
COMPUTATIONAL NUMBER THEORY

1 / 70

Notation

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

N = {0, 1, 2, . . .}

Z+ = {1, 2, 3, . . .}

d |a means d divides a

Example: 2|4.

For a,N ∈ Z let gcd(a,N) be the largest d ∈ Z+ such that d |a and d |N.

Example: gcd(30, 70) =

2 / 70

Notation

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

N = {0, 1, 2, . . .}

Z+ = {1, 2, 3, . . .}

d |a means d divides a

Example: 2|4.

For a,N ∈ Z let gcd(a,N) be the largest d ∈ Z+ such that d |a and d |N.

Example: gcd(30, 70) = 10.

2 / 70

Integers mod N

For N ∈ Z+, let

• ZN = {0, 1, . . . ,N − 1}
• Z∗

N = {a ∈ ZN : gcd(a,N) = 1}
• ϕ(N) = |Z∗

N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
• Z∗

12 =

3 / 70

Integers mod N

For N ∈ Z+, let

• ZN = {0, 1, . . . ,N − 1}
• Z∗

N = {a ∈ ZN : gcd(a,N) = 1}
• ϕ(N) = |Z∗

N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
• Z∗

12 = {1, 5, 7, 11}
• ϕ(12) =

3 / 70

Integers mod N

For N ∈ Z+, let

• ZN = {0, 1, . . . ,N − 1}
• Z∗

N = {a ∈ ZN : gcd(a,N) = 1}
• ϕ(N) = |Z∗

N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
• Z∗

12 = {1, 5, 7, 11}
• ϕ(12) = 4

3 / 70

Division and mod

Fact: For any a,N ∈ Z with N > 0 there exist unique q, r ∈ N such
that

• a = Nq + r

• 0 ≤ r < N

Refer to q as the quotient and r as the remainder. Then

a mod N = r ∈ ZN

is the remainder when a is divided by N.

Def: a ≡ b (mod N) iff (a mod N) = (b mod N).

Examples:

• If a = 17 and N = 3 then the quotient and remainder are q = ?
and r = ?

4 / 70

Division and mod

Fact: For any a,N ∈ Z with N > 0 there exist unique q, r ∈ N such
that

• a = Nq + r

• 0 ≤ r < N

Refer to q as the quotient and r as the remainder. Then

a mod N = r ∈ ZN

is the remainder when a is divided by N.

Def: a ≡ b (mod N) iff (a mod N) = (b mod N).

Examples:

• If a = 17 and N = 3 then the quotient and remainder are q = 5
and r = 2

4 / 70

Division and mod

Fact: For any a,N ∈ Z with N > 0 there exist unique q, r ∈ N such
that

• a = Nq + r

• 0 ≤ r < N

Refer to q as the quotient and r as the remainder. Then

a mod N = r ∈ ZN

is the remainder when a is divided by N.

Def: a ≡ b (mod N) iff (a mod N) = (b mod N).

Examples:

• If a = 17 and N = 3 then the quotient and remainder are q = 5
and r = 2

• 17 mod 3 =
4 / 70

Division and mod

Fact: For any a,N ∈ Z with N > 0 there exist unique q, r ∈ N such
that

• a = Nq + r

• 0 ≤ r < N

Refer to q as the quotient and r as the remainder. Then

a mod N = r ∈ ZN

is the remainder when a is divided by N.

Def: a ≡ b (mod N) iff (a mod N) = (b mod N).

Examples:

• If a = 17 and N = 3 then the quotient and remainder are q = 5
and r = 2

• 17 mod 3 = 2
• 17 ≡ 14 (mod 3)

4 / 70

Division and mod

Fact: For any a,N ∈ Z with N > 0 there exist unique q, r ∈ N such
that

• a = Nq + r

• 0 ≤ r < N

Refer to q as the quotient and r as the remainder. Then

a mod N = r ∈ ZN

is the remainder when a is divided by N.

Def: a ≡ b (mod N) iff (a mod N) = (b mod N).

Examples:

• If a = 17 and N = 3 then the quotient and remainder are q = 5
and r = 2

• 17 mod 3 = 2
• 17 ≡ 14 (mod 3) because 17 mod 3 = 14 mod 3 = 2

4 / 70

Groups

Let G be a non-empty set, and let · be a binary operation on G . This
means that for every two points a, b ∈ G , a value a · b is defined.

Examples:

• G = Z12 and “·” is addition modulo 12, meaning

a · b = (a + b) mod 12

• G = Z∗
12 and “·” is multiplication modulo 12, meaning

a · b = ab mod 12

5 / 70

Groups

Let G be a non-empty set, and let · be a binary operation on G . This
means that for every two points a, b ∈ G , a value a · b is defined.

We say that G is a group if it has the following properties:

1 Closure: For every a, b ∈ G it is the case that a · b is also in G .

2 Associativity: For every a, b, c ∈ G it is the case that
(a · b) · c = a · (b · c).

3 Identity: There exists an element 1 ∈ G such that
a · 1 = 1 · a = a for all a ∈ G .

4 Invertibility: For every a ∈ G there exists a unique b ∈ G such
that a · b = b · a = 1.

The element b in the invertibility condition is referred to as the inverse
of the element a, and is denoted a−1.

6 / 70

ZN under MOD-ADD

Fact: Let N ∈ Z+. Then ZN is a group under addition modulo N.

Addition modulo N: a, b 7→ a + b mod N

• Closure: a, b ∈ ZN ⇒ a + b mod N ∈ ZN

• Associative:
((a + b mod N) + c) mod N = (a + (b + c mod N)) mod N

• Identity: a + 0 ≡ 0 + a ≡ a (mod N)

• Inverse: Inverse of a is −a ≡ N − a (mod N)

7 / 70

Z∗N under MOD-MULT

Fact: Let N ∈ Z+. Then Z∗
N is a group under multiplication modulo

N.

Multiplication modulo N: a, b 7→ ab mod N

Example: Let N = 12, so Z∗
N = Z∗

12 = {1, 5, 7, 11}

8 / 70

Z∗N under MOD-MULT

Fact: Let N ∈ Z+. Then Z∗
N is a group under multiplication modulo

N.

Example: Let N = 12, so Z∗
N = Z∗

12 = {1, 5, 7, 11}

Closure: a, b ∈ Z∗
N ⇒ ab mod N ∈ Z∗

N . That is

gcd(a,N) = gcd(b,N) = 1⇒ gcd(ab mod N,N) = 1

Check: 5 · 7 mod 12 = 35 mod 12 = 11 ∈ Z∗
12

If a, b ∈ Z∗
12, ab mod 12 can never be 3!

8 / 70

Z∗N under MOD-MULT

Fact: Let N ∈ Z+. Then Z∗
N is a group under multiplication modulo

N.

Example: Let N = 12, so Z∗
N = Z∗

12 = {1, 5, 7, 11}

Associative: ((ab mod N)c) mod N = (a(bc mod N)) mod N

Check:

(5 · 7 mod 12) · 11 mod 12 = (35 mod 12) · 11 mod 12

= 11 · 11 mod 12 = 1

5 · (7 · 11 mod 12) mod 12 = 5 · (77 mod 12) mod 12

= 5 · 5 mod 12 = 1

8 / 70

Z∗N under MOD-MULT

Fact: Let N ∈ Z+. Then Z∗
N is a group under multiplication modulo

N.

Example: Let N = 12, so Z∗
N = Z∗

12 = {1, 5, 7, 11}

Identity: 1 is the identity element because a · 1 ≡ 1 · a ≡ a (mod N)
for all a.

8 / 70

Z∗N under MOD-MULT

Fact: Let N ∈ Z+. Then Z∗
N is a group under multiplication modulo

N.

Example: Let N = 12, so Z∗
N = Z∗

12 = {1, 5, 7, 11}

Inverse: ∀a ∈ Z∗
N ∃a−1 ∈ Z∗

N such that a · a−1 mod N = 1.

Check: 5−1 is the x ∈ Z∗
12 satisfying

5x ≡ 1 (mod 12)

so x =

8 / 70

Z∗N under MOD-MULT

Fact: Let N ∈ Z+. Then Z∗
N is a group under multiplication modulo

N.

Example: Let N = 12, so Z∗
N = Z∗

12 = {1, 5, 7, 11}

Inverse: ∀a ∈ Z∗
N ∃a−1 ∈ Z∗

N such that a · a−1 mod N = 1.

Check: 5−1 is the x satisfying

5x ≡ 1 (mod 12)

so x = 5

8 / 70

Computational Shortcuts

What is 5 · 8 · 10 · 16 mod 21?

9 / 70

Computational Shortcuts

What is 5 · 8 · 10 · 16 mod 21?

Slow way: First compute

5 · 8 · 10 · 16 = 40 · 10 · 16 = 400 · 16 = 6400

and then compute 6400 mod 21 =

9 / 70

Computational Shortcuts

What is 5 · 8 · 10 · 16 mod 21?

Slow way: First compute

5 · 8 · 10 · 16 = 40 · 10 · 16 = 400 · 16 = 6400

and then compute 6400 mod 21 = 16

Fast way:

• 5 · 8 mod 21 = 40 mod 21 = 19

• 19 · 10 mod 21 = 190 mod 21 = 1

• 1 · 16 mod 21 = 16

9 / 70

Exponentiation

Let G be a group and a ∈ G . We let a0 = 1 be the identity element and
for n ≥ 1, we let

an = a · a · · · a
︸ ︷︷ ︸

n

.

Also we let
a−n = a−1 · a−1 · · · a−1

︸ ︷︷ ︸

n

.

This ensures that for all i , j ∈ Z,

• ai+j = ai · aj

• aij = (ai)j = (aj)i

• a−i = (ai)−1 = (a−1)i

Meaning we can manipulate exponents “as usual”.

10 / 70

Group Orders

The order of a group G is its size |G |, meaning the number of elements
in it.

Example: The order of Z∗
21 is

11 / 70

Group Orders

The order of a group G is its size |G |, meaning the number of elements
in it.

Example: The order of Z∗
21 is 12 because

Z∗
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

Fact: Let G be a group of order m and a ∈ G . Then, am = 1.

Examples: Modulo 21 we have

• 512 ≡ (53)4 ≡ 204 ≡ (−1)4 ≡ 1

• 812 ≡ (82)6 ≡ (1)6 ≡ 1

11 / 70

Group Orders

Corollary: Let G be a group of order m and a ∈ G . Then for any
i ∈ Z,

ai = ai mod m.

Example: What is 574 mod 21?

12 / 70

Group Orders

Corollary: Let G be a group of order m and a ∈ G . Then for any
i ∈ Z,

ai = ai mod m.

Example: What is 574 mod 21?

Solution: Let G = Z∗
21 and a = 5. Then, m = 12, so

574 mod 21 = 574 mod 12 mod 21

= 52 mod 21

= 4.

12 / 70

Proof of Corollary

Fact: Let G be a group of order m and a ∈ G . Then, am = 1.

Corollary: Let G be a group of order m and a ∈ G . Then for any
i ∈ Z,

ai = ai mod m.

Proof: Let r = i mod m and let q be such that i = mq + r . Then

ai = amq+r = (am)q · ar

But am = 1 by Fact.

13 / 70

Measuring Running Time of Algorithms on Numbers

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical sizes are 2512, 21024, 22048.

Numbers are provided to algorithms in binary. The length of a, denoted
|a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.

14 / 70

Addition

(a, b) 7→ a + b

1 0 1 1 0 1
+ 1 0 1 1

1 1 1 0 0 0

By the usual “carry” algorithm, we can compute a + b in time
O(|a|+ |b|).

Addition is linear time.

15 / 70

Multiplication

(a, b) 7→ ab

1 0 1 1 1 0
× 1 0 1

1 0 1 1 1 0
0 0 0 0 0 0 0

+ 1 0 1 1 1 0 0 0

1 1 1 0 0 1 1 0

By the usual algorithm, we can compute ab in time O(|a| · |b|).

Multiplication is quadratic time.

16 / 70

Integer Division

INT-DIV(a,N) returns (q, r) such that

• a = qN + r

• 0 ≤ r < N

Example: INT-DIV(17, 3) = (5, 2)

By the usual algorithm, we can compute INT-DIV(a,N) in time
O(|a| · |N|).

Integer division is quadratic time.

17 / 70

MOD

(a,N) 7→ a mod N

But

(q, r)← INT-DIV(a,N)
return r

computes a mod N, so again the time needed is O(|a| · |N|).

Mod is quadratic time.

18 / 70

About gcd

Fact: If a,N ∈ Z and (a,N) 6= (0, 0) then gcd(a,N) is the smallest
positive integer in the set

{a · a′ + N · N ′ : a′,N ′ ∈ Z}

Corollary: If d = gcd(a,N) then there are “weights” a′,N ′ ∈ Z such
that

d = a · a′ + N · N ′

Example: gcd(20, 12) = 4 and 4 = 20 · a′ + 12 · N ′ for

• a′ =

• N ′ =

19 / 70

About gcd

Fact: If a,N ∈ Z and (a,N) 6= (0, 0) then gcd(a,N) is the smallest
positive integer in the set

{a · a′ + N · N ′ : a′,N ′ ∈ Z}

Corollary: If d = gcd(a,N) then there are “weights” a′,N ′ ∈ Z such
that

d = a · a′ + N · N ′

Example: gcd(20, 12) = 4 and 4 = 20 · a′ + 12 · N ′ for

• a′ = 2

• N ′ = −3

19 / 70

Extended gcd

EXT-GCD(a,N) 7→ (d , a′,N ′) such that

d = gcd(a,N) = a · a′ + N · N ′.

Lemma: Let (q, r) = INT-DIV(a,N). Then, gcd(a,N) = gcd(N, r)

Example: INT-DIV(17, 3) = (5, 2) so gcd(17, 3) = gcd(3, 2).

20 / 70

Extended gcd

EXT-GCD(a,N) 7→ (d , a′,N ′) such that

d = gcd(a,N) = a · a′ + N · N ′.

Lemma: Let (q, r) = INT-DIV(a,N). Then, gcd(a,N) = gcd(N, r)

Alg EXT-GCD(a,N) // (a, N) 6= (0, 0)

if N = 0 then return (a, 1, 0)
else

(q, r)← INT-DIV(a,N)
(d , x , y)← EXT-GCD(N, r)
a′ ← ; N ′ ←
return (d , a′,N ′)

20 / 70

Extended gcd

We know that a = qN + r with 0 ≤ r < N and we have d , x , y

satisfying
d = gcd(N, r) = Nx + ry

Then

d = Nx + ry

= Nx + (a − qN)y

= ay + N(x − qy)

so d = gcd(a,N) = a · a′ + N · N ′ with a′ = y and N ′ = x − qy .

21 / 70

Extended gcd

Alg EXT-GCD(a,N) // (a, N) 6= (0, 0)

if N = 0 then return (a, 1, 0)
else

(q, r)← INT-DIV(a,N)
(d , x , y)← EXT-GCD(N, r)
a′ ← y ; N ′ ← x − qy

return (d , a′,N ′)

Running time analysis is non-trivial (worst case is Fibonacci numbers)
and shows that the time is O(|a| · |N|).

So the extended gcd can be computed in quadratic time.

22 / 70

Modular Inverse

For a,N such that gcd(a,N) = 1, we want to compute a−1 mod N,
meaning the unique a′ ∈ Z∗

N satisfying aa′ ≡ 1 (mod N).

But if we let (d , a′,N ′)← EXT-GCD(a,N) then

d = 1 = gcd(a,N) = a · a′ + N · N ′

But N · N ′ ≡ 0 (mod N) so aa′ ≡ 1 (mod N)

Alg MOD-INV(a,N)
(d , a′,N ′)← EXT-GCD(a,N)
return a′ mod N

Modular inverse can be computed in quadratic time.

23 / 70

Modular Exponentiation

Let G be a group and a ∈ G . For n ∈ N, we want to compute an ∈ G .

We know that
an = a · a · · · a

︸ ︷︷ ︸

n

Consider:

y ← 1
for i = 1, . . . , n do y ← y · a
return y

Question: Is this a good algorithm?

24 / 70

Modular Exponentiation

Let G be a group and a ∈ G . For n ∈ N, we want to compute an ∈ G .

We know that
an = a · a · · · a

︸ ︷︷ ︸

n

Consider:

y ← 1
for i = 1, . . . , n do y ← y · a
return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group
operations is

O(n) = O(2|n|)

so it is exponential time. For n ≈ 2512 it is prohibitively expensive.

24 / 70

Fast exponentiation idea

We can compute

a −→ a2 −→ a4 −→ a8 −→ a16 −→ a32

in just 5 steps by repeated squaring. So we can compute an in i steps
when n = 2i .

But what if n is not a power of 2?

25 / 70

Fast Exponentiation Example

Suppose the binary length of n is 5, meaning the binary representation
of n has the form b4b3b2b1b0. Then

n = 24b4 + 23b3 + 22b2 + 21b1 + 20b0

= 16b4 + 8b3 + 4b2 + 2b1 + b0 .

We want to compute an. Our exponentiation algorithm will proceed to
compute the values y5, y4, y3, y2, y1, y0 in turn, as follows:

y5 = 1
y4 = y2

5 · ab4 = ab4

y3 = y2
4 · ab3 = a2b4+b3

y2 = y2
3 · ab2 = a4b4+2b3+b2

y1 = y2
2 · ab1 = a8b4+4b3+2b2+b1

y0 = y2
1 · ab0 = a16b4+8b3+4b2+2b1+b0 .

26 / 70

Fast Exponentiation Algorithm

Let bin(n) = bk−1 . . . b0 be the binary representation of n, meaning

n =
k−1∑

i=0

bi2
i

Alg EXPG (a, n) // a ∈ G , n ≥ 1

bk−1 . . . b0 ← bin(n)
y ← 1
for i = k − 1 downto 0 do y ← y2 · abi

return y

The running time is O(|n|) group operations.

MOD-EXP(a, n,N) returns an mod N in time O(|n| · |N|2), meaning is
cubic time.

27 / 70

Algorithms Summary

Algorithm Input Output Time

INT-DIV a, N q,r quadratic
MOD a, N a mod N quadratic
EXT-GCD a, N (d , a′,N ′) quadratic
MOD-ADD a, b, N a + b mod N linear
MOD-MULT a, b, N ab mod N quadratic
MOD-INV a, N a−1 mod N quadratic
MOD-EXP a, n, N an mod N cubic
EXPG a, n an ∈ G O(|n|) G -ops

28 / 70

Subgroups

Definition: Let G be a group and S ⊆ G . Then S is called a subgroup
of G if S is itself a group under G ’s operation.

Example: Let G = Z∗
11 and S = {1, 2, 3}. Then S is not a subgroup

because

• 2 · 3 mod 11 = 6 6∈ S , violating Closure.

• 3−1 mod 11 = 4 6∈ S , violating Inverse.

But {1, 3, 4, 5, 9} is a subgroup, as you can check.

Fact: S is a subgroup of G iff S 6= ∅ and ∀x , y ∈ S : xy−1 ∈ S

29 / 70

Order of a group element

Let G be a (finite) group.

Definition: The order of g ∈ G , denoted o(g), is the smallest integer
n ≥ 1 such than gn = 1.

Why does the order exist? Since G is finite the sequence

1 = g0, g1, g2, . . .

must repeat, meaning there are i , j with i < j and g i = g j . But then

1 = g0 = g−ig i = g jg−i = g j−i

so there is some m ≥ 1 such that gm = 1.

30 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

The order o(a) of a is the smallest n ≥ 1 such that an = 1. So

• o(2) =

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

The order o(a) of a is the smallest n ≥ 1 such that an = 1. So

• o(2) = 10

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

The order o(a) of a is the smallest n ≥ 1 such that an = 1. So

• o(2) = 10

• o(5) =

31 / 70

Order determinations

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

The order o(a) of a is the smallest n ≥ 1 such that an = 1. So

• o(2) = 10

• o(5) = 5

31 / 70

Subgroup generated by g ∈ G

Definition: For g ∈ G we let

〈g〉 = {g0, g1, . . . , go(g)−1}.

This is a subgruop of G and its order (that is, its size) is the order o(g)
of G .

32 / 70

Subgroup orders

Fact: The order |S | of a subgroup S always divides the order |G | of the
group G .

Fact: The order o(g) of g ∈ G always divides |G |.
Example: If G = Z∗

11 then

• |G | =

33 / 70

Subgroup orders

Fact: The order |S | of a subgroup S always divides the order |G | of the
group G .

Fact: The order o(g) of g ∈ G always divides |G |.
Example: If G = Z∗

11 then

• |G | = 10

• o(2) = 10 which divides 10

• o(5) = 5 which divides 10

33 / 70

Subgroups generated by a group element

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 =

〈5〉 =

34 / 70

Subgroups generated by a group element

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
〈5〉 =

34 / 70

Subgroups generated by a group element

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
〈5〉 = {1, 3, 4, 5, 9}

34 / 70

Generators

Definition: g ∈ G is a generator (or primitive element) if 〈g〉 = G .

Fact: g ∈ G is a generator iff o(g) = |G |.
Definition: G is cyclic if it has a generator.

35 / 70

Generators

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
〈5〉 = {1, 3, 4, 5, 9}

36 / 70

Generators

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
〈5〉 = {1, 3, 4, 5, 9}

• Is 2 a generator?

36 / 70

Generators

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
〈5〉 = {1, 3, 4, 5, 9}

• Is 2 a generator?
YES because 〈2〉 = Z∗

11.

36 / 70

Generators

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
〈5〉 = {1, 3, 4, 5, 9}

• Is 2 a generator?
YES because 〈2〉 = Z∗

11.

• Is 5 a generator?

36 / 70

Generators

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
〈5〉 = {1, 3, 4, 5, 9}

• Is 2 a generator?
YES because 〈2〉 = Z∗

11.

• Is 5 a generator?
NO because 〈5〉 6= Z∗

11.

36 / 70

Generators

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
〈5〉 = {1, 3, 4, 5, 9}

• Is 2 a generator?
YES because 〈2〉 = Z∗

11.

• Is 5 a generator?
NO because 〈5〉 6= Z∗

11.

• Is Z∗
11 cyclic?

36 / 70

Generators

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
〈5〉 = {1, 3, 4, 5, 9}

• Is 2 a generator?
YES because 〈2〉 = Z∗

11.

• Is 5 a generator?
NO because 〈5〉 6= Z∗

11.

• Is Z∗
11 cyclic?

• YES because it has a generator

36 / 70

Discrete Log

If G = 〈g〉 is cyclic then for every a ∈ G there is a unique exponent
i ∈ {0, . . . , |G | − 1} such that g i = a. We call i the discrete logarithm
of a to base g and denote it by

DLogG ,g (a)

The discrete log function is the inverse of the exponentiation function

i g i

DLogG ,g

ExpG

37 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a)

38 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0

38 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0 1

38 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0 1 8

38 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0 1 8 2

38 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0 1 8 2 4

38 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0 1 8 2 4 9

38 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0 1 8 2 4 9 7

38 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0 1 8 2 4 9 7 3

38 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0 1 8 2 4 9 7 3 6

38 / 70

Discrete Log

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We know that 2 is a

generator, so DLogG ,2(a) is the exponent i ∈ {0, . . . , 9} such that

2i ≡ a (mod 11).

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0 1 8 2 4 9 7 3 6 5

38 / 70

Finding Cyclic Groups

Fact 1: Let p be a prime. Then Z∗
p is cyclic.

Fact 2: Let G be any group whose order m = |G | is a prime number.
Then G is cyclic.

Note: |Z∗
p| = p − 1 is not prime, so Fact 2 doesn’t imply Fact 1!

Fact 3: If F is a finite field then F − {0} is a cyclic group under the
multiplicative operation of F .

39 / 70

Computing Discrete Logs

Let G = 〈g〉 be a cyclic group with generator g ∈ G .

Input: X ∈ G

Desired Output: DLogG ,g (X)

That is, we want x such that gx = X .

for x = 0, . . . , |G | − 1 do

X ′ ← gx

if X ′ = X then return x

Is this a good algorithm?

40 / 70

Computing Discrete Logs

Let G = 〈g〉 be a cyclic group with generator g ∈ G .

Input: X ∈ G

Desired Output: DLogG ,g (X)

That is, we want x such that gx = X .

for x = 0, . . . , |G | − 1 do

X ′ ← gx

if X ′ = X then return x

Is this a good algorithm? It is

• Correct (always returns the right answer)

40 / 70

Computing Discrete Logs

Let G = 〈g〉 be a cyclic group with generator g ∈ G .

Input: X ∈ G

Desired Output: DLogG ,g (X)

That is, we want x such that gx = X .

for x = 0, . . . , |G | − 1 do

X ′ ← gx

if X ′ = X then return x

Is this a good algorithm? It is

• Correct (always returns the right answer), but

• very, very SLOW!

Run time is O(|G |) exponentiations, which for G = Z∗
N is O(N), which

is exponential time and prohibitive for large N.

40 / 70

Doing Better: Baby-step Giant-step

Let G = 〈g〉 be a cyclic group. Let m = |G | and n = ⌈√m ⌉. Given
X ∈ G we seek x such that gx = G .

Will get an algorithm that uses O(n) = O(
√

m) exponentiations.

41 / 70

Doing Better: Baby-step Giant-step

Let G = 〈g〉 be a cyclic group. Let m = |G | and n = ⌈√m ⌉. Given
X ∈ G we seek x such that gx = G .

Will get an algorithm that uses O(n) = O(
√

m) exponentiations.

Idea of algorithm: Compute two lists

• Xg−b for b = 0, 1, . . . , n

• (gn)a for a = 0, 1, . . . , n

And find a value Y that is in both lists. This means there are a, b such
that

Y = Xg−b = (gn)a

and hence
X = (gn)agb = gan+b

and we have x = na + b.

41 / 70

Doing Better: Baby-step Giant-step

Let G = 〈g〉 be a cyclic group. Let m = |G | and n = ⌈√m ⌉.
Idea of algorithm: Compute two lists

• Xg−b for b = 0, 1, . . . , n

• (gn)a for a = 0, 1, . . . , n

And find a value Y that is in both lists. This means there are a, b such
that

Y = Xg−b = (gn)a

and hence
X = (gn)agb = gan+b

and we have x = na + b.

Question: Why do the lists have a common member?

42 / 70

Doing Better: Baby-step Giant-step

Let G = 〈g〉 be a cyclic group. Let m = |G | and n = ⌈√m ⌉.
Idea of algorithm: Compute two lists

• Xg−b for b = 0, 1, . . . , n

• (gn)a for a = 0, 1, . . . , n

And find a value Y that is in both lists. This means there are a, b such
that

Y = Xg−b = (gn)a

and hence
X = (gn)agb = gan+b

and we have x = na + b.

Question: Why do the lists have a common member?

Answer: Let (x1, x0)← INT-DIV(x , n). Then x = nx1 + x0 and
0 ≤ x0, x1 ≤ n so Xg−x0 is on first list and (gn)x1 is on the second list.

42 / 70

The Baby-step Giant-step Algorithm

Let G = 〈g〉 be a cyclic group. Given X ∈ G the following algorithm
finds DLogG ,g (X) in O(

√

|G |) exponentiations, where m = |G |:

Algorithm Absgs(X)
n← ⌈√m⌉N ← gn

For b = 0, . . . , n do B [Xg−b]← b

For a = 0, . . . , n do
Y ← Na

If B [Y] 6= ⊥ then x0 ← B [Y]; x1 ← a

Return ax1 + x0

43 / 70

So Far

There is a better-than-exhaustive-search method to compute discrete
logarithms, but its O(

√

|G |) running time is still exponential and
prohibitive.

• Is there a faster algorithm?

• Is there a polynomial time algorithm, meaning one with running
time O(nc) for some constant c where n = log |G |?

State of the art: There are faster algorithms in some groups, but no
polynomial time algorithm is known.

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires discrete log computation.

44 / 70

Index Calculus

Let p be a prime and G = Z∗
p. Then there is an algorithm that finds

discrete logs in G in time

e1.92(ln p)1/3(ln ln p)2/3

This is sub-exponential, and quite a bit less than

√
p = e(ln p)/2

Note: The actual running time is e1.92(ln q)1/3(ln ln q)2/3
where q is the

largest prime factor of p − 1, but we chose p so that q ≈ p, for example
p − 1 = 2q for q a prime.

45 / 70

Elliptic Curve Groups

Let G be a prime-order group of points over an elliptic curve. Then the
best known algorithm to compute discrete logs takes time

O(
√

p)

where p = |G |.

46 / 70

Comparison

Say we want 80-bits of security, meaning discrete log computation by
the best known algorithm should take time 280. Then

• If we work in Z∗
p (p a prime) we need to set |Z∗

p| = p − 1 ≈ 21024

• But if we work on an elliptic curve group of prime order p then it
suffices to set p ≈ 2160.

Why?

e1.92(ln 21024)1/3(ln ln 21024)2/3 ≈
√

2160 = 280

47 / 70

Why are Smaller Groups Preferable?

Group Size Cost of Exponentiation

2160 1
21024 260

Exponentiation takes time cubic in log |G | where G is the group.

Encryption and decryption will be 260 times faster in the smaller group!

48 / 70

DL and Friends

Let G = 〈g〉 be a cyclic group.

Problem Given Figure out

Discrete logarithm (DL) gx x

Computational Diffie-Hellman (CDH) gx , gy gxy

Decisional Diffie-Hellman (DDH) gx , gy , g z is z ≡ xy(mod |G |)?

49 / 70

DL and Friends

Let G = 〈g〉 be a cyclic group.

Problem Given Figure out

Discrete logarithm (DL) gx x

Computational Diffie-Hellman (CDH) gx , gy gxy

Decisional Diffie-Hellman (DDH) gx , gy , g z is z ≡ xy(mod |G |)?

DL −→ CDH −→ DDH

A −→ B means

• If you can solve A then you can solve B; equivalently

• If A is easy then B is easy; equivalently

• If B is hard then A is hard.

49 / 70

DL −→ CDH

Given: DL solver A1

- -A1gx x

Want: CDH solver A2

-

-

-

A2 gxy

gy

gx

Construction:

50 / 70

DL −→ CDH

Given: DL solver A1

- -A1gx x

Want: CDH solver A2

-

-

-

A2 gxy

gy

gx

Construction:

- -A1 xgx

--

A2

gy
Z ← (gy)x Z = gxy

50 / 70

CDH −→ DDH

Given: CDH solver A2

-

-

-

A2 gxy

gy

gx

Want: DDH solver A3

-

-

-

-

gx

gy A3

g z

(z = xy)

Construction:

51 / 70

CDH −→ DDH

Given: CDH solver A2

-

-

-

A2 gxy

gy

gx

Want: DDH solver A3

-

-

-

-

gx

gy A3

g z

(z = xy)

Construction:

�

��
-

-

-

-

?

-

A3

gxygx

gy

g z =?

A2

51 / 70

Formal Definitions

Problem Given Figure out

Discrete logarithm (DL) gx x

Computational Diffie-Hellman (CDH) gx , gy gxy

Decisional Diffie-Hellman (DDH) gx , gy , g z is z ≡ xy(mod |G |)?

In the formalizations:

• x , y will be chosen at random.

• In DDH the problem will be to figure out whether z = xy or was
chosen at random.

We will get advantage measures

Advdl
G ,g (A), Advcdh

G ,g (A), Advddh
G ,g (A)

for an adversary A that equal their success probability.

52 / 70

DL Formally

Let G = 〈g〉 be a cyclic group of order m, and A an adversary.

Game DLG ,g

procedure Initialize
x

$← Zm;X ← gx

return X

procedure Finalize(x ′)
return (x = x ′)

The dl-advantage of A is

Advdl
G ,g (A) = Pr

[

DLA
G ,g ⇒ true

]

53 / 70

CDH Formally

Let G = 〈g〉 be a cyclic group of order m, and A an adversary.

Game CDHG ,g

procedure Initialize
x , y

$← Zm

X ← gx ;Y ← gy

return X ,Y

procedure Finalize(Z)
return (Z = gxy)

The cdh-advantage of A is

Advcdh
G ,g (A) = Pr

[

CDHA
G ,g ⇒ true

]

54 / 70

DDH Formally

Let G = 〈g〉 be a cyclic group of order m, and A an adversary.

Game DDHG ,g

procedure Initialize
b

$←{0, 1}; x , y
$← Zm

if b = 1 then z ← xy mod m

else z
$← Zm

return gx , gy , g z

procedure Finalize(b′)
return (b = b′)

The ddh-advantage of A is

Advddh
G ,g (A) = 2 · Pr

[

DDHA
G ,g ⇒ true

]

− 1

55 / 70

DDH, alternative formulation

Let G = 〈g〉 be a cyclic group of order m, and A an adversary.

Game DDH1G ,g

procedure Initialize
x , y

$← Zm

z ← xy mod m

return gx , gy , g z

procedure Finalize(b′)
return (b′ = 1)

Game DDH0G ,g

procedure Initialize
x , y

$← Zm

z ← xy mod m

return gx , gy , g z

procedure Finalize(b′)
return (b′ = 1)

Then,

Advddh
G ,g (A) = Pr

[

DDH1A
G ,g ⇒ true

]

− Pr
[

DDH0A
G ,g ⇒ true

]

56 / 70

Status

Problem Group

Z∗
p EC

DL hard harder
CDH hard harder
DDH easy harder

hard: best known algorithm takes time e1.92(ln p)1/3(ln ln p)2/3

harder: best known algorithm takes time
√

p, where p is the prime order
of the group.

easy: There is a polynomial time algorithm.

57 / 70

Finding cyclic groups

We will need to build (large) groups over which our cryptographic
schemes can work, and find generators in these groups.

How do we do this efficiently?

58 / 70

Finding generators

If |G | is prime then every g ∈ G − {1} is a generator.

If G = Z ∗
p where p is a prime

• It may be hard in general to find a generator

• But easy if the prime factorization of p − 1 is known

59 / 70

Finding generators: Randomly pick and check

repeat

g
$← G − {1}

until (TEST-GENG (g) = true)

• How do we design TEST-GENG ?

• How many iterations does the algorithm take?

60 / 70

Finding generators: Randomly pick and check

repeat

g
$← G − {1}

until (TEST-GENG (g) = true)

• How do we design TEST-GENG ?

• How many iterations does the algorithm take?

We say that p is a SG prime if p − 1 = 2q for some prime q.

Example: 7 is a SG prime because 7-1 = 2(3) and 3 is a prime.

We will address the above question for SG primes.

60 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2 4 1 2 4 1

3i

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2 4 1 2 4 1

3i 3

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2 4 1 2 4 1

3i 3 2

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2 4 1 2 4 1

3i 3 2 6

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2 4 1 2 4 1

3i 3 2 6 4

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2 4 1 2 4 1

3i 3 2 6 4 5

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2 4 1 2 4 1

3i 3 2 6 4 5 1

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2 4 1 2 4 1

3i 3 2 6 4 5 1

4i 4 2 1 4 2 1

5i 5 4 6 2 3 1

6i 6 1 6 1 6 1

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2 4 1 2 4 1

3i 3 2 6 4 5 1

4i 4 2 1 4 2 1

5i 5 4 6 2 3 1

6i 6 1 6 1 6 1

The generators are

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 1 2 3 4 5 6

1i 1 1 1 1 1 1

2i 2 4 1 2 4 1

3i 3 2 6 4 5 1

4i 4 2 1 4 2 1

5i 5 4 6 2 3 1

6i 6 1 6 1 6 1

The generators are 3 and 5

61 / 70

Generators mod 7

Let G = Z∗
7 = {1, 2, 3, 4, 5, 6}

i 2 3

1i 1 1

2i 4 1

3i 2 6

4i 2 1

5i 4 6

6i 1 6

We observe that g is a generator if and only if g2 6= 1 and g3 6= 1.

62 / 70

Testing whether a group element is a generator

Suppose p is a SG prime, meaning p − 1 = 2q for a prime q.

Fact: g ∈ Z∗
p is a generator if and only if g2 6≡ 1 and gq 6≡ 1 modulo p.

Example: Let p = 7 so that q = 3. Then g ∈ Z∗
7 is a generator if and

only if g2 6≡ 1 and g3 6≡ 1 modulo 7.

63 / 70

How many generators are there?

Suppose p is a SG prime, meaning p − 1 = 2q for a prime q.

Fact: Z∗
p has q − 1 generators

Example: Suppose p = 7 so that q = 3. Then Z∗
7 has q − 1 = 2

generators.

So if g
$← G − {1} then

Pr
[
〈g〉 = Z∗

p

]
=

q − 1

p − 2
=

q − 1

2q − 1
≈ 1

2

Example: If p = 7 and g
$← Z∗

7 − {1} then

Pr [〈g〉 = Z∗
7] =

3− 1

7− 2
=

2

5

64 / 70

Finding generators: Randomly pick and check

repeat

g
$← G − {1}

until (TEST-GENG (g) = true)

• How do we design TEST-GENG ?

• How many iterations does the algorithm take?

We are addressing the two questions for the case that p is a SG prime.

65 / 70

Finding generators modulo SG primes

Suppose p is a SG prime with p − 1 = 2q.

repeat

g
$← G − {1}

until (g2 6≡ 1 (mod p)and gq 6≡ 1 (mod p))

The probability that a generator is found in a given step is

q − 1

2q − 1
≈ 1

2

so the expected number of iterations of the algorithm is about 2.

66 / 70

Recall ...

We want to figure out how to find

• A large SG prime p

• A generator g of Z∗
p

so that we can work over Z∗
p = 〈g〉.

So far we solved the second problem. What about the first?

67 / 70

Finding primes

Desired: An efficient algorithm that given an integer k returns a prime
p ∈ {2k−1, . . . , 2k − 1} such that q = (p − 1)/2 is also prime.

Alg Findprime(k)
do

p
$←{2k−1, . . . , 2k − 1}

until (p is prime and (p − 1)/2 is prime)
return p

• How do we test primality?

• How many iterations do we need to succeed?

68 / 70

Primality Testing

Given: integer N

Output: TRUE if N is prime, FALSE otherwise.

for i = 2, . . . , ⌈
√

N⌉ do

if N mod i = 0 then return false
return true

69 / 70

Primality Testing

Given: integer N

Output: TRUE if N is prime, FALSE otherwise.

for i = 2, . . . , ⌈
√

N⌉ do

if N mod i = 0 then return false
return true

Correct but SLOW! O(N) running time, exponential. However, we have:

• O(|N|3) time randomized algorithms

• Even a O(|N|8) time deterministic algorithm

69 / 70

Density of primes

Let π(N) be the number of primes in the range 1, . . . ,N. So if

p
$←{1, . . . ,N} then

Pr [p is a prime] =
π(N)

N

Fact: π(N) ∼ N

ln(N)

so

Pr [p is a prime] ∼ 1

ln(N)

If N = 21024 this is about 0.001488 ≈ 1/1000.

So the number of iterations taken by our algorithm to find a prime is
not too big.

70 / 70

