13.1 Homework

Discuss problems in Homework 5.

13.2 Linear Programming

1. (Duality) A linear programming problem in the standard form can be written in short using the following vector notation:

$$
\begin{array}{r}
\text { LP1: Maximize }\left(c^{T} \cdot x\right), \\
\text { subject to } A \cdot x \leq b \\
x \geq 0
\end{array}
$$

Here x, c, b are vectors and A is a $m \times n$ matrix. Consider the following related linear program:

LP2: Minimize $\left(b^{T} \cdot y\right)$,
subject to $A^{T} \cdot y \geq c$ $y \geq 0$

Here y is vector of size m. Consider the following linear program:
Let f_{1} be any feasible solution for LP1 and let f_{2} be any feasible solution for LP2. Show that $f_{1} \leq f_{2}$.
2. (Randomized rounding) Linear programming can be used to obtain approximation algorithms for NP-hard problems. Consider the Set cover problem. Here we are given subsets $S_{1}, \ldots, S_{m} \subseteq U$ and we want to find the minimum sized subset $I \subseteq\left\{S_{1}, \ldots, S_{m}\right\}$ such that the union of elements of subsets in S is equal to U. We may solve the following ILP to obtain a solution to the problem:

> Minimize $\sum_{i=1}^{m} x_{i}$,
> Subject to :
> $\sum_{i: e \in S_{i}} x_{i} \geq 1$, for all $e \in U$
> $x_{i} \in\{0,1\}$, for all x_{i}

The issue here is that we know ILP is NP-hard. We relax the integer constraint to obtain
the following LP:

$$
\begin{aligned}
& \text { Minimize } \sum_{i=1}^{m} x_{i} \\
& \text { Subject to }: \\
& \sum_{i: e \in S_{i}} x_{i} \geq 1, \text { for all } e \in U \\
& x_{i} \geq 0, \text { for all } x_{i}
\end{aligned}
$$

Suppose the optimal solution of the above LP be $x_{1}^{*}, \ldots, x_{m}^{*}$. Now we pick the set cover using the following randomized algorithm:

1. $I \leftarrow \phi$
2. For all $i: I \leftarrow I \cup S_{i}$ with probability x_{i}^{*}.
3. Repeat (2) until all elements are covered.

Show the following:
(a) The number of times step (2) is executed is at at most $(2 \log n)$ with probability at least $(1-1 / n)$.
(b) The above randomized algorithm with high probability gives an $O(\log n)$ approximation to the set cover problem.

