X, Y, AddX\}[K_Y]$

C

Kerberos: Scene IV Authentication Service - K_A - K_B - K_C ${SK_{AS}, Ticket_{AS}}[K_A]$ ${SK_{AB}, Ticket_{AB}}[SK_{AS}]$ $Ticket_{XY} = \{SK_{XY}, X, Y, AddX, TS, LS\}[K_Y]$ Auth_{AS}, Ticket_{AS} $Auth_{XY} = \{X, AddX, TS, LS\}[SK_{XY}]$ Auth_{AB}, Ticket_{AB} Few minutes

 $K_{\mathbf{B}}$

 K_{A}

A

Kerberos: Scene IV Authentication Service - K_A - K_B - K_C ${SK_{AS}, Ticket_{AS}}[K_A]$ ${SK_{AB}, Ticket_{AB}}[SK_{AS}]$ $Ticket_{XY} = \{SK_{XY}, X, Y, AddX, TS, LS\}[K_Y]$ Auth_{AS}, Ticket_{AS} $Auth_{XY} = \{X, AddX, TS, LS\}[SK_{XY}]$ Auth_{AB}, Ticket_{AB} Few minutes K_{A} $K_{\mathbf{B}}$ Mutual Authentication A

Other Cryptographic Protocols

- Secret sharing
- Coin flipping over phone
- Oblivious transfer

- How do we construct such a protocol?
 - Ideas?

- How do we construct such a protocol?
 - Shamir's secret sharing protocol: A degree **d** polynomial is completely determined by **d** points evaluated on the polynomial.

Coin flipping

Alice and Bob want to agree on a secret bit.

Coin flipping

Alice and Bob want to agree on a secret bit.

Coin flipping

Alice and Bob want to agree on a secret bit.

Bit commitment protocol

Other protocols we did not talk about

- Oblivious transfer.
- Multi-party computation.
- Electronic voting.
- •

Thank you