1. This is problem number 29, chapter 4 from the Tardos Kleinberg book.

Given a list of n natural numbers $d_1, ..., d_n$, show how to decide in polynomial time whether there exists an undirected graph G = (V, E) whose vertex degrees are precisely $d_1, ..., d_n$. (That is, if $V = \{v_1, ..., v_n\}$, then the degree of v_i should be exactly d_i .) Gshould not contain mtultiple edges between the same pair of nodes, or "loop" edges (where both end vertices are the same node).