
CSL 866: Cryptography

IIT Delhi

Hash Functions

Hash Functions: Collision

D

2n
x1

x2

Pigeonhole Principle: h(x1) = h(x2), x1 ≠ x2

h

Hash Functions: Applications

1. Password Authentication:

Bob Server

Bob, <pass>

Pass/fail

• Problem: If Eve hacks into the server or if the communication channel is not secure, then Eve knows

the password of Bob.

S stores Bob’s password

Hash Functions: Applications

1. Password Authentication:

Bob Server

Bob, h(<pass>)

Pass/fail

• Eve can only get access to h(<pass>).

S stores h(Bob’s password)

Hash Functions: Applications

1. Comparing files by hashing:

Server B

Yes/No

• Problem: Files are usually very large and we would like to save communication costs/delays.

S has FB

Server A

S has FA

FA

Hash Functions: Applications

1. Comparing files by hashing:

Server B

S has FB

Server A

S has FA

h(FA)

h(FA) = h(FB)

Collision Resistance

 Password Authentication: If Eve is able to find a string S (even

different from <pass>) such that

h(S) = h(<pass>)

then the scheme breaks.

 Comparing files: If there is a different file FS such that

h(FS) = h(FB)

the servers may agree incorrectly.

 Collision Resistance: It is computationally infeasible to find a pair

(x1, x2) such that x1 ≠ x2 and

h(x1) = h(x2)

 If a hash function h is collision resistant, then the above two

problems are avoided.

Collision Resistance: Discussion

 Are there functions that are collision resistant?

 Fortunately, there are functions for which no one has been able to

find a collision!

 Example: SHA-1: {0,1}D —> {0,1}160

 Is the world drastically going to change if someone finds one or

few collision for SHA-1?

 Not really. Suppose the collision has some very specific structure,

then we may avoid such structures in the strings on which the hash

function is applied.

 On the other hand, if no one finds a collision then that is a very strong

notion of security and we may sleep peacefully without worrying

about maintaining complicated structures in the strings.

 We are once again going for a very strong definition of security for

our new primitive similar to block ciphers and SE.

CR-Secure hash functions
 So what might a CR-secure hash function look like?

 All we know are block ciphers.

 Let us try the following keyless hash function.

CR-Secure hash functions
Let us try this:

SHA-1: What does it look like?

 SHF-1: {0,1}128 x D -> {0,1}160

 SHA-1: SHF-1K,

where (K = 0x5A827999|| 0x6ED9EBA1|| 0x8F1BBCDC|| 0xCA62C1D6)

 SHF-1 and SHA-1 uses a compression function shf1 along with

MD transform (Merkle-Damgard).

SHA-1: shf-1

 shf-1K: {0,1}512 x {0,1}160 ->{0,1}160

Merkle Damgard (MD) Transform

How does Ah work?

Birthday Attack

Attack on the compression function

Other Attacks

Attacks that may take advantage of the specific construction of the

compression function

One-Wayness

Another useful notion of security

Hash Functions

The end

