AUTHENTICATED ENCRYPTION

1/55

Public network

Adversary A

We have looked at methods to provide privacy and
integrity /authenticity separately:

Goal | Primitive | Security notions

Data privacy symmetric encryption | IND-CPA, IND-CCA
Data integrity/authenticity MA scheme/MAC UF-CMA, SUF-CMA

2/55

Authenticated Encryption

In practice we often want both privacy and integrity/authenticity.

Example: A doctor wishes to send medical information M about Alice
to the medical database. Then

e We want data privacy to ensure Alice’s medical records remain
confidential.

e We want integrity/authenticity to ensure the person sending the
information is really the doctor and the information was not
modified in transit.

We refer to this as authenticated encryption.

3/55

Authenticated Encryption Schemes

Syntactically, an authenticated encryption scheme is just a symmetric
encryption scheme AE = (K, &, D) where

4/55

Privacy of Authenticated Encryption Schemes

The notions of privacy for symmetric encryption carry over:

e IND-CPA
e IND-CCA

5/55

Integrity of Authenticated Encryption Schemes

Adversary's goal is to get the receiver to accept a “non-authentic”
ciphertext C.
Two possible interpretations of “non-authentic:”

e Integrity of plaintexts: M = Dy (C) was never encrypted by the
sender

e Integrity of ciphertexts: C was never transmitted by the sender

6/55

INT-PTXT

Let AE = (K, &,D) be a symmetric encryption scheme and A an

adversary.
Game INTPTXT 4 procedure Dec(C)
procedure Initialize M — Dk(C)
KEK:S— 0 if (MgSAM# 1) then
win « true
procedure Enc(M) .
s return win
C < Ek(M)
S—Su{m procedure Finalize
return C return win

The int-ptxt advantage of A is
Adv'i5P(A) = PrINTPTXTA; = true]

7/55

INT-CTXT

Let AE = (K, &,D) be a symmetric encryption scheme and A an

adversary.
Game INTCTXT 4 procedure Dec(C)
procedure Initialize M — Dk(C)
KEK:S— 0 if (CZ€SAM# 1) then
win « true
procedure Enc(M) .
s return win
C < Ek(M)
S—Su{cC} procedure Finalize
return C return win

The int-ctxt advantage of A is

Adv'iE (A) = Pr[INTCTXT e = true]

8/55

INT-CTXT = INT-PTXT

If AC = (K,E,D) is INT-CTXT secure then it is also INT-PTXT

Secure.

Why? Suppose A makes Enc queries My, ..., M, resulting in ciphertexts
G < Ex(M), ..., Cq < Ek(My)
suppose A makes query Dec(C), and let M = Dg(C).

Fact: M%{Ml,...,/\/lq}i CQ/{Cl,...,Cq}
So if A wins INT-PTXT 4¢ it also wins INT-CTXT 4¢.

Theorem: For any adversary A,

Adv'{P(A) < AdvEE(A).

9/55

INT-PTXT %4 INT-CTXT

Counterexample: Construct AE = (K, £, D) which is

e not INT-CTXT secure, but
e is INT-PTXT secure

Approach: Start from some INT-PTXT secure AE' = (K', &', D) and
modify it to AE so that:

e There is an attack showing A€ is not INT-CTXT secure

e There is a proof by reduction showing A€ inherits the INT-PTXT
security of AE’.

10 /55

INT-PTXT %4 INT-CTXT

Given AE' = (K, &', D), let AE = (K',E,D) where

Alg Ex (M) Alg Dy (C)
C' & & (M); C—0||C b||C" + C; M — D) .(C")
Return C Return M

Observe: If C =0[|C" <& Ex(M) then
o 1]|C’' #0||C’, but
* Di(1|C") = Dk(0[|C")
adversary A

Let M be any message
0||C’ < Enc(M); x — Dec(1]|C")

Then Advi5c™*(A) = 1.
Note: This does not compromise INT-PTXT security because x = M.

11/55

INT-PTXT %4 INT-CTXT

Given AE' = (K, &', D), let AE = (K',E, D) where

Alg Ex(M) Alg D (C)
' & (M); C —o0||C’ b||C" « C; M «— D} (C")
Return C Return M

Claim: [If AE" is INT-PTXT secure, then so is AE.

Why? An attack on AE can be turned into one on AE’. A formal proof
is by reduction.

12/55

Integrity with privacy

The goal of authenticated encryption is to provide both integrity and
privacy. We will be interested in:

e IND-CPA + INT-PTXT
e IND-CPA + INT-CTXT

13 /55

IND-CPA + INT-CTXT

N

IND-CPA + INT-PTXT IND-CCA

A — B: Any A-secure scheme is B-secure
A 4 B: There is an A-secure scheme that is not B-secure

14 /55

Plain Encryption Does Not Provide Integrity

Alg Ex (M)
C[o] < {0,1}"
For i=0,...,mdo
Cli] < Ex(C[i—1] ® M[i])
Return C

Alg Dk (C)
For i=0,...,mdo

M[i] — E*(C[i]) @ C[i — 1]
Return M

M[1] M[2] M[m]
] N
EK EK EK
7 o |
C[0] ci — cr21 C[m]

Question: Is CBC$ encryption INT-PTXT or INT-CTXT secure?

15 /55

Plain Encryption Does Not Provide Integrity

Alg Ex (M
8 f() n Alg Dy (C)
C[0] = 10,1} For i=0 m do
Fori=0,...,mdo L)
ey : M[i] — E,*(C[i]) & C[i — 1]
Cli] < Ex(C[i—1] & M[i]) Return M K
Return C
M[1] M[2] M[m]
Va »
: R
crol1 cr — Cr21 Clm]

Question: Is CBC$ encryption INT-PTXT or INT-CTXT secure?

Answer: No, because any string C[0]C[1]... C[m] has a valid
decryption.

15 /55

Plain Encryption Does Not Provide Integrity

Alg 55(/\4) A|g DK(C)
clol = 10.1y" Fori=0 m do
Fori:O... me . 7"'_71) .
q -y) Ml — ENC[N e Cli—1
Cli] = Ex(Cli=1] & ML) Retur[n] M : (cth []
Return C

adversary A
C0]C[1]C[2] < {0,1}3"
M[1]M[2] < Dec(C[0]C[1]C[2])

Then
AdviiTP(A) =1
This violates INT-PTXT.

A scheme whose decryption algorithm never outputs L cannot provide
integrity!

16 /55

A Better Attack on CBC$

Suppose A has the CBC$ encryption C[0]C[1] of a 1-block known
message M. Then it can create an encryption C'[0]C'[1] of any
(1-block) message M’ of its choice via

C'lo] — Clo] @ M & M’
C'[1] — C[1]

M M’
D D
Ex Ex

clo] 2 cl1] | colemMea m = 1]

17/55

Encryption with Redundancy

M[1] M[2] M[m] h(M)

J EK J EK J EK J EK
Here E: {0,1} x {0,1}" — {0,1}" is our block cipher and
h: {0,1}* — {0,1}" is a “redundancy” function, for example
e h(M[1]... M[m]) =0"
o h(M[1]...M[m]) = M[1] ® --- & M[m]
e A CRC
o h(MI[1]... M[m]) is the first n bits of SHAL(M[1]... M[m]).

The redundancy is verified upon decryption.

18 /55

Encryption with Redundancy

M[1] M[2] M[m] h(M)
Ex E;< EK Ex
clo] = ¢y ~ ¢z Clm] = Clm +1]

Let £: {0,1}* x {0,1}" — {0,1}" be our block cipher and

h: {0,1}* — {0,1}" a redundancy function. Let S€ = (K, &', D’) be
CBCS$ encryption and define the encryption with redundancy scheme
AE = (K,E,D) via

Alg Ex(M) Alg D (C)
M[1]... M[m] — M M[1] ... M[m]M[m + 1] — D} (C)
M[m + 1] — h(M) if (M[m + 1] = h(M)) then

C & EL(MI]... M[m]M[m +1]) return M[1]... M[m]
return C else return |

19/55

Arguments in Favor of Encryption with Redundancy

M[1] M[2] M[m] h(M)
Bl |[Ec] - |[E<] |[Ex
Clo] — cf1] = C[2] Clm] = C[m+1]

The adversary will have a hard time producing the last enciphered block
of a new message.

20 /55

Encryption with Redundancy Fails

adversary A

M[1] < {0,1}"; M[2] — h(M[1])
C[0]C[1]C[2]C[3] < Enc(M[1]M][2])
M[1] «+ Dec(C[0]C[1]C[2])

h(M[1])

—~
M[1] M[2] h(M[1]M[2])
D ¥)
Ex Ex Ex
W8

This attack succeeds for any (not secret-key dependent) redundancy
function h.

21/55

WEP Attack

A ‘“real-life” rendition of this attack broke the 802.11 WEP protocol,

which instantiated h as CRC and used a stream cipher for encryption
[BGW].

What makes the attack easy to see is having a clear, strong and formal
security model.

22 /55

Generic Composition

Build an authenticated encryption scheme AE = (K, &, D) by combining

e a given IND-CPA symmetric encryption scheme S& = (K, £, D)

e a given SUF-CMA MAC MAJ[F] where
F:{0,1}% x {0,1}* — {0,1}"

| CBC$-AES | CTRC-AES | ...

HMAC-SHA1
CMAC
PMAC
UMAC

23 /55

Generic Composition

Build an authenticated encryption scheme AE = (K, &, D) by combining

e a given IND-CPA symmetric encryption scheme S& = (K, £, D)

e a given SUF-CMA MAC MAJ[F] where
F:{0,1}% x {0,1}* — {0,1}"

A key K = K¢||Ky, for AE always consists of a key K, for SE€ and a key
K,, for F:

Alg IC

Ke < K'; K <> {0,1}¥

Return K¢||Km

24 /55

Generic Composition Methods

The order in which the primitives are applied is important. Can consider

Method ‘ Usage
Encrypt-and-MAC (E&M) SSH
MAC-then-encrypt (MtE) | SSL/TLS
Encrypt-then-MAC (EtM) IPSec

We study these following [BN].

25 /55

Encrypt-and-MAC

AE = (K, E,D) is defined by

Alg Ex, ||k, (M) Alg Dy, k., (C'[|T)

C' 5 g4 (M) M Djg ()
T — Fk,(M) If (T = Fk,,(M)) then return M
Return C'||T Else return L

Security ‘ Achieved?
IND-CPA
INT-PTXT
INT-CTXT

26 /55

Encrypt-and-MAC

AE = (K, E,D) is defined by

Alg Ex, ||k, (M) Alg Dy, ik, (C'IT)

C' <& (M) M — Dj (C")
T — Fk,(M) If (T = Fk,,(M)) then return M
Return C'|| T Else return L

Security ‘ Achieved?

IND-CPA NO
INT-PTXT
INT-CTXT

Why? T = Fk, (M) is a deterministic function of M and allows
detection of repeats.

26 /55

Encrypt-and-MAC

AE = (K, E,D) is defined by

Alg Ex, ||k, (M) Alg Dy, k., (C'[|T)

C' 5 g4 (M) M Djg ()
T — Fk,(M) If (T = Fk,,(M)) then return M
Return C'||T Else return L

Security ‘ Achieved?

IND-CPA NO
INT-PTXT
INT-CTXT

26 /55

Encrypt-and-MAC

AE = (K, E,D) is defined by

Alg Ex, ||k, (M) Alg Dy, ik, (C'|T)

C' < & (M) M — D) (C')
T — Fk,(M) If (T = Fk,,(M)) then return M
Return C'|| T Else return L

Security ‘ Achieved?

IND-CPA NO
INT-PTXT YES
INT-CTXT

Why? F is a secure MAC and M is authenticated.

26 /55

Encrypt-and-MAC

AE = (K, E,D) is defined by

Alg Ex, ||k, (M) Alg Dy, k., (C'[|T)

C' 5 g4 (M) M Djg ()
T — Fk,(M) If (T = Fk,,(M)) then return M
Return C'||T Else return L

Security ‘ Achieved?

IND-CPA NO
INT-PTXT YES
INT-CTXT

26 /55

Encrypt-and-MAC

AE = (K, E,D) is defined by

Alg Ex, k(M) Alg Dy, k,,(C'l| T)

C' < & (M) M — D) (C')
T « Fk,(M) If (T = Fk,,(M)) then return M
Return C'|| T Else return L

Security ‘ Achieved?

IND-CPA NO
INT-PTXT YES
INT-CTXT NO

Why? May be able to modify C’ in such a way that its decryption is
unchanged.

26 /55

MAC-then-Encrypt

AE = (K, E,D) is defined by

Alg Ex, ||k, (M) Alg Dy, k,,(C)

T « Fk,(M) M||T — D) (C)

CE &L (M||T) If (T = Fk,,(M)) then return M
Return eC Else return L

Security ‘ Achieved?
IND-CPA
INT-PTXT
INT-CTXT

27 /55

MAC-then-Encrypt

AE = (K, E,D) is defined by

Alg Ex, ||k, (M) Alg Dy, |k, (C)

T Fiy (M) MI[T < D} (C)
CiE,’(e(I\/IHT) If (T = Fk,,(M)) then return M
Return C Else return L

Security ‘ Achieved?

IND-CPA YES
INT-PTXT
INT-CTXT

Why? SE = (K',&E",D’) is IND-CPA secure.

27 /55

MAC-then-Encrypt

AE = (K, E,D) is defined by

Alg Ex, ||k, (M) Alg Dy, k,,(C)

T « Fk,(M) M||T — D) (C)

CE &L (M||T) If (T = Fk,,(M)) then return M
Return eC Else return L

Security ‘ Achieved?

IND-CPA YES
INT-PTXT
INT-CTXT

27 /55

MAC-then-Encrypt

AE = (K, E,D) is defined by

Alg x|k, (M) Alg Dy, ik,,(C)

T Fiy (M) MI[T < D} (C)
CiE,’(e(I\/IHT) If (T = Fk,,(M)) then return M
Return C Else return L

Security ‘ Achieved?

IND-CPA YES
INT-PTXT YES
INT-CTXT

Why? F is a secure MAC and M is authenticated.

27 /55

MAC-then-Encrypt

AE = (K, E,D) is defined by

Alg Ex, ||k, (M) Alg Dy, k,,(C)

T « Fk,(M) M||T — D) (C)

CE &L (M||T) If (T = Fk,,(M)) then return M
Return eC Else return L

Security ‘ Achieved?

IND-CPA YES
INT-PTXT YES
INT-CTXT

27 /55

MAC-then-Encrypt

AE = (K, E,D) is defined by

Alg Ex,|ik,,(M) Alg Dk, (C)

T « Fk,(M) M||T « D) (C)

CE &L (M||T) If (T = Fk,,(M)) then return M
Return eC Else return L

Security ‘ Achieved?

IND-CPA YES
INT-PTXT YES
INT-CTXT NO

Why? May be able to modify C in such a way that its decryption is
unchanged.

27 /55

Encrypt-then-MAC

AE = (K, E,D) is defined by

Alg &k, ik, (M) Alg Dy, |k, (C'[|T)

¢ & e, (M) M — Dje ()
T « Fk,(C') If (T = Fk,,(C")) then return M
Return C'||T Else return L

Security ‘ Achieved?
IND-CPA
INT-PTXT
INT-CTXT

28 /55

Encrypt-then-MAC

AE = (K, E,D) is defined by

Alg Ex, k(M) Alg Dy, k,(C'|T)

€1 £ (M) M — Dl (C')
T — Fk,,(C") If (T = Fk,,(C")) then return M
Return C'|| T Else return L

Security ‘ Achieved?

IND-CPA YES
INT-PTXT
INT-CTXT

Why? SE' = (K',&',D’) is IND-CPA secure.

28 /55

Encrypt-then-MAC

AE = (K, E,D) is defined by

Alg &k, ik, (M) Alg Dy, |k, (C'[|T)

¢ & e, (M) M — Dje ()
T « Fk,(C') If (T = Fk,,(C")) then return M
Return C'||T Else return L

Security ‘ Achieved?

IND-CPA YES
INT-PTXT
INT-CTXT

28 /55

Encrypt-then-MAC

AE = (K, E,D) is defined by

Alg Ex, ik, (M) Alg Dy, ik, (C'[|T)

C' & Ex. (M) M — D) (C')
T — Fk,(C") If (T = Fk,(C")) then return M
Return C'|| T Else return L

Security ‘ Achieved?

IND-CPA YES
INT-PTXT YES
INT-CTXT

Why? If D, |k, (C[|T) is new then C must be new too, so T must be
a forgery.

28 /55

Encrypt-then-MAC

AE = (K, E,D) is defined by

Alg &k, ik, (M) Alg Dy, |k, (C'[|T)

¢ & e, (M) M — Dje ()
T « Fk,(C') If (T = Fk,,(C")) then return M
Return C'||T Else return L

Security ‘ Achieved?

IND-CPA YES
INT-PTXT YES
INT-CTXT

28 /55

Encrypt-then-MAC

AE = (K, E,D) is defined by

Alg &k, k., (M) Alg Dy, k,(C'|T)

€12 g (M) M < D (C)
T « Fk,(C') If (T = Fk,,(C")) then return M
Return C'|| T Else return L

Security ‘ Achieved?

IND-CPA YES
INT-PTXT YES
INT-CTXT YES

Why? If Dy, k,,(C|| T) is new then
e If Cis new, T must be a forgery

e If Cisold, T is a strong forgery

28 /55

Achieving IND-CCA

We saw that
IND-CPA + INT-CTXT = IND-CCA.

So an IND-CCA secure symmetric encryption scheme can be built as
follows:

e Take any IND-CPA symmetric encryption scheme S&

e Take any SUF-CMA MAC MA[F]

e Combine them in Encrypt-then-MAC composition
Example choices of the base primitives:

e S& is AES-CBC$S

o MA[F] is AES-CMAC or HMAC-SHA1

29/55

Two keys or one?

We have used separate keys Ke, K, for the encryption and message
authentication. However, these can be derived from a single key K via
Ke = Fk(0) and K, = Fk(1), where F is a PRF such as a block cipher,
the CBC-MAC or HMAC.

Trying to directly use the same key for the encryption and message
authentication is error-prone, but works if done correctly.

30/55

Generic Composition in Practice

AE in is based on | which in and in this
general is | case is

SSH E&M insecure secure

SSL MtE insecure insecure

SSL + RFC 4344 | MtE insecure secure

IPSec EtM secure secure

WinZip EtM secure insecure

Why?

e Encodings

e Specific “E" and “M" schemes

e For WinZip, disparity between usage and security model

31/55

AE in SSH

M
!

Encode

|

counter len(M)]len(Pad)||M||Pad
| I |
Encryptyg, MACk,,
C T

SSH2 encryption uses inter-packet chaining which is insecure [D, BKN].

RFC 4344 [BKN] proposed fixes that render SSH provably
IND-CPA+INT-CTXT secure. Fixes recommended by Secure Shell
Working Group and included in OpenSSH since 2003, but became
default only in 2009. Fixes also included in PuTTY since 2008:

32/55

AE in SSL

SSL uses MtE
Ekokn = Ek. (M| Fk,,(M))

which we saw is not INT-CTXT-secure in general. But £ is CBCS$ in
SSL, and in this case the scheme does achieve INT-CTXT [K].

F in SSL is HMAC.

Sometimes SSL uses RC4 for encryption.

33/55

AEAD

The goal has evolved into Authenticated Encryption with Associated
Data (AEAD) [Ro].

e Associated Data (AD) is authenticated but not encrypted

e Schemes are nonce-based (and deterministic)

Sender Receiver
o C—&k(N,AD, M) e Receive (N, AD, C)
e Send (N,AD, C) e M — Dk(N,AD, C)

Sender must never re-use a nonce.

But when attacking integrity, the adversary may use any nonce it likes.

34/55

AEAD Privacy

Let A = (K, &, D) be an encryption scheme. Adversary is not allowed
to repeat a nonce in its LR queries.

Game Left 4¢ Game Right 4¢

procedure Initialize procedure Initialize

K&K K&K

procedure LR(N, AD, My, M;) procedure LR(N, AD, My, M;)
Return C « 8K(N,AD, Mo) Return C « gK(N, AD, Ml)

Associated to AE, A are the probabilities
PrLeftfe=1] | Pr [Right/}e=1]
that A outputs 1 in each world. The (ind-cpa) advantage of A is
AV (A) = Pr [Right4e=1] — Pr [Left4e=1]

35/55

AEAD Integrity

Let AE = (K, E&,D) be an encryption scheme. Adversary is not allowed
to repeat a nonce in its Enc queries.

Game INTCTXT 4¢ procedure Dec(N, AD, C)
procedure Initialize M — Dk (N,AD, C)
KK if (C¢5N7AD/\M#J_) then
win « true
procedure Enc(N,AD, M) return win
C — Ex(N,AD, M)
Sn.AD < Sn.ap U {C} procedure Finalize
return win

return C

The int-ctxt advantage of A is

AdviE (A) = Pr[INTCTXT e = true]

36 /55

AEAD Schemes

Generic composition: E&M, MtE, EtM extend and again EtM is the
best.

1-pass schemes: IAPM [J], XCBC/XEBC [GD], OCB [RBBK, R]
2-pass schemes: CCM [FHW], EAX [BRW], CWC [KVW], GCM [MV]
Stream cipher based: Helix [FWSKLK], SOBER-128 [HR]

e 1-pass schemes are fast

e 2-pass schemes are patent-free

e Stream cipher based schemes are fast

37/55

Nonce-based symmetric encryption

Worrying for the moment just about privacy, one could build a
nonce-based symmetric encryption scheme by

e Using the nonce as IV in CBC mode
e Using the nonce as counter in CTR

Both are insecure, meaning fail to be IND-CPA, but can be fixed.

38 /55

Nonce-based CBC encryption

Doesn’'t work:

M[1] M[2]

N N

E, E,
e e

39/55

Nonce-based CBC encryption

Doesn’'t work:

M[1] M[2]

E, E,
e e

Works, and is easily justified under the assumption that E is a PRF:

N M M2

D D

£ J J
] ! ¥
Clo] — 1] = C[2]

39/55

Nonce-based CTR encryption

Doesn’'t work:

40 /55

Nonce-based CTR encryption

Doesn’'t work:

M[1] - M2
cli] Cl2]

Works, and is easily justified under the assumption that E is a PRF:
N R+1 R+2

M[1] - M[2] =
R cly Cl2]

40 /55

Nonce-based CTR encryption

Also kind of works:
N|1 N|2 N|3

CAR TR

Ml = M2l MBl
cli] 2] Cl3]

If maximum message length is 2 blocks then nonce length is limited to
n — b bits.

We will see this tradeoff in some subsequent AEAD schemes.

41/55

Tweakable Block Ciphers [LRW]|

A tweakable block cipher is a map
E: {0,1}* x TwSp x {0,1}" — {0,1}"
such that
El: {0,1}" — {0,1}"
is a permutation for every K, T, where E/L(X) = E(K, T, X).
With a single key one thus implicitly has a large number of maps
o] (7] (21 (5] 2] [2

bbb

These appear to be independent random permutations to an adversary
who does not know the key K, even if it can choose the tweaks and
inputs.

Tweakable block ciphers can be built cheaply from block ciphers [R].

42/55

OCB [RBBK]

/\i’ [1] M[2] M[3]
E}/(V,Lo E}/é/,zo E;(V,3,O
] Cl [2] k]

Checksum = M[1] & M[2] & M[3]
S = PMACk(AD) using separate tweaks.

Output may optionally be truncated.
Some complications (not shown) for non-full messages.

Optional in IEEE 802.11i

Checksum

N,1,1
Ex

S

c4

43/55

Patents on 1-pass schemes

e Jutla (IBM) 7093126
e Gligor and Donescu (VDG, Inc.) 6973187
e Rogaway 7046802, 7200227

44/55

2-pass AEAD

e Tailored generic composition of specific base schemes

e Single key

Philosophical questions:

e What is the advantage of one key versus two given that can always
derive the two from the one?

e Why not just do specific generic composition of specific base
schemes?

45 /55

CCM [FHW]

CTR-ENCk
f
N AD M
Ec
CBC-MACk

N

N

T C

MtE-based but single key throughout
CTR-ENC is nonce-based counter mode encryption, and CBC-MAC is

the basic CBC MAC. Ciphertext is C|| T
NIST SP 800-38C, IEEE 802.11i

46 /55

Critiques of CCM [RW]

Not on-line: message and AD lengths must be known in advance

Can't pre-process static AD

Nonce length depends on message length and the former decreases
as the latter increases

Awkward /unnecessary parameters

Complex encodings

47 /55

EAX [BRW]

N
'

CMACY

M

ﬂD

CMACL

CTR-ENCx

}
C

'

CMAC%

an
>
\i

EtM-based but single key throughout
CTR-ENC is nonce-based counter mode encryption.
Online; can pre-process static AD; always 128-bit nonce; simple; same

performance as CCM.

ANSI C12.22

48 /55

CWC [KVW]

N /l/l AD
CTR-ENCx
C
Ex
CWC-HASHy,,
ST

CTR-ENC is nonce-based counter mode encryption. CWC-HASH is a
AU polynomial-based hash. Ky is derived from K via E.

Parallelizable; 300K gates for 10 Gbit/s (ASIC at 130 nanometers);
Roughly same software speed as CCM, EAX, but can be improved via

precomputation.
49 /55

N /I/I AD
CTR-ENCg
C
Ex
GCM-HASH,,
o—T

CTR-ENC is nonce-based counter mode encryption. GCM-HASH is a
AU polynomial-based hash. Ky is derived from K via E.

Can be used as a MAC.
NIST SP 800-38D

50 /55

Polynomial Hashes

Let F be a finite field. To data C = C[0]... C[m — 1] with C[i] € F
(0 <i < m-—1) we associate the polynomial
m—1
Pe(x) =Y C[i]-x
i=0

and let H(Ky, C) = Pc(Ky). If Ci # G, then for Ky chosen at
random,
PI’[H(KH, Cl) = H(KH, C2)] = PI’[(PC1 — PQ)(KH) = 0]

max(my, mp) — 1
— ’F‘ Y

where m; is the number of blocks in C;.

CWC-HASH works over F = GF(p) where p is the prime 21?7 — 1, and
is similar to Poly127 but is parallelizable. GCM-HASH works over
F = GF(2'28), which they argue is faster.

51/55

Critique of GCM [F]

e Message length is at most 236 — 64 bytes which may not always be
enough.

e Performance improvements require large per-key tables, which may
be undesirable. (A wireless access point would need 1000 keys,
hard for libraries to specifiy table sizes, tables contain confidential
materials, etc.)

e As usual, forgery is possible via a birthday attack, but for some
parameters the attacker can get the key.

52/55

Performance Comparisons x32

\\'\\

iy

I ' |

) v, NN -
FE Ny

g B\ \\\

5 : -\.\.\.\N\\\\\\\\\\\m

w . \\ GCM
3 N

% N -\\\\\\\\\\\\\\\ e
: ECB
o

o

M T T T T T T T T T T T T T T 1
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

message length (bytes)

Gladman’s C code

53 /55

Performance Comparisons x64

]

Py

Qo

@

o

(%]

g \\

“

g \\\\\\\\\\\ CcCM

o

S \ GCM

o 204 \\\\\\\,. " o C B
ECB

v T T T T T T T T T T T 1
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

message length (bytes)

Gladman’s C code

54 /55

Which AEAD scheme should | use?

No clear answer. Ask yourself

What performance do | need?

Single or multiple keys?

Patents ok or not?

Do | need to comply with some standard?

55 /55

