
BLOCK CIPHERS

1 / 44

Permutations and Inverses

A function f : {0, 1}ℓ → {0, 1}ℓ is a permutation if there is an inverse
function f −1 : {0, 1}ℓ → {0, 1}ℓ satisfying

∀x ∈ {0, 1}ℓ : f −1(f (x)) = x

This means f must be one-to-one and onto, meaning for every

y ∈ {0, 1}ℓ there is a unique x ∈ {0, 1}ℓ such that f (x) = y .

2 / 44

Permutations and Inverses

x 00 01 10 11

f (x) 01 11 00 10

A permutation

x 00 01 10 11

f (x) 01 11 11 10

Not a permutation

3 / 44

Permutations and Inverses

x 00 01 10 11

f (x) 01 11 00 10

A permutation

x 00 01 10 11

f −1(x) 10 00 11 01

Its inverse

4 / 44

Block Ciphers

Let
E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ

be a function taking a key K and input x to return output E (K , x). For
each key K we let EK : {0, 1}ℓ → {0, 1}ℓ be the function defined by

EK (x) = E (K , x) .

We say that E is a block cipher if

• EK : {0, 1}ℓ → {0, 1}ℓ is a permutation for every K , meaning has
an inverse E−1

K ,

• E ,E−1 are efficiently computable,

where E−1(K , x) = E−1

K (x).

5 / 44

Example

The table entry corresponding to the key in row K and input in column
x is EK (x).

00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

In this case, the inverse cipher E−1 is given by the same table: the table
entry corresponding to the key in row K and output in column y is
E−1

K (y).

6 / 44

Block Ciphers: Example

Let ℓ = k and define E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ by

EK (x) = E (K , x) = K ⊕ x

Then EK has inverse E−1

K
where

E−1

K (y) = K ⊕ y

Why? Because

E−1

K (EK (x)) = E−1

K (K ⊕ x) = K ⊕ K ⊕ x = x

The inverse of block cipher E is the block cipher E−1 defined by

E−1(K , y) = E−1

K (y) = K ⊕ y

7 / 44

Block cipher usage

• K
$
←{0, 1}k

• K (magically) given to parties S, R, but not to A.

• S,R use EK

Algorithm E is public! Think of EK as encryption under key K .

Leads to security requirements like:

• Hard to get K from y1, y2, . . .

• Hard to get xi from yi

8 / 44

DES History

1972 – NBS (now NIST) asked for a block cipher for standardization

1974 – IBM designs Lucifer

Lucifer eventually evolved into DES.

Widely adopted as a standard including by ANSI and American Bankers
association

Used in ATM machines

Replaced (by AES) only a few years ago

9 / 44

DES parameters

Key Length k = 56

Block length ℓ = 64

So,

DES: {0, 1}56 × {0, 1}64 → {0, 1}64

DES−1 : {0, 1}56 × {0, 1}64 → {0, 1}64

10 / 44

DES Construction

function DESK (M) // |K | = 56 and |M | = 64

(K1, . . . ,K16)← KeySchedule(K) // |Ki | = 48 for 1 ≤ i ≤ 16

M ← IP(M)
Parse M as L0 ‖ R0 // |L0| = |R0| = 32

for i = 1 to 16 do
Li ← Ri−1 ; Ri ← f (Ki ,Ri−1) ⊕ Li−1

C ← IP−1(L16 ‖ R16)
return C

Round i: Invertible given Ki :

11 / 44

DES Construction

function DESK (M) // |K | = 56 and |M | = 64

(K1, . . . ,K16)← KeySchedule(K) // |Ki | = 48 for 1 ≤ i ≤ 16

M ← IP(M)
Parse M as L0 ‖ R0 // |L0| = |R0| = 32

for i = 1 to 16 do
Li ← Ri−1 ; Ri ← f (Ki ,Ri−1) ⊕ Li−1

C ← IP−1(L16 ‖ R16)
return C

function DES−1

K (C) // |K | = 56 and |M | = 64

(K1, . . . ,K16)← KeySchedule(K) // |Ki | = 48 for 1 ≤ i ≤ 16

C ← IP(C)
Parse C as L16 ‖ R16

for i = 16 downto 1 do
Ri−1 ← Li ; Li−1 ← f (Ki ,Ri−1) ⊕ Ri

M ← IP−1(L0 ‖ R0)
return M

12 / 44

DES Construction

function DESK (M) // |K | = 56 and |M | = 64

(K1, . . . ,K16)← KeySchedule(K) // |Ki | = 48 for 1 ≤ i ≤ 16

M ← IP(M)
Parse M as L0 ‖ R0 // |L0| = |R0| = 32

for i = 1 to 16 do
Li ← Ri−1 ; Ri ← f (Ki ,Ri−1) ⊕ Li−1

C ← IP−1(L16 ‖ R16)
return C

IP IP−1

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

13 / 44

DES Construction

function f (J,R) // |J| = 48 and |R | = 32

R ← E (R) ; R ← R ⊕ J

Parse R as R1 ‖ R2 ‖ R3 ‖ R4 ‖ R5 ‖ R6 ‖ R7 ‖ R8 // |Ri | = 6 for 1 ≤ i

for i = 1, . . . , 8 do
Ri ← Si(Ri) // Each S-box returns 4 bits

R ← R1 ‖ R2 ‖ R3 ‖ R4 ‖ R5 ‖ R6 ‖ R7 ‖ R8 // |R | = 32 bits

R ← P(R)
return R

E P

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25 14 / 44

S-boxes

S1 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0

0 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3

1 0 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5

1 1 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6

S2 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5

0 1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11

1 0 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2

1 1 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14

S3 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2

0 1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15

1 0 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14

1 1 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2

Figure: The DES S-boxes.
15 / 44

Cryptanalysis: Key Recovery Attacks on Block Ciphers

Adversary A knows E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ

T
$
←{0, 1}k is the target key.

Given: (M1,C1), . . . , (Mq,Cq) where Ci = E (T ,Mi) for i = 1, . . . , q
and M1, . . . ,Mq are distinct.

Find: T

16 / 44

Cryptanalysis: Key Recovery Attacks on Block Ciphers

Adversary A knows E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ

T
$
←{0, 1}k is the target key.

Given: (M1,C1), . . . , (Mq,Cq) where Ci = E (T ,Mi) for i = 1, . . . , q
and M1, . . . ,Mq are distinct.

Find: T

Certainly A should be given C1, . . . ,Cq. But why does A know
M1, . . . ,Mq?

• A posteriori revelation of data

• A priori knowledge of context

Good to be conservative!

16 / 44

A posteriori revelation of data

• S ,R share key K

• On January 10, S encrypts

M = Let’s meet tomorrow at 5 pm

and sends ciphertext C to R .

• Adversary captures C

• On January 11, adversary observes S ,R meeting at 5 pm and
deduces that M is as above

• Adversary knows C and its decryption M

17 / 44

A priori knowledge of context

• S ,R share key K

• E-mails always begin with the keyword “From”

• S encrypts an email

• Adversary gets ciphertext C

• Since it knows part of the plaintext (“From”) it may have an
input-output example of the block cipher under K

18 / 44

Cryptanalysis: Key Recovery Attacks on Block Ciphers

Adversary A knows E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ

T
$
←{0, 1}k is the target key.

Given: (M1,C1), . . . , (Mq,Cq) where Ci = E (T ,Mi) for i = 1, . . . , q
and M1, . . . ,Mq are distinct.

Find: T

19 / 44

Cryptanalysis: Key Recovery Attacks on Block Ciphers

Adversary A knows E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ

T
$
←{0, 1}k is the target key.

Given: (M1,C1), . . . , (Mq,Cq) where Ci = E (T ,Mi) for i = 1, . . . , q
and M1, . . . ,Mq are distinct.

Find: T

20 / 44

Types of attacks

Given: (M1,C1), . . . , (Mq,Cq) where Ci = E (T ,Mi) for i = 1, . . . , q
and M1, . . . ,Mq are distinct.

Known Message Attack: M1, . . . ,Mq arbitrary, not chosen by A.

21 / 44

Types of attacks

Given: (M1,C1), . . . , (Mq,Cq) where Ci = E (T ,Mi) for i = 1, . . . , q
and M1, . . . ,Mq are distinct.

Chosen Message Attack: A can pick M1, . . . ,Mq, even adaptively,
meaning pick Mi as a function of (M1,C1), . . . , (Mi−1,Ci−1) for
i = 1, . . . , q.

EK

M1
�

C1 = EK (M1)
-

M2
�

C2 = EK (M2)
-

...

A

Examples:

• A sends S e-mails which S encrypts and forwards to R

• S is a router encrypting any packet it receives

22 / 44

Cryptanalysis: Key Recovery Attacks on Block Ciphers

Adversary A knows E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ

T
$
←{0, 1}k is the target key.

Given: (M1,C1), . . . , (Mq,Cq) where Ci = E (T ,Mi) for i = 1, . . . , q
and M1, . . . ,Mq are distinct.

Find: T

23 / 44

Exhaustive Key Search

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1) satisfy ET (M1) = C1.

algorithm EKSE (M1,C1)
for i = 1, . . . , 2k do

if E (Ti ,M1) = C1 then return Ti

24 / 44

Exhaustive Key Search

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1) satisfy ET (M1) = C1.

algorithm EKSE (M1,C1)
for i = 1, . . . , 2k do

if E (Ti ,M1) = C1 then return Ti

Does this find the target key T?

24 / 44

Exhaustive Key Search

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1) satisfy ET (M1) = C1.

algorithm EKSE (M1,C1)
for i = 1, . . . , 2k do

if E (Ti ,M1) = C1 then return Ti

Does this find the target key T?

Definition: A key K is consistent with (M1,C1) if C1 = E (K ,M1)

24 / 44

Exhaustive Key Search

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1) satisfy ET (M1) = C1.

algorithm EKSE (M1,C1)
for i = 1, . . . , 2k do

if E (Ti ,M1) = C1 then return Ti

Does this find the target key T?

Definition: A key K is consistent with (M1,C1) if C1 = E (K ,M1)

Let S be the set of all keys consistent with (M1,C1). Then EKSE finds
some key in S .

24 / 44

Exhaustive Key Search

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1) satisfy ET (M1) = C1.

algorithm EKSE (M1,C1)
for i = 1, . . . , 2k do

if E (Ti ,M1) = C1 then return Ti

Does this find the target key T?

Definition: A key K is consistent with (M1,C1) if C1 = E (K ,M1)

Let S be the set of all keys consistent with (M1,C1). Then EKSE finds
some key in S .

Fact: If ℓ ≥ k then T is “usually” the only key in S

24 / 44

Exhaustive Key Search

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1) satisfy ET (M1) = C1.

algorithm EKSE (M1,C1)
for i = 1, . . . , 2k do

if E (Ti ,M1) = C1 then return Ti

Does this find the target key T? Yes, usually.

24 / 44

Increasing likelihood of getting target key

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1), . . . , (Mq,Cq) satisfy ET (Mi) = Ci for all
1 ≤ i ≤ q.

algorithm EKSE ((M1,C1), . . . , (Mq,Cq))
for i = 1, . . . , 2k do

if (E (Ti ,M1) = C1 and · · · and E (Ti ,Mq) = Cq) then
return Ti

25 / 44

Exhaustive Key Search

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1) satisfy ET (M1) = C1.

algorithm EKSE (M1,C1)
for i = 1, . . . , 2k do

if E (Ti ,M1) = C1 then return Ti

26 / 44

How long does exhaustive key search take?

DES can be computed at 1.6 Gbits/sec in hardware.

DES plaintext = 64 bits

Chip can perform (1.6 × 109)/64 = 2.5 × 107 DES computations per
second

Expect EKS to succeed in 255 DES computations, so it takes time

255

2.5× 107
≈ 1.4× 109 seconds

≈ 45 years!

Key Complementation ⇒ 22.5 years

But this is prohibitive.

Does this mean DES is secure?

27 / 44

Differential and linear cryptanalysis

Exhaustive key search is a generic attack: Did not attempt to “look
inside” DES and find/exploit weaknesses.

Method when q Type of attack

Differential cryptanalysis 1992 247 Chosen-message

Linear cryptanalysis 1993 244 Known-message

28 / 44

Differential and linear cryptanalysis

Exhaustive key search is a generic attack: Did not attempt to “look
inside” DES and find/exploit weaknesses.

Method when q Type of attack

Differential cryptanalysis 1992 247 Chosen-message

Linear cryptanalysis 1993 244 Known-message

But merely storing 244 input-output pairs requires 281 Tera-bytes.

In practice these attacks are prohibitively expensive.

28 / 44

EKS revisited

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1) satisfy ET (M1) = C1.

algorithm EKSE (M1,C1)
for i = 1, . . . , 2k do

if E (Ti ,M1) = C1 then return Ti

29 / 44

EKS revisited

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1) satisfy ET (M1) = C1.

algorithm EKSE (M1,C1)
for i = 1, . . . , 2k do

if E (Ti ,M1) = C1 then return Ti

Observation: The E computations can be performed in parallel.

29 / 44

EKS revisited

Let T1, . . . ,T2k be a list of all k bit keys. Let T
$
←{0, 1}k be the target

key and let (M1,C1) satisfy ET (M1) = C1.

algorithm EKSE (M1,C1)
for i = 1, . . . , 2k do

if E (Ti ,M1) = C1 then return Ti

Observation: The E computations can be performed in parallel.

• Wiener 1993:
• $1 million
• 57 chips
• Finds key in 3.5 hours

• EFF
• $250,000
• Finds key in 56 hours

29 / 44

DES security summary

DES is considered broken because its short key size permits rapid
key-search.

But DES is a very strong design as evidenced by the fact that there are
no practical attacks that exploit its structure.

30 / 44

2DES

Block cipher 2DES : {0, 1}112 × {0, 1}64 → {0, 1}64 is defined by

2DESK1K2
(M) = DESK2

(DESK1
(M))

• Exhaustive key search takes 2112 DES computations, which is too
much even for machines

• Resistant to differential and linear cryptanalysis.

31 / 44

Meet-in-the-middle attack on 2DES

Suppose K1K2 is a target 2DES key and adversary has M,C such that

2DESK1K2
(M) = DESK2

(DESK1
(M))

Then
DES−1

K2
(C) = DESK1

(M)

32 / 44

Meet-in-the-middle attack on 2DES

Suppose DES−1

K2
(C) = DESK1

(M) and T1, . . . ,TN are all possible DES

keys, where N = 256.

T1 DES(T1,M)

Ti DES(Ti ,M)

TN DES(TN ,M)

Table L

DES−1(T1,C) T1

DES−1(Tj ,C) Tj

DES−1(TN ,C) TN

Table R
Attack idea:

• Build L,R tables

33 / 44

Meet-in-the-middle attack on 2DES

Suppose DES−1

K2
(C) = DESK1

(M) and T1, . . . ,TN are all possible DES

keys, where N = 256.

K1 →

T1 DES(T1,M)

Ti DES(Ti ,M)

TN DES(TN ,M)

Table L

equal
←→

DES−1(T1,C) T1

DES−1(Tj ,C) Tj

DES−1(TN ,C) TN

Table R

← K2

Attack idea:

• Build L,R tables

• Find i , j s.t. L[i] = R [j]

• Guess that K1K2 = TiTj

33 / 44

Meet-in-the-middle attack on 2DES

Let T1, . . . ,T256 denote an enumeration of DES keys.

MinM2DES(M1,C1)
for i = 1, . . . , 256 do L[i]← DES(Ti ,M1)

for j = 1, . . . , 256 do R [j]← DES−1(Tj ,C1)
S ← { (i , j) : L[i] = R [j] }
Pick some (l , r) ∈ S and return Tl ‖ Tr

Attack takes about 257 DES/DES−1 computations.

Interesting, but not practical.

34 / 44

3DES

Block ciphers

3DES3 : {0, 1}168 × {0, 1}64 → {0, 1}64

3DES2 : {0, 1}112 × {0, 1}64 → {0, 1}64

are defined by

3DES3K1 ‖ K2 ‖ K3
(M) = DESK3

(DES−1

K2
(DESK1

(M))

3DES2K1 ‖ K2
(M) = DESK2

(DES−1

K1
(DESK2

(M))

Meet-in-the-middle attack on 3DES3 reduces its “effective” key length
to 112.

35 / 44

DESX

DESXKK1K2
(M) = K2 ⊕ DESK (K1 ⊕M)

• Key length = 56 + 64 + 64 = 184

• “effective” key length = 120 due to a 2120 time meet-in-middle
attack

• No more resistant than DES to linear or differential cryptanalysis

Good practical replacement for DES that has lower computational cost
than 2DES or 3DES.

36 / 44

Block size limitation

Later we will see “birthday” attacks that “break” a block cipher
E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ in time 2ℓ/2

For DES this is 264/2 = 232 which is small, and this is unchanged for
2DES and 3DES.

Would like a larger block size.

37 / 44

AES

1998: NIST announces competition for a new block cipher

• key length 128

• block length 128

• faster than DES in software

Submissions from all over the world: MARS, Rijndael, Two-Fish, RC6,
Serpent, Loki97, Cast-256, Frog, DFC, Magenta, E2, Crypton, HPC,
Safer+, Deal

38 / 44

AES

1998: NIST announces competition for a new block cipher

• key length 128

• block length 128

• faster than DES in software

Submissions from all over the world: MARS, Rijndael, Two-Fish, RC6,
Serpent, Loki97, Cast-256, Frog, DFC, Magenta, E2, Crypton, HPC,
Safer+, Deal

2001: NIST selects Rijndael to be AES.

38 / 44

AES

function AESK (M)
(K0, . . . ,K10)← expand(K)
s ← M ⊕ K0

for r = 1 to 10 do
s ← S(s)
s ← shift-rows(s)
if r ≤ 9 then s ← mix-cols(s) fi
s ← s ⊕ Kr

end for
return s

• Fewer tables than DES

• Finite field operations

39 / 44

Security of AES

No key-recovery attack better than EKS is known, and latter is
prohibitive for 128 bit keys.

40 / 44

KR - security

Adversary A knows E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ

T
$
←{0, 1}k is the target key.

Given: (M1,C1), . . . , (Mq,Cq) where Ci = E (T ,Mi) for i = 1, . . . , q
and M1, . . . ,Mq are distinct.

Find: T

So far, a block cipher has been viewed as secure if it resists key
recovery, namely if there is no efficient way to solve the above problem.

41 / 44

Limitations of security against key recovery

Is security against key recovery enough?

42 / 44

Limitations of security against key recovery

Is security against key recovery enough?

Aliens from planet Crypton have a (new) cipher

A : {0, 1}128 × {0, 1}128 → {0, 1}128

that is guaranteed to resist key recovery. Would you use it encrypt?

42 / 44

Limitations of security against key recovery

Is security against key recovery enough?

Aliens from planet Crypton have a (new) cipher

A : {0, 1}128 × {0, 1}128 → {0, 1}128

that is guaranteed to resist key recovery. Would you use it encrypt?

The cipher is:

AK(M) = M

• Impossible to find key from input-output examples, but

• Encryption is insecure because given ciphertext I know plaintext.

42 / 44

So what?

Possible reaction: But DES, AES are not designed like A, so why does
this matter?

43 / 44

So what?

Possible reaction: But DES, AES are not designed like A, so why does
this matter?

Answer: It tells us that security against key recovery is not, as a
block-cipher property, sufficient for security of uses of the block cipher.

43 / 44

So what?

Possible reaction: But DES, AES are not designed like A, so why does
this matter?

Answer: It tells us that security against key recovery is not, as a
block-cipher property, sufficient for security of uses of the block cipher.

As designers and users we want to know what properties of a block
cipher give us security when the block cipher is used.

43 / 44

So what is a “good” block cipher?

Possible Properties Necessary? Sufficient?

security against key recovery YES

44 / 44

So what is a “good” block cipher?

Possible Properties Necessary? Sufficient?

security against key recovery YES NO!

44 / 44

So what is a “good” block cipher?

Possible Properties Necessary? Sufficient?

security against key recovery YES NO!

hard to find M given C = EK (M) YES

44 / 44

So what is a “good” block cipher?

Possible Properties Necessary? Sufficient?

security against key recovery YES NO!

hard to find M given C = EK (M) YES NO!
...

We can’t define or understand security well via some such
(indeterminable) list.

We want a single “master” property of a block cipher that is sufficient
to ensure security of common usages of the block cipher.

44 / 44

