1. This is problem number 29 , chapter 4 from the Tardos Kleinberg book.

Given a list of n natural numbers d_{1}, \ldots, d_{n}, show how to decide in polynomial time whether there exists an undirected graph $G=(V, E)$ whose vertex degrees are precisely d_{1}, \ldots, d_{n}. (That is, if $V=\left\{v_{1}, \ldots, v_{n}\right\}$, then the degree of v_{i} should be exactly d_{i}.) G should not contain mtultiple edges between the same pair of nodes, or "loop" edges (where both end vertices are the same node).

