- You have to discuss the running time of your algorithms. Always try to give algorithm with best possible running time.
- You are required to give proofs of correctness whenever needed.
- Use of unfair means will be severely penalized.

There are 3 questions for a total of 50 points.
(10) 1. Consider the following problem:

DENSE-SUBGRAPH: Given a graph G and two integers a and b, determine if there is a set of a vertices of G, such that there are at least b edges between them.
Show that DENSE-SUBGRAPH is NP-complete.
(20) 2. For integers $r, s, r<s, s(\bmod r)$ is the remainder when dividing s by r. For integers r, s, t, we say that $r \equiv s(\bmod t)$ if $r=k \cdot t+s$ for some integer k. For example, $11 \equiv 4(\bmod 7), 22 \equiv 1(\bmod 7)$ etc.
(RSA) The RSA public key cryptosystem for private communication can be described in the following manner: Suppose alice wants to send a secret message to Bob. Bob picks two large (1024 bits) prime numbers p and q. Let $N=p \cdot q$. He picks two other numbers $e, d<(p-1)(q-1)$ such that $e \cdot d \equiv$ $1(\bmod (p-1)(q-1))$. Bob makes N and e public (e.g., posts these numbers on his blog) while keeping d secret. Alice who wants to send a message $M \in\{0, \ldots, N-1\}$ to Bob computes $C \leftarrow M^{e}(\bmod N)$ and sends C to Bob. Bob decrypts it using $M \leftarrow C^{d}(\bmod N)\left(=M^{e d}(\bmod N)=M\right)$.
Show that if $\mathrm{P}=\mathrm{NP}$, then RSA is broken. By broken we mean that an adversary who can see C will always be able to know the secret message M that Alice sends to Bob even without knowing Bob's secret d. You may assume the following:

1. Given $x, p, x<p$, it is easy to find $y<p$ such that $x \cdot y \equiv 1(\bmod p)$.
2. It is easy to determine if a given number is prime.
(20) 3. Consider the following problem:

NEW-INDEPENDENT-SET: Given a graph $G=(V, E)$ and an integer such that the degree of every vertex of G is at most 3 and $k \leq|V| / 4$, determine if the graph has an independent set of size at least k.
Which of the following is true. Give reasons.

1. NEW-INDEPENDENT-SET $\in P$.
2. NEW-INDEPENDENT-SET \in NP.
3. NEW-INDEPENDENT-SET is NP-complete.
4. NEW-INDEPENDENT-SET is NP-hard.
