
AUTHENTICATED ENCRYPTION

1 / 55

So Far ...

We have looked at methods to provide privacy and
integrity/authenticity separately:

Goal Primitive Security notions

Data privacy symmetric encryption IND-CPA, IND-CCA
Data integrity/authenticity MA scheme/MAC UF-CMA, SUF-CMA

2 / 55

Authenticated Encryption

In practice we often want both privacy and integrity/authenticity.

Example: A doctor wishes to send medical information M about Alice
to the medical database. Then

• We want data privacy to ensure Alice’s medical records remain
confidential.

• We want integrity/authenticity to ensure the person sending the
information is really the doctor and the information was not
modified in transit.

We refer to this as authenticated encryption.

3 / 55

Authenticated Encryption Schemes

Syntactically, an authenticated encryption scheme is just a symmetric
encryption scheme AE = (K, E ,D) where

4 / 55

Privacy of Authenticated Encryption Schemes

The notions of privacy for symmetric encryption carry over:

• IND-CPA

• IND-CCA

5 / 55

Integrity of Authenticated Encryption Schemes

Adversary’s goal is to get the receiver to accept a “non-authentic”
ciphertext C .

Two possible interpretations of “non-authentic:”

• Integrity of plaintexts: M = DK (C) was never encrypted by the
sender

• Integrity of ciphertexts: C was never transmitted by the sender

6 / 55

INT-PTXT

Let AE = (K, E ,D) be a symmetric encryption scheme and A an
adversary.

Game INTPTXTAE

procedure Initialize
K

$←K ; S ← ∅

procedure Enc(M)

C
$
←EK (M)

S ← S ∪ {M}
return C

procedure Dec(C)
M ← DK (C)
if (M 6∈ S ∧M 6= ⊥) then

win← true
return win

procedure Finalize
return win

The int-ptxt advantage of A is

Advint-ptxt
AE (A) = Pr[INTPTXTA

AE ⇒ true]

7 / 55

INT-CTXT

Let AE = (K, E ,D) be a symmetric encryption scheme and A an
adversary.

Game INTCTXTAE

procedure Initialize
K

$←K ; S ← ∅

procedure Enc(M)

C
$←EK (M)

S ← S ∪ {C}
return C

procedure Dec(C)
M ← DK (C)
if (C 6∈ S ∧M 6= ⊥) then

win← true
return win

procedure Finalize
return win

The int-ctxt advantage of A is

Advint-ctxt
AE (A) = Pr[INTCTXTA

AE ⇒ true]

8 / 55

INT-CTXT⇒ INT-PTXT

If AE = (K, E ,D) is INT-CTXT secure then it is also INT-PTXT
secure.

Why? Suppose A makes Enc queries M1, . . . ,Mq resulting in ciphertexts

C1
$
←EK (M1), . . . ,Cq

$
←EK (Mq)

suppose A makes query Dec(C), and let M = DK (C).

Fact: M 6∈ {M1, . . . ,Mq} ⇒ C 6∈ {C1, . . . ,Cq}

So if A wins INT-PTXTAE it also wins INT-CTXTAE .

Theorem: For any adversary A,

Advint-ptxt
AE (A) ≤ Advint-ctxt

AE (A).

9 / 55

INT-PTXT 6⇒ INT-CTXT

Counterexample: Construct AE = (K, E ,D) which is

• not INT-CTXT secure, but

• is INT-PTXT secure

Approach: Start from some INT-PTXT secure AE ′ = (K′
, E ′,D′) and

modify it to AE so that:

• There is an attack showing AE is not INT-CTXT secure

• There is a proof by reduction showing AE inherits the INT-PTXT
security of AE ′.

10 / 55

INT-PTXT 6⇒ INT-CTXT

Given AE ′ = (K′
, E ′,D′), let AE = (K′

, E ,D) where

Alg EK (M)

C ′ $←E ′K (M); C ← 0||C ′

Return C

Alg DK (C)
b||C ′ ← C ; M ← D′

K (C ′)
Return M

Observe: If C = 0||C ′ $
←EK (M) then

• 1||C ′ 6= 0||C ′, but

• DK (1||C ′) = DK (0||C ′)

adversary A

Let M be any message
0||C ′ $← Enc(M); x ← Dec(1||C ′)

Then Advint-ctxt
AE (A) = 1.

Note: This does not compromise INT-PTXT security because x = M.

11 / 55

INT-PTXT 6⇒ INT-CTXT

Given AE ′ = (K′
, E ′,D′), let AE = (K′

, E ,D) where

Alg EK (M)

C ′ $
←E ′K (M); C ← 0||C ′

Return C

Alg DK (C)
b||C ′ ← C ; M ← D′

K (C ′)
Return M

Claim: If AE ′ is INT-PTXT secure, then so is AE .

Why? An attack on AE can be turned into one on AE ′. A formal proof
is by reduction.

12 / 55

Integrity with privacy

The goal of authenticated encryption is to provide both integrity and
privacy. We will be interested in:

• IND-CPA + INT-PTXT

• IND-CPA + INT-CTXT

13 / 55

Relations

A→ B : Any A-secure scheme is B-secure
A 6→ B : There is an A-secure scheme that is not B-secure

14 / 55

Plain Encryption Does Not Provide Integrity

Alg EK (M)

C [0]
$←{0, 1}n

For i = 0, . . . ,m do
C [i]← EK (C [i−1] ⊕ M[i])

Return C

Alg DK (C)
For i = 0, . . . ,m do

M[i]← E−1
K (C [i]) ⊕ C [i − 1]

Return M

Question: Is CBC$ encryption INT-PTXT or INT-CTXT secure?

15 / 55

Plain Encryption Does Not Provide Integrity

Alg EK (M)

C [0]
$←{0, 1}n

For i = 0, . . . ,m do
C [i]← EK (C [i−1] ⊕ M[i])

Return C

Alg DK (C)
For i = 0, . . . ,m do

M[i]← E−1
K (C [i]) ⊕ C [i − 1]

Return M

Question: Is CBC$ encryption INT-PTXT or INT-CTXT secure?

Answer: No, because any string C [0]C [1] . . . C [m] has a valid
decryption.

15 / 55

Plain Encryption Does Not Provide Integrity

Alg EK (M)

C [0]
$
←{0, 1}n

For i = 0, . . . ,m do
C [i]← EK (C [i−1] ⊕ M[i])

Return C

Alg DK (C)
For i = 0, . . . ,m do

M[i]← E−1
K (C [i]) ⊕ C [i − 1]

Return M

adversary A

C [0]C [1]C [2]
$←{0, 1}3n

M[1]M[2]← Dec(C [0]C [1]C [2])

Then

Advint-ptxt
SE (A) = 1

This violates INT-PTXT.

A scheme whose decryption algorithm never outputs ⊥ cannot provide
integrity!

16 / 55

A Better Attack on CBC$

Suppose A has the CBC$ encryption C [0]C [1] of a 1-block known
message M. Then it can create an encryption C ′[0]C ′[1] of any

(1-block) message M ′ of its choice via

C ′[0]← C [0] ⊕ M ⊕ M ′

C ′[1]← C [1]

i
?

?
EK

C [1]

M

C [0]

i
?

?
EK

C [1]

M ′

C [0] ⊕ M ⊕ M ′

17 / 55

Encryption with Redundancy

i
?

?
EK

M[1]

C [1]

i
?

?
EK

M[m]

C [m]

i
?

?
EK

C [2]

M[2]
i
?

?
EK

h(M)

C [m + 1]

...

C [0]

Here E : {0, 1}k × {0, 1}n → {0, 1}n is our block cipher and
h: {0, 1}∗ → {0, 1}n is a “redundancy” function, for example

• h(M[1] . . . M[m]) = 0n

• h(M[1] . . . M[m]) = M[1] ⊕ · · · ⊕ M[m]

• A CRC

• h(M[1] . . . M[m]) is the first n bits of SHA1(M[1] . . . M[m]).

The redundancy is verified upon decryption.

18 / 55

Encryption with Redundancy

i
?

?
EK

M[1]

C [1]

i
?

?
EK

M[m]

C [m]

i
?

?
EK

C [2]

M[2]
i
?

?
EK

h(M)

C [m + 1]

...

C [0]

Let E : {0, 1}k × {0, 1}n → {0, 1}n be our block cipher and
h: {0, 1}∗ → {0, 1}n a redundancy function. Let SE = (K, E ′,D′) be
CBC$ encryption and define the encryption with redundancy scheme
AE = (K, E ,D) via

Alg EK (M)
M[1] . . . M[m]← M

M[m + 1]← h(M)

C
$←E ′K (M[1] . . . M[m]M[m + 1])

return C

Alg DK (C)
M[1] . . . M[m]M[m + 1]← D′

K (C)
if (M[m + 1] = h(M)) then

return M[1] . . . M[m]
else return ⊥

19 / 55

Arguments in Favor of Encryption with Redundancy

i
?

?
EK

M[1]

C [1]

i
?

?
EK

M[m]

C [m]

i
?

?
EK

C [2]

M[2]
i
?

?
EK

h(M)

C [m + 1]

...

C [0]

The adversary will have a hard time producing the last enciphered block
of a new message.

20 / 55

Encryption with Redundancy Fails

adversary A

M[1]
$←{0, 1}n ; M[2]← h(M[1])

C [0]C [1]C [2]C [3]
$← Enc(M[1]M[2])

M[1]← Dec(C [0]C [1]C [2])

i
?

?
EK

M[1]

C [1]

i i
?

?

?

?
C [0]

EK

C [2]

EK

C [3]

h(M[1]M[2])

h(M[1])
︷︸︸︷

M[2]

This attack succeeds for any (not secret-key dependent) redundancy
function h.

21 / 55

WEP Attack

A “real-life” rendition of this attack broke the 802.11 WEP protocol,
which instantiated h as CRC and used a stream cipher for encryption
[BGW].

What makes the attack easy to see is having a clear, strong and formal
security model.

22 / 55

Generic Composition

Build an authenticated encryption scheme AE = (K, E ,D) by combining

• a given IND-CPA symmetric encryption scheme SE = (K′
, E ′,D′)

• a given SUF-CMA MACMA[F] where
F : {0, 1}k × {0, 1}∗ → {0, 1}n

CBC$-AES CTRC-AES . . .

HMAC-SHA1

CMAC

PMAC

UMAC
...

23 / 55

Generic Composition

Build an authenticated encryption scheme AE = (K, E ,D) by combining

• a given IND-CPA symmetric encryption scheme SE = (K′
, E ′,D′)

• a given SUF-CMA MACMA[F] where
F : {0, 1}k × {0, 1}∗ → {0, 1}n

A key K = Ke ||Km for AE always consists of a key Ke for SE and a key
Km for F :

Alg K
Ke

$←K′; Km
$←{0, 1}k

Return Ke ||Km

24 / 55

Generic Composition Methods

The order in which the primitives are applied is important. Can consider

Method Usage

Encrypt-and-MAC (E&M) SSH

MAC-then-encrypt (MtE) SSL/TLS

Encrypt-then-MAC (EtM) IPSec

We study these following [BN].

25 / 55

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $←E ′Ke
(M)

T ← FKm
(M)

Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA

INT-PTXT

INT-CTXT

26 / 55

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $←E ′Ke
(M)

T ← FKm
(M)

Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA NO

INT-PTXT

INT-CTXT

Why? T = FKm
(M) is a deterministic function of M and allows

detection of repeats.

26 / 55

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $←E ′Ke
(M)

T ← FKm
(M)

Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA NO

INT-PTXT

INT-CTXT

26 / 55

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $
←E ′Ke

(M)
T ← FKm

(M)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA NO

INT-PTXT YES

INT-CTXT

Why? F is a secure MAC and M is authenticated.

26 / 55

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $←E ′Ke
(M)

T ← FKm
(M)

Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA NO

INT-PTXT YES

INT-CTXT

26 / 55

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $
←E ′Ke

(M)
T ← FKm

(M)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA NO

INT-PTXT YES

INT-CTXT NO

Why? May be able to modify C ′ in such a way that its decryption is
unchanged.

26 / 55

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm
(M)

C
$←E ′Ke

(M||T)
Return C

Alg DKe ||Km
(C)

M||T ← D′
Ke

(C)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA

INT-PTXT

INT-CTXT

27 / 55

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm
(M)

C
$←E ′Ke

(M||T)
Return C

Alg DKe ||Km
(C)

M||T ← D′
Ke

(C)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA YES

INT-PTXT

INT-CTXT

Why? SE ′ = (K′
, E ′,D′) is IND-CPA secure.

27 / 55

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm
(M)

C
$←E ′Ke

(M||T)
Return C

Alg DKe ||Km
(C)

M||T ← D′
Ke

(C)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA YES

INT-PTXT

INT-CTXT

27 / 55

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm
(M)

C
$←E ′Ke

(M||T)
Return C

Alg DKe ||Km
(C)

M||T ← D′
Ke

(C)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA YES

INT-PTXT YES

INT-CTXT

Why? F is a secure MAC and M is authenticated.

27 / 55

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm
(M)

C
$←E ′Ke

(M||T)
Return C

Alg DKe ||Km
(C)

M||T ← D′
Ke

(C)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA YES

INT-PTXT YES

INT-CTXT

27 / 55

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm
(M)

C
$←E ′Ke

(M||T)
Return C

Alg DKe ||Km
(C)

M||T ← D′
Ke

(C)
If (T = FKm

(M)) then return M

Else return ⊥

Security Achieved?

IND-CPA YES

INT-PTXT YES

INT-CTXT NO

Why? May be able to modify C in such a way that its decryption is
unchanged.

27 / 55

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $←EKe
(M)

T ← FKm
(C ′)

Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(C ′)) then return M

Else return ⊥

Security Achieved?

IND-CPA

INT-PTXT

INT-CTXT

28 / 55

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $
←EKe

(M)
T ← FKm

(C ′)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(C ′)) then return M

Else return ⊥

Security Achieved?

IND-CPA YES

INT-PTXT

INT-CTXT

Why? SE ′ = (K′
, E ′,D′) is IND-CPA secure.

28 / 55

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $←EKe
(M)

T ← FKm
(C ′)

Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(C ′)) then return M

Else return ⊥

Security Achieved?

IND-CPA YES

INT-PTXT

INT-CTXT

28 / 55

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $←EKe
(M)

T ← FKm
(C ′)

Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(C ′)) then return M

Else return ⊥

Security Achieved?

IND-CPA YES

INT-PTXT YES

INT-CTXT

Why? If DKe ||Km
(C ||T) is new then C must be new too, so T must be

a forgery.

28 / 55

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $←EKe
(M)

T ← FKm
(C ′)

Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(C ′)) then return M

Else return ⊥

Security Achieved?

IND-CPA YES

INT-PTXT YES

INT-CTXT

28 / 55

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′ $←EKe
(M)

T ← FKm
(C ′)

Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′
Ke

(C ′)
If (T = FKm

(C ′)) then return M

Else return ⊥

Security Achieved?

IND-CPA YES

INT-PTXT YES

INT-CTXT YES

Why? If DKe ||Km
(C ||T) is new then

• If C is new, T must be a forgery

• If C is old, T is a strong forgery

28 / 55

Achieving IND-CCA

We saw that

IND-CPA + INT-CTXT ⇒ IND-CCA.

So an IND-CCA secure symmetric encryption scheme can be built as
follows:

• Take any IND-CPA symmetric encryption scheme SE

• Take any SUF-CMA MACMA[F]

• Combine them in Encrypt-then-MAC composition

Example choices of the base primitives:

• SE is AES-CBC$

• MA[F] is AES-CMAC or HMAC-SHA1

29 / 55

Two keys or one?

We have used separate keys Ke ,Km for the encryption and message
authentication. However, these can be derived from a single key K via
Ke = FK (0) and Km = FK (1), where F is a PRF such as a block cipher,
the CBC-MAC or HMAC.

Trying to directly use the same key for the encryption and message
authentication is error-prone, but works if done correctly.

30 / 55

Generic Composition in Practice

AE in is based on which in
general is

and in this
case is

SSH E&M insecure secure

SSL MtE insecure insecure

SSL + RFC 4344 MtE insecure secure

IPSec EtM secure secure

WinZip EtM secure insecure

Why?

• Encodings

• Specific “E” and “M” schemes

• For WinZip, disparity between usage and security model

31 / 55

AE in SSH

?

?

? ?

? ?

len(M)‖len(Pad)‖M‖Padcounter

Encode

M

EncryptKe
MACKm

C T

SSH2 encryption uses inter-packet chaining which is insecure [D, BKN].

RFC 4344 [BKN] proposed fixes that render SSH provably
IND-CPA+INT-CTXT secure. Fixes recommended by Secure Shell
Working Group and included in OpenSSH since 2003, but became
default only in 2009. Fixes also included in PuTTY since 2008.

32 / 55

AE in SSL

SSL uses MtE
EKe‖KM

= E ′Ke
(M‖FKm

(M))

which we saw is not INT-CTXT-secure in general. But E ′ is CBC$ in
SSL, and in this case the scheme does achieve INT-CTXT [K].

F in SSL is HMAC.

Sometimes SSL uses RC4 for encryption.

33 / 55

AEAD

The goal has evolved into Authenticated Encryption with Associated
Data (AEAD) [Ro].

• Associated Data (AD) is authenticated but not encrypted

• Schemes are nonce-based (and deterministic)

Sender

• C ← EK (N,AD,M)

• Send (N,AD ,C)

Receiver

• Receive (N,AD ,C)

• M ← DK (N,AD ,C)

Sender must never re-use a nonce.

But when attacking integrity, the adversary may use any nonce it likes.

34 / 55

AEAD Privacy

Let AE = (K, E ,D) be an encryption scheme. Adversary is not allowed
to repeat a nonce in its LR queries.

Game LeftAE

procedure Initialize
K

$←K

procedure LR(N,AD ,M0,M1)
Return C ← EK (N,AD,M0)

Game RightAE

procedure Initialize
K

$←K

procedure LR(N,AD,M0,M1)
Return C ← EK (N,AD ,M1)

Associated to AE ,A are the probabilities

Pr
[

LeftAAE⇒1
]

Pr
[

RightAAE⇒1
]

that A outputs 1 in each world. The (ind-cpa) advantage of A is

Advind-cpa
AE (A) = Pr

[

RightAAE⇒1
]

− Pr
[

LeftAAE⇒1
]

35 / 55

AEAD Integrity

Let AE = (K, E ,D) be an encryption scheme. Adversary is not allowed
to repeat a nonce in its Enc queries.

Game INTCTXTAE

procedure Initialize
K

$←K

procedure Enc(N,AD ,M)
C ← EK (N,AD ,M)
SN,AD ← SN,AD ∪ {C}
return C

procedure Dec(N,AD ,C)
M ← DK (N,AD ,C)
if (C 6∈ SN,AD∧M 6= ⊥) then

win← true
return win

procedure Finalize
return win

The int-ctxt advantage of A is

Advint-ctxt
AE (A) = Pr[INTCTXTA

AE ⇒ true]

36 / 55

AEAD Schemes

Generic composition: E&M, MtE, EtM extend and again EtM is the
best.

1-pass schemes: IAPM [J], XCBC/XEBC [GD], OCB [RBBK, R]

2-pass schemes: CCM [FHW], EAX [BRW], CWC [KVW], GCM [MV]

Stream cipher based: Helix [FWSKLK], SOBER-128 [HR]

• 1-pass schemes are fast

• 2-pass schemes are patent-free

• Stream cipher based schemes are fast

37 / 55

Nonce-based symmetric encryption

Worrying for the moment just about privacy, one could build a
nonce-based symmetric encryption scheme by

• Using the nonce as IV in CBC mode

• Using the nonce as counter in CTR

Both are insecure, meaning fail to be IND-CPA, but can be fixed.

38 / 55

Nonce-based CBC encryption

Doesn’t work:

i
?

?
EK

M[1]

C [1]

i
?

?
EK

C [2]

M[2]

N

39 / 55

Nonce-based CBC encryption

Doesn’t work:

i
?

?
EK

M[1]

C [1]

i
?

?
EK

C [2]

M[2]

N

Works, and is easily justified under the assumption that E is a PRF:

?

?
EL

C [0]

N
i
?

?
EK

C [1]

M[1]
i
?

?
EK

M[2]

C [2]

39 / 55

Nonce-based CTR encryption

Doesn’t work:

EK

i
?

?

M[1]

C [1]

N + 1

EK

i
?

?

M[1]

C [1]

N + 1

EK

i
?

?

M[2]

C [2]

N + 2

...

40 / 55

Nonce-based CTR encryption

Doesn’t work:

EK

i
?

?

M[1]

C [1]

N + 1

EK

i
?

?

M[1]

C [1]

N + 1

EK

i
?

?

M[2]

C [2]

N + 2

...

Works, and is easily justified under the assumption that E is a PRF:

EK

i
?

?

M[2]

C [2]

R + 2

EK

i
?

?

M[1]

C [1]

R + 1

EL

?

?
N

R

...

40 / 55

Nonce-based CTR encryption

Also kind of works:

EK

i
?

?

M[3]

C [3]

N‖3

EK

i
?

?

M[2]

C [2]

N‖2

EK

i
?

?

M[1]

C [1]

N‖1

...

If maximum message length is 2b blocks then nonce length is limited to
n − b bits.

We will see this tradeoff in some subsequent AEAD schemes.

41 / 55

Tweakable Block Ciphers [LRW]

A tweakable block cipher is a map

E : {0, 1}k × TwSp× {0, 1}n → {0, 1}n

such that
ET

K : {0, 1}n → {0, 1}n

is a permutation for every K ,T , where ET
K (X) = E (K ,T ,X).

With a single key one thus implicitly has a large number of maps

?

?

?

?

?

?

?

?

?

?

?

?

E 1
K E 2

K E 3
K E 4

K E 5
K E 6

K

These appear to be independent random permutations to an adversary
who does not know the key K , even if it can choose the tweaks and
inputs.

Tweakable block ciphers can be built cheaply from block ciphers [R].
42 / 55

OCB [RBBK]

i

?

?

?

?

?

?

?

?

�

E
N,1,0
K

M[1]

C [1]

E
N,2,0
K

M[2]

C [2]

E
N,3,0
K

M[3]

C [3]

E
N,1,1
K

C [4]

Checksum

S

Checksum = M[1] ⊕ M[2] ⊕ M[3]
S = PMACK (AD) using separate tweaks.
Output may optionally be truncated.
Some complications (not shown) for non-full messages.

Optional in IEEE 802.11i

43 / 55

Patents on 1-pass schemes

• Jutla (IBM) 7093126

• Gligor and Donescu (VDG, Inc.) 6973187

• Rogaway 7046802, 7200227

44 / 55

2-pass AEAD

• Tailored generic composition of specific base schemes

• Single key

Philosophical questions:

• What is the advantage of one key versus two given that can always
derive the two from the one?

• Why not just do specific generic composition of specific base
schemes?

45 / 55

CCM [FHW]

CTR-ENCK

i

6

?

?

?

?
-

-

?

?

MN AD

CBC-MACK

Encode

T C

EK

MtE-based but single key throughout
CTR-ENC is nonce-based counter mode encryption, and CBC-MAC is
the basic CBC MAC. Ciphertext is C‖T

NIST SP 800-38C, IEEE 802.11i
46 / 55

Critiques of CCM [RW]

• Not on-line: message and AD lengths must be known in advance

• Can’t pre-process static AD

• Nonce length depends on message length and the former decreases
as the latter increases

• Awkward/unnecessary parameters

• Complex encodings

47 / 55

EAX [BRW]

CTR-ENCK

CMAC0
K

CMAC2
K

i

?

?

?

?

?-

-

-

?

T

ADM

C

N

CMAC1
K

EtM-based but single key throughout
CTR-ENC is nonce-based counter mode encryption.
Online; can pre-process static AD; always 128-bit nonce; simple; same
performance as CCM.

ANSI C12.22
48 / 55

CWC [KVW]

CTR-ENCK

i

?

?

?-

?

?

-
?

?

-

EncodeEK

N AD

T

C

M

CWC-HASHKH

CTR-ENC is nonce-based counter mode encryption. CWC-HASH is a
AU polynomial-based hash. KH is derived from K via E .

Parallelizable; 300K gates for 10 Gbit/s (ASIC at 130 nanometers);
Roughly same software speed as CCM, EAX, but can be improved via
precomputation.

49 / 55

GCM [MV]

CTR-ENCK

i

?

?

?-

?

?

-
?

?

-

EncodeEK

N AD

T

C

M

GCM-HASHKH

CTR-ENC is nonce-based counter mode encryption. GCM-HASH is a
AU polynomial-based hash. KH is derived from K via E .

Can be used as a MAC.

NIST SP 800-38D
50 / 55

Polynomial Hashes

Let F be a finite field. To data C = C [0] . . . C [m − 1] with C [i] ∈ F

(0 ≤ i ≤ m − 1) we associate the polynomial

PC (x) =

m−1∑

i=0

C [i] · x i

and let H(KH ,C) = PC (KH). If C1 6= C2, then for KH chosen at
random,

Pr[H(KH ,C1) = H(KH ,C2)] = Pr[(PC1
− PC2

)(KH) = 0]

≤
max(m1,m2)− 1

|F |
,

where mi is the number of blocks in Ci .

CWC-HASH works over F = GF(p) where p is the prime 2127 − 1, and
is similar to Poly127 but is parallelizable. GCM-HASH works over
F = GF(2128), which they argue is faster.

51 / 55

Critique of GCM [F]

• Message length is at most 236 − 64 bytes which may not always be
enough.

• Performance improvements require large per-key tables, which may
be undesirable. (A wireless access point would need 1000 keys,
hard for libraries to specifiy table sizes, tables contain confidential
materials, etc.)

• As usual, forgery is possible via a birthday attack, but for some
parameters the attacker can get the key.

52 / 55

Performance Comparisons x32

CCM

GCM

OCB
ECB

message length (bytes)

cl
oc

k
cy

cl
es

 p
er

 b
yt

e

Gladman’s C code

53 / 55

Performance Comparisons x64

message length (bytes)

cl
oc

k
cy

cl
es

 p
er

 b
yt

e

ECB
OCB
GCM
CCM

Gladman’s C code

54 / 55

Which AEAD scheme should I use?

No clear answer. Ask yourself

• What performance do I need?

• Single or multiple keys?

• Patents ok or not?

• Do I need to comply with some standard?

55 / 55

