
FrugalLight : Symmetry-Aware Cyclic Heterogeneous Intersection Control
using Deep Reinforcement Learning with Model Compression, Distillation and
Domain Knowledge

SACHIN KUMAR CHAUHAN, CSE, Indian Institute of Technology Delhi, India

RIJUREKHA SEN, CSE, Indian Institute of Technology Delhi, India

Developing countries need to better manage fast increasing traffic flows, owing to rapid urbanization. Else, increasing traffic congestion
would increase fatalities due to reckless driving, as well as keep vehicular emissions and air pollution critically high in cities like
New Delhi. State-of-the-art traffic signal control methods in developed countries, however, use expensive sensing, computation
and communication resources. How far can control algorithms go, under resource constraints, is explored through the design and
evaluation of FrugalLight (FL) in this paper. We also captured and processed a real traffic dataset at a busy intersection in New Delhi,
India, using efficient techniques on low cost embedded devices. This dataset (https://delhi-trafficdensity-dataset.github.io) contains
traffic density information at fine time granularity of one measurement every second, from all approaches of the intersection for
40 days. FrugalLight (https://github.com/sachin-iitd/FrugalLight) is evaluated on the collected traffic dataset from New Delhi and
another open source traffic dataset from New York. FrugalLight matches the performance of state-of-the-art Convolutional Neural
Network (CNN) based sensing and Deep Reinforcement Learning (DRL) based control algorithms, while utilizing resources less by an
order of magnitude. We further explore improvements using a careful combination of knowledge distillation and domain knowledge
based DRL model compression, with employing Model-Agnostic Meta-Learning to quickly adapt to traffic at new intersections. The
collected real dataset and FrugalLight therefore opens up opportunities for resource efficient RL based intersection control design for
the ML research community, where the controller should have limited carbon footprint. Such intelligent, green, intersection controllers
can help reduce traffic congestion and associated vehicular emissions, even if compute and communication infrastructure is limited
in low resource regions. This is a critical step towards achieving two of the United Nations Sustainable Development Goals (SDG),
namely sustainable cities and communities and climate action.

CCS Concepts: • Computing methodologies→ Reinforcement learning; Q-learning; Neural networks; • Social and professional
topics→ Sustainability.

Additional Key Words and Phrases: Traffic Signal Control, Real Traffic Dataset

ACM Reference Format:
Sachin Kumar Chauhan and Rijurekha Sen. 2024. FrugalLight : Symmetry-Aware Cyclic Heterogeneous Intersection Control using
Deep Reinforcement Learning with Model Compression, Distillation and Domain Knowledge. In . ACM, New York, NY, USA, 33 pages.
https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0000-0001-6773-0989
HTTPS://ORCID.ORG/0000-0002-2465-3650
https://delhi-trafficdensity-dataset.github.io
https://github.com/sachin-iitd/FrugalLight
https://doi.org/XXXXXXX.XXXXXXX


JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

1 INTRODUCTION

Traffic signal control, a historical application of automated planning and scheduling, is seeing a dramatic shift with
recent advances in Internet of Things (IoT), Computer Vision (CV), and Reinforcement Learning (RL). As shown in
[47, 52], researchers, in collaboration with city authorities, are collecting traffic videos at scale using IoT devices,
processing them using the latest Convolutional Neural Networks (CNN) based computer vision methods, and using the
processed data for traffic light control using Deep Reinforcement Learning (DRL).

The problem of traffic congestion is acute in developing countries like India, further contributing to the high air
pollution in cities like New Delhi [10]. Therefore the state-of-the-art intersection control algorithms should also be used
to benefit these low resource communities. There is, however, a key challenges involved in transferring technology
as it is: the current intersection control algorithms [45, 46] use exact vehicle counts, and work perfectly in developed
countries with orderly laned traffic. Traffic in developing countries is non-lane based (sample images in Figure4). Thus
exact vehicle counts computed using state-of-the-art CNNs like YOLO [36], even if work fine at daytime [8], start
dropping in accuracy at night. But intersection control is needed at all times, independent of the lighting condition.
Hence intersection control algorithms should use information that can be computed at all times. There is, therefore, a
clear gap in data and algorithms for automated intersection control in developing regions. This paper seeks to bridge
this gap, with the following three contributions:

❶ We release the first traffic density dataset (https://delhi-trafficdensity-dataset.github.io) from a developing coun-
try intersection (attributed by non-lane behaviour, connectivity/compute limitations), under a Creative Commons
Attribution 4.0 International License [7]. We deployed 6 cameras at a busy 3-approach intersection in New Delhi. The
location and camera placements is indicated in Figure 1. Due to lack of broadband connectivity from the road to the
cloud, the video feeds could not be transmitted. This lack of cloud connectivity will hold in any actual intersection
control deployment for a developing country. So we performed in-situ processing of the traffic videos, using computer
vision algorithms like background subtraction [6], that also work well at night, unlike CNNs. The released dataset
contains traffic density information at fine time granularity of one measurement every second, from all approaches of
the intersection for 40 days between Sep-Dec 2020 (§ 3).

❷ We carefully design a reinforcement learning based intersection control algorithm FrugalLight (FL) in this paper,
that needs traffic density information as input and not exact vehicle count. FL (https://github.com/sachin-iitd/FrugalLight)
is shown to improve transportation metrics like throughput and travel time over traditional and state-of-the-art policies,
while showing better transferability and fast adaptability. More importantly, FL and all computer vision inputs to FL,
are computationally so efficient, that we can run them on low cost embedded platforms at the intersection in real time,
without cloud connectivity (§ 5).

❸ We compare FL with state-of-the-art intersection control algorithms [45, 46] on this new Delhi dataset, as well as
an open source traffic dataset from New York, the latter containing exact vehicle count information. Surprisingly, FL
matches the performance of the baseline RL algorithms, while utilizing computation and communication resources less
by an order of magnitude. This shows that algorithms designed for constrained datasets (only traffic density) as released
in this paper, can work well even in resourceful countries with unconstrained data (exact vehicle counts). Thus if ML
researchers start considering efficiency metrics like model size and inference latency, in addition to accuracy metrics,
ML algorithms for critical applications like intersection control can have less carbon footprint than the state-of-the-art
[45, 46] (§ 6).

2

https://delhi-trafficdensity-dataset.github.io
https://github.com/sachin-iitd/FrugalLight


FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

Fig. 1. Google Maps Location of the intersection and installed cameras in New Delhi. Approach 1 has cameras 1 and 2, approach 2

has cameras 3 and 4, approach 3 has cameras 5 and 6.

❹ We utilize Knowledge Distillation based guidance approaches [18, 27] to improve FrugalLight , and use MAML
based Meta-Learning approaches [17, 51] to scale them, paving a way for efficient and effective learning of the traffic
situations (§ 7).

❺ The challenges of directly importing the FrugalLight model are three fold – (i) extreme budget constraints,
which allows for only very low cost, compute and RAM constrained, embedded platforms to be deployed (ii) poor
network connectivity between the road and the servers, forcing all analysis to happen in-situ on the road and (iii)
chaotic non-laned driving behavior in developing regions, which makes accurate video analysis for exact counting and
classification of vehicles harder.

We hence extend FrugalLight for learning efficient Look-Up Table (LUT) based or threshold based intersection
control. This solution, termed EcoLight [9], performs at par with the compute intensive methods, at a mere fraction of
runtime overhead. Optimizing computational overhead while not losing accuracy has been challenging for EcoLight.
We reduce DRL states from over a thousand dimensions in state-of-the-art papers [45, 46] to one or two dimensions.
We remove the DNN based RL computation at runtime using static LUTs. We quantize the original continuous values of
DRL states for finite sized LUTs. All these optimizations needed to be carefully tuned for accuracy. We experiment with
both open-source developed country dataset and a custom developing region dataset, created by us from our deployed
cameras. As a result of careful tuning, EcoLight gives comparable benefits and sometimes even improves upon the
compute-intensive methods, on both performance metrics (throughput, average travel time etc.) and fairness metrics
(worst case travel time, vehicles stuck etc.) (§ 7).

❻ Finally, an end-to-end system has also been demonstrated in this paper. This incorporates video feeds from cameras
at a real intersection and computer vision based traffic density estimation for input to the control algorithms. Our
results show great promise towards practical adaptive intersection control at extreme budget and network constraints,
a vital necessity for sustainability (§ 8).

3



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

2 RELATEDWORK

Researchers have identified and modelled traffic congestion in developing countries using different methods [5, 23, 24].
To mitigate the problem of traffic congestion, in most developing countries today, traditional traffic signal control
methods are still being used. These are static systems that work by changing the phase periodically with a fixed
cycle length. Research has suggested that such traffic lights even become the cause of traffic jams in some cases as
shown in [4]. In order to deal with the issue of dynamic-updation, researchers have modeled the problem of traffic
control as an optimization problem based on certain assumptions and come up with rules for setting the phase based
on the traffic densities in the network as shown in [28, 29, 38, 42]. Even with this approach, the rules obtained are
pre-defined and cannot be dynamically adjusted for real-time traffic. A variety of Reinforcement Learning works, like
[2, 11, 14, 15, 32, 35, 41], have proposed different state and reward formulations for different action choices.

Recent Reinforcement-Learning based methods [45, 46] outperform the traditional traffic signal control methods in
simulation environments. These methods, however, require significant computational and communication resources
as each agent uses a Deep Neural Network to compute the current Phase and communicates to a central server in
real-time, making them infeasible for deployment in developing countries. A recent work EcoLight [9] uses very small
dimensional states, with fairness optimizations, to generate lookup tables to be deployed in lieu of the DRL models. The
lookup tables being static, cannot fully leverage the dynamic traffic conditions.

Our method FrugalLight is an extension of the above work and can adapt to changing traffic conditions and
can be cost-effectively deployed in developing countries.

High quality real traffic data is necessary to develop ML/RL based control algorithms for efficient intersection control.
Researchers have been generating real traffic data through various means. [20] used loop sensors based dataset creation
and [39] used loop sensors to calculate traffic queue length, but as per [16, 34], though cheap and widely used, there
are several operational constraints with loop sensors, like they degrade with the conditions of the road and water
penetration affects the performance. They are prone to damage due the poor state of our road surfaces, and through
weaknesses caused by the installation of loops or other damage over time such as potholes. Loop tails are also often cut
in the course of other road works such as utility companies accessing their infrastructure. These findings were used by
different city authorities for improvements in transport infrastructure, As per [13], Swansea City Council opted for an
alternate solution considering such factors. We found similar case for London [25, 48].

Besides, [45, 46] used taxi data to approximate real traffic data in New York. [37] recorded the traffic in Doha, Qatar
in the peak hour of weekday and reproduced in the SUMO [26] simulator. [44] used open source camera data from Hefei
(China) to analyze and use a peak hour flow for the experiments. [2] used the 24 hour primary vehicle Origin-Destination
data collected from the municipality of Tehran and adjusted it by one-hour interval traffic count data obtained from
traffic sensors and gathered (impatient) pedestrians data via fieldwork. [3], used the six hourly origin-destination
matrices calculated by the municipality of Tehran for the traffic demands between 6am and 12pm on a workday.

Continuing the effort of creating datasets for traffic intersection control, we alongside provide multiple days
traffic density data that can be used to train ML models directly or can be used to generate smaller datasets to
be used in various simulators like cityflow [52] and SUMO [26].

4



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

3 REAL DATA DESCRIPTION

3.1 Data Collection Challenges

Installing traffic cameras at a busy intersection in New Delhi, involved a series of challenges. Proper infrastructure
to mount the cameras and draw connections for power and communication, was needed. All work had to be done by
minimally affecting the flow of traffic. Permissions were needed from the traffic authorities. We collaborated with an
industry partner1 for the deployment. It was also not feasible to send raw video from cameras to cloud server, hence
edge computing was required. Camera video was processed at the intersection itself, to generate traffic density numbers,
and the density values were stored locally for periodic retrieval.

Fig. 2. Traffic Data Availability for the six cameras from Sep-Dec 2020, each colour denoting the data coming from separate camera.

During deployment, we observed multiple issues hampering the sound operation of the deployed system: ❶ One
camera power adapter failure (1 camera down), ❷ Power failure for one approach (2 cameras down), ❸ Communication
line failure from one approach (2 cameras down), ❹ Multiple times Local Processing Unit hang or power-off (all cameras
down). In issues related to the camera device, a crane was required for the repair. For issues at ground level, efforts
had to be made to trace down the point of failure, and then replacement of the faulty component. All of these require
days to weeks to get done, due to many dependencies involved in the maintenance process. We finally had 40 days of
complete data in a 4-month duration (Sep-Dec 2020), as shown in Figure 2. Due to winter, heavy fog and late sunrise,
during Dec 15-19, we started delayed data collection as compared to previous days, hence the plot shows a bit smaller
lines for these 5 days.

3.2 Dataset Processing

Before discussing the processing of the traffic density data, we first describe our density estimation method based on
background subtraction. As presented in Figure 3, a continuously updated Background Filter (with learning rate 𝜏) is
subtracted from each frame to get the foreground, and the ratio foreground/background denotes Queue Density. To find
Stop Density, we need to discard the density caused by the moving/dynamic traffic. Using the optical flow algorithm to
detect moving pixels, we computed the standing traffic (Stop Density). The inbuilt adaptation in Background Subtraction
makes the processing robust to the changing ambient light conditions.

The density estimation code 2 deployed on the road to generate queue and stop densities contains the methods to
receive the video frames from the camera and process it using background subtraction to generate Queue Density and
Stop Density values for the each camera (with cuda optimized version). There are background images for each camera
1Aabmatica Technologies http://aabmatica.com/new/
2https://github.com/sachin-iitd/TrafficDensity

5

http://aabmatica.com/new/
https://github.com/sachin-iitd/TrafficDensity


JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

Fig. 3. Background Subtraction for Queue and Stop densities.

used to initiate the background subtraction algorithm in the morning and projection coordinates to transform 3D view3

of the camera to 2D vertical view 4.

3.3 DatasetQuality

To work with intersection control algorithms, camera frames are processed to get representative traffic summary. CNN
based Computer Vision methods like YOLO [36] are used to identify the vehicles present on the road, and enumerate
the identified vehicles to get vehicle count. Figure 4 shows two good examples of YOLO traffic identification on the
Left, and two fairly miserable detections due to occlusion in heavy traffic in the Middle. Poor lighting conditions also
drastically affect YOLO accuracy.

Fig. 4. Good Yolo labeling (Left), Bad Yolo labeling (Middle) and Good traffic density (queue density and dynamic density) (Right).

Green/red vertical lines in traffic density indicates the event of green/red signal.

3https://github.com/sachin-iitd/TrafficDensity/blob/main/ traffic/6.jpg
4https://github.com/sachin-iitd/TrafficDensity/blob/main/ traffic/proj_traffic_6.jpg

6

https://github.com/sachin-iitd/TrafficDensity/blob/main/traffic/6.jpg
https://github.com/sachin-iitd/TrafficDensity/blob/main/traffic/proj_traffic_6.jpg


FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

CNN accuracy vs. latency: We use the labeled dataset from [8] to explicitly check the accuracy vs. latency trade-off
of different CNN models. We split the dataset into train and test data as shown in Table 1, and train YOLO V2 and
Tiny-YOLO models.

Table 1. Train and test data for YOLO V2 and Tiny-YOLO

Test images Train images Test annotations Train annotations

1670 3896 9963 22657

Table 2. Accuracy-vs-latency trade-off of CNN models

Method Size mAP Precision Recall CPU FPS GPU FPS

YOLO V2 194 MB 54.63 0.38 0.62 0.1 6-7

Tiny-YOLO 34 MB 34.99 0.63 0.49 0.4-0.5 20-21

On test data, the average accuracies are reported in terms of mAP, precision and recall in Table 2. As seen from
the values, Tiny-YOLO reports low mAP and low recall compared to YOLO V2. In terms of latency, as measured on
NVIDIA Jetson TX2, CPU frame rates are really low for both models, whereas GPU rates are low for YOLO V2 and
moderate for Tiny-YOLO. We observe that the Traffic Density calculation using background subtraction [6] works
pretty well, in both natural and street lighting. Figure 4(Right) shows two example density computations, in light to
moderate traffic (Top) and in heavy traffic (Bottom). The Top graph corresponds to Left of YOLO detections, and the
Bottom graph corresponds to Middle of YOLO detections. Queue density grows correctly between red and green signal
vertical lines, signifying the red phase for the approach. In contrast, queue density drops between green and the next
red signal, signifying the green phase for the approach. Dynamic/moving density remains close to 0 in heavy traffic (as
seen in below bottom plot) during red cycle and only rises in green cycle. As per our observations for other dataset
collection using loop-based or camera data, intermittent validation is a feasible way forward. We have observed high
density (∼1) when the frame was full with vehicles, and very low (almost 0) in case of no traffic or when the vehicles
pass completely across the intersection. In between also, we have observed density values in the similar ratio as traffic
is present on the road. So, over many manually verified parts of the dataset, we repeatedly observed this perfect density
calculation vs. high YOLO errors. This is understandable as density estimation is a easier task than detecting vehicle
bounding boxes. The traffic density processing code is available at https://github.com/sachin-iitd/TrafficDensity.

In addition to being accurate, our density estimation code runs at 6 FPS on low cost embedded platform (1.8 GHz
Intel(R) Atom(TM) CPU D525 with 4 logical cores and 8GB RAM) budgeted by our deployment partners, and gives us
Queue Density and Stop Density values per second for the 6 cameras. The dataset, thus also has fine granularity of
recorded traffic density measurements.
Histogram of Queue and Stop densities: We analyzed the histogram of the queue and stop densities of our dataset.
Both the densities are available in the scale of 0 - 1, where 0 means empty road with no traffic and 1 means road with
full traffic. Figure 5 shows the histogram of Queue and Stop densities for the 6 cameras. By manual observations of the
traffic images, we have seen that approach 3 usually had limited traffic stopped for the red light, the same was found
evident in the StopDensity5 histogram which explicitly shows high occurrence for almost none waiting traffic beyond
the camera 6 scope.

7

https://github.com/sachin-iitd/TrafficDensity


JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

Fig. 5. Histogram ofQueue and Stop densities for the 6 cameras for the 40 days for total 2,160,040 samples.

3.4 Dataset Uniqueness

Our dataset is a longitudinal dataset which is collected over many days from all approaches at an intersection, which
is needed specifically for traffic intersection control algorithms. Using the background subtraction and optical flow
techniques, our dataset contains traffic density and stop density for each approach per second. We further convert the
density values from to traffic dataset suitable for simulator evaluations with methods similar to other works.

Table 3. Open source real traffic datasets.

Inter’n Num Vehs/ Hr Location Process
Layout App 5min Method

16x1=16 4 569 1 8th Ave, NY Taxi data
16x3=48 235 1 8-10 Ave, NY

1x1=1 3

614 1

New Delhi

Cam+YOLO

346 1
Cam+254 2

BackSub185 4

113 6

3x4=12 4 525 1 Jinan, Hongqi Cam
4x4=16 249 1 Hangzhou, Gudang

Table 3 enlists the properties for various open source datasets. Inter’n Layout, denotes how many roads cross to
create how many intersections, describing the road network architecture. E.g. 16x1=16 indicates there is one road
perpendicular to 16 roads, crossing each of them creating 16 intersections. Num App denotes the (fixed) number of
approaches at intersections. The next three columns indicate the traffic volume (in vehicles arriving per 5 minutes),

8



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

duration of datasets (from 1 to 6 hours), and the geographical location (from USA/India/China) from which the datasets
are collected. The last column points the source of the data (Taxi trip information, Camera) and the processing method
(YOLO: [36], Background Subtraction: [6]) The single intersection data from New Delhi corresponding to Cam+BackSub
process method is generated from 1-6 hours portions of the shared 40 days traffic density dataset.

The uniqueness of this dataset lies in ❶ limited features (density, not vehicle count), which we show is a practical
information to obtain in real time in a developing country, and ❷ longitudinal nature. The analysis of multiple days
data from our New Delhi dataset is shown in Figure 6 5, the horizontal axis denote the hour of the day, and vertical axis
denote the Queue Density. The box-plot shows the peak traffic during morning and evening hours for the Approaches 1
and 2. The approach 3, which joins the other approaches to form a T junction, has an independent pattern where the
traffic increases as the day progresses. The variation in density at each hour over the 40 days, show how dynamic traffic
is at this Delhi intersection, and how ML researchers can use this to benchmark their RL based intersection control
algorithms.

Fig. 6. Traffic Patterns observed at an intersection in developing country.

4 NEED FOR INTELLIGENT TRAFFIC LIGHT CONTROL

Traffic in both developed and developing countries is very dynamic, which is very hard to be approximated, predicted
or calculated with simple equations and formulas. It is also heavily dependent on location, time, and many other local
constraints. Utilization of the features of AI and DRL is necessary to approximate the traffic behaviour in a better way.
Such time varying and complex traffic information needs suitable methods, to be processed and transformed into an
effective policy to help control the traffic more effectively. Reinforcement Learning (RL) methods have shown great
promise to learn effective control policies from such situations. Traditional RL methods used in the research either could
not capture the varying traffic (limiting experiments to hourly traffic), or miss out to process the data in a structured
way (by simply trying to fit to the raw data). We try to overcome this problem by presenting a structured and formalized
way to learn from the real data effectively.

Existing methods work with vehicle count (and their lanes and distance from the intersection), which required
expensive in-situ processing to convert camera videos to vehicle count, with models such as YOLO [36]. As we could
efficiently process the real-time traffic data in terms of density, the new RL method should be able to effectively work
using limited information such as only traffic density as the input parameters.

5This traffic density dataset has already been used in another paper on thermal controller design for embedded GPU platforms and the graph is reproduced
from that paper [40]. But the dataset is being made public for the first time, with a more important use-case analysis for the ML research community,
namely RL based intersection controller design.

9



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

The state-of-the-art models are big in size which makes them unsuitable for deployment over low cost edge devices.
Our new model should be having small size, making it fast in processing and hence easily deployable on edge platform.
As no existing RL algorithms [45, 46] meets these requirements, we formulate the traffic control problem as a Markov
Decision Process (MDP) and design FrugalLight .

4.1 Problem Definition

To start-with, we define the problem of traffic signal control as a Markov Process. Each intersection in the system is
controlled by an agent running independently, and without any communication with the others. In this setting, each
agent observes part of the total system, and decides for its own intersection whether to keep the same phase or switch
to the next, so as to minimize the average traffic density on the approaches around the intersection. Specifically, the
problem can be characterized by the following major components < S,O,A,P, 𝑟 , 𝜋,𝛾 > as described in detail below.

❶ With system state space S and observation space O, we assume that there are 𝑁 intersections in the system and
each agent can observe part of the system state 𝑠 𝜖 S as its observation 𝑜 𝜖 O. We define 𝑜𝑡

𝑖
for agent 𝑖 at time 𝑡 , which

consists of traffic density in one or two dimensions as described later.
❷ With set of actionsA, at time 𝑡 , an agent 𝑖 would choose an action 𝑎𝑡

𝑖
from its candidate action setA𝑖 as a decision

for the next Δ𝑡 period of time. Here, each agent would choose either 0 or 1 as its action 𝑎𝑡
𝑖
, indicating that from time 𝑡

to 𝑡 + Δ𝑡 , this intersection would be in same phase or under transition to the next phase.
❸ With transition probability P, given the system state 𝑠𝑡

𝑖
and actions 𝑎𝑡

𝑖
of agent 𝑖 at time 𝑡 , the system arrives at

the next state 𝑠𝑡+1
𝑖

according to the state transition probability 𝑃 (𝑠𝑡+1
𝑖
|𝑠𝑡
𝑖
, 𝑎𝑡

𝑖
).

❹ With reward 𝑟 , each agent 𝑖 obtains an immediate reward 𝑟𝑡
𝑖
from the environment at time 𝑡 . In this paper, we want

to minimize the travel time for all vehicles in the system, which is hard to optimize directly. Therefore, we define the
reward for intersection 𝑖 as 𝑟𝑡

𝑖
= −∑𝑎 𝑑

𝑡
𝑖,𝑎

where 𝑑𝑡
𝑖,𝑎

is the stop density on the approach 𝑎 of intersection 𝑖 at time 𝑡 .
❺ With Policy 𝜋 and discount factor 𝛾 , as the independent actions have long-term effects on the system, we want to

minimize the expected stop density of each intersection in each episode. Specifically, at time 𝑡 , each agent chooses an
action following a certain policy O x A → 𝜋 , aiming to maximize its total reward 𝐺𝑡

𝑖
=
∑𝑇
𝑡=𝜏 𝛾

𝑡−𝜏𝑟𝑡
𝑖
, where 𝑇 is total

time steps of an episode and 𝛾 𝜖 [0, 1] differentiates the rewards in terms of temporal proximity.
In this paper, we use the action-value function 𝑄𝑖 (𝜃𝑛) for each agent 𝑖 at the 𝑛𝑡ℎ iteration (parameterized by 𝜃 ) to

approximate total reward 𝐺𝑡
𝑖
with neural networks by minimizing the loss:

L(𝜃𝑛) = 𝐸 [(𝑟𝑡𝑖 + 𝛾 max
𝑎′

𝑄 (𝑜𝑡 ′𝑖 , 𝑎
𝑡 ′
𝑖 ;𝜃𝑛−1) −𝑄 (𝑜

𝑡
𝑖 , 𝑎

𝑡
𝑖 ;𝜃𝑛))

2] (1)

where 𝑜𝑡 ′
𝑖
denotes the next observation for 𝑜𝑡

𝑖
. These earlier snapshots of parameters are periodically updated with

the most recent network weights and help increase the learning stability by de-correlating predicted and target q-values.

5 FRUGALLIGHT

Based on a recent and comprehensive survey of intelligent traffic light control methods [47], we choose two [45, 46]
most promising state-of-the-art DRL based traffic light control algorithms to be our baselines. FrugalLight uses
domain knowledge and careful optimizations to match the performance of these complex baselines, at a tiny fraction of
computational resources, utilizing practical sensor inputs for developing region traffic. Our work, in principle, follows
the current research trend on efficient machine learning, mostly for optimizing CNN models for computer vision tasks
[19, 21, 30, 49, 50]. We extend the efficiency question to a new application domain of traffic light control and optimize a

10



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

different machine learning model, namely DRL. Our innovations come from practical constraints (not addressed in
prior work) that developing regions pose on the intended application. We also utilize Knowledge Distillation based
guidance approaches [18, 27] to improve our methods, and use MAML based MetaLearning approaches [17, 51] to scale
them, paving a way for efficient and effective learning of the traffic situations.

5.1 Design Prerequisites

There are several environment level design considerations before discussing the DRL based methodology.
Control agents – coordinated vs decentralized: While absence of continuous network connectivity to the cloud

necessitates in situ computations for the computer vision and traffic light control algorithms, the same connectivity
issue also necessitates the design of independent traffic light control agents. Real time communication across agents of
different intersections cannot be taken for granted. So we design individual agents for each intersection in this paper,
without assuming mutual communication.

Fig. 7. Allowed phases at intersections

Phase characteristics at intersections: As traffic in developing regions is non-laned and chaotic, giving green
simultaneously to different approaches increases chance of collisions at an intersection. Single-approach-green (Y) pat-
tern is, therefore, typically used in intersection design in developing countries. This scheme comprises phase sequences
as shown in Figure 7, where in each phase, the straight flow and the turning flow are given green simultaneously. The
number of such phases depend on the number of approaches at a particular intersection. We analyze our methods
primarily for this Y-scheme, and later show that our method works better for the other phase schemes as well, such as
Double-approach-green (X) pattern and a mix of both (XY).

Expected output of control algorithm: Our agents can take one of the two kinds of decisions, at every decision
making time point. The decision making time point comes at fixed periodicity for the agent. ❶ Switch to the next phase:
In this setting, the scheduler delivers a binary decision either to continue current green signal or to switch to the next
phase in a cyclic order. ❷ Set any phase: In this setting, the scheduler switches to the best phase, which can be any of
the allowed phases. Set any phase is more flexible and can potentially give better values for the traffic metrics being
optimized (travel time or throughput). But the fixed phase cycle in switch to the next phase is better to set commuter
expectations as to who will get the next green. In developing countries where traffic is already extremely chaotic and
drivers are unruly, phase cycle is kept constant to set predictable expectations to drivers. Thus our control agents should
follow switch to the next phase decision scheme. We evaluate both and show that the additional flexibility of set any
phase gives minor improvements in metric values, over the more practical and safer switch to the next phase scheme.

Optimization metrics: The primary metric usually used to quantify the performance of a traffic light control
system, is average travel time of vehicles passing through that intersection. We use this metric in our evaluations. The
second metric evaluated is throughput, which is the percentage of vehicles cleared by the intersection. A third metric
is total time, which combines the time spent by the vehicles which clear the intersection and also those stuck at the
intersection. Throughput needs to be maximized while travel time and total time needs to be minimized.

11



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

5.2 FrugalLight DRL Architecture

We use a DQN based DRL architecture with fully connected layers, comprising two hidden layers of size 𝐻 each
(5 ≤ 𝐻 ≤ 20). Suppose we use𝑀 states to represent an intersection. Further suppose 𝑁 phases, so our DRL can choose
to stay in the current phase, or choose among the remaining 𝑁 − 1 phases, giving 𝑁 possible actions. Then our DRL
has an 𝑀 x 𝐻 x 𝐻 x 𝑁 architecture, as shown in Figure 8. Our method is independent of underlying loss function
and optimizer choice, and we use MeanSquareError [43] and RMSprop [22] respectively in our experiments.The simple
architecture also allows us to explore and emphasize the benefits of using other enhancements in State and Reward
design. Such enhancements would give further improvements when a complex DNN architecture is utilized.

Fig. 8. DRL architecture and actions.

5.3 FrugalLight Rewards

Rewards need to be carefully crafted, so that the DRL algorithm can train to convergence. Rewards need to be fed back
to the DRL algorithm, from the environment in which the DRL is applying control. So essentially, the rewards need to
be computed from the approaches at the traffic intersection, by the computer vision algorithms. Listed next are some
rewards, in increasing order of complexity of the vision algorithms.

• Queue density: This is the set of traffic densities of all incoming approaches. It can be calculated using
background subtraction [6], which we find works even in poor lighting conditions, as the vehicles’ head and tail
lights create enough features.
• Stop density: This is density of vehicles stopped (halted) at the intersection in all the approaches, waiting for
their opportunity to be in motion. It can again be calculated using background subtraction [6], having a different
learning rate than for queue density, as queue density considers both halted and moving vehicles. Optical flow
method [33] also facilitates motion detection, thus identifying stalled vehicles.
• Max pressure:Max pressure can be approximated by the difference of queue densities at incoming and outgoing
approaches. It requires data capture and computation at both incoming and outgoing approaches, thus involving
camera and embedded computer deployment in subsequent intersections.
• Cross count: Exact count of vehicles crossing the intersection is called cross count. This requires tracking
vehicles entering and exiting any approach. Thus YOLO (You only look once) [36] or similar CNN based vehicle
detection and subsequent tracking of each individual vehicle needs to be done, which have not been shown to
work in poor lighting conditions [8], for example during evening peak hours. Also, there are intermittent poor
vehicle detections as discussed in § 3.3 (Figure 4)

We use the Stop density reward, which can be easily computed by background subtraction [6] at the edge device, for
our evaluations in § 6.5. We also evaluate our DRL algorithms with different rewards in § 6.6.

12



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

5.4 DRL compression using domain knowledge

We explored carefully crafted DRL states utilizing domain knowledge of traffic light control. The goal is to reduce the
computational and memory overheads of the DRL algorithm along-with reducing dependencies on computer vision
methods that might be infeasible for developing region traffic. We describe below our four domain-specific optimizations
(illustrated in Figure 9 and Figure 10).

Fig. 9. Domain knowledge based optimizations

❶ Reduced spatial range of information: Developing region cameras placed at an intersection can see traffic up
to a limited distance, depending on their angle of elevation. It is not frugally feasible to repeat cameras throughout
the approach to measure traffic for the whole approach. Therefore our DRL state will be constrained with limited
information within a certain distance from the intersection, and only for incoming traffic. The first column of Figure 10,
termed Actual Traffic Layout, shows in color the limited camera vision, though there are vehicles in the regions that the
camera cannot see. The next column Transformed Layout, in Figure 10, removes vehicles beyond camera’s visual range,
which will not be part of DRL state.

❷ Reduced type granularity of information: In our DRL states, instead of exact vehicle count requiring com-
putation intensive CNN based YOLO [36], we use traffic density, based on less computation intensive background
subtraction [6]. Density is also better than queue length (which indicates the distance at which the last vehicle is
standing), as chaotic driving in developing regions sometimes create long queues with haphazard gaps in between.
Smaller vehicles like auto-rickshaws and motorbikes can trickle in those gaps, keeping the queue length same but
increasing traffic density. Density thus better captures the traffic state on the road, independent of heterogeneous
vehicle sizes and their chaotic placement.

❸ Reduced spatial granularity of information: As drivers in developing regions do not follow lane markings,
vehicles straddle across lanes. So to reduce DRL state complexity, we reduce the information granularity from per lane
to per approach, averaging the traffic over the lanes. We further explore a DRL state of just two numbers for each phase,
one representing density for the approach with green signal and another for the total densities of all other approaches
getting red. We finally reduce the DRL state for a particular phase to only one value, where we take the ratio of the
green approach density to the overall density of all approaches. These subsequent reduction in DRL states per phase is
shown as Lane, Approach, Group and Relative Density in Figure 10.

❹ Exploiting symmetry: We finally remove the current phase information from the DRL state. Utilizing the
symmetry of traffic intersections, we opt to rotate the DRL state to make the data of the current green phase as the
first (or any constant) position. In Figure 10, instead of two columns representing two phases, there is thus a single
phase with one approach green and others red. When the approaches differ in properties (like number of lanes, width,

13



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

Fig. 10. DRL states from four signal phases

Fig. 11. Heterogeneous intersection, with both two-laned and three-laned approaches

etc. as shown in Figure 11), we cannot perform a simple rotation to get a phase-free-state. There are two options to
make a heterogeneous intersection homogeneous – i. Padding: We can pad empty lanes in the smaller approaches to
make the intersection homogeneous. This would leave some lanes with zero traffic. ii. Normalizing to unit lane:
We can normalize the density of heterogeneous approaches, scaling down each approach’s density to unit lane. ∀ i in
approaches, where𝑤𝑖 is a scale factor based on width, number of lanes or other appropriate parameters for approach 𝑖 .

𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [𝑖] ← 1
𝑤𝑖

∑
𝑙𝑎𝑛𝑒∈𝑖 𝑙𝑎𝑛𝑒_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [𝑙𝑎𝑛𝑒]

14



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

6 FRUGALLIGHT EVALUATION

Giving several design choices for efficient DRL algorithms with constrained inputs, we next evaluate whether any of
them can match the performance of computationally intensive state-of-the-art methods.

6.1 Baselines:

We compare our FrugalLight algorithms over state-of-the-art RL models: ❶ Presslight (PL) [45], for decentralized
multi-intersection processing and ❷ Colight (CL) [46], for centralized multi-intersection processing. We also utilized
two NonRL algorithms, popular in recent research as standard baselines: ❶ Max Pressure (MP) [42], where phase shift
occurs based on the difference of vehicles on the incoming and outgoing lanes. ❷ Self-Organizing Traffic Light (SOTL)

[12], where after a minimum phase duration, the signal is switched based on traffic level in green and red approaches.

6.2 Benchmarks:

We use multiple real road datasets in our experiments, as described in Table 3 in § 3.4. The New York datasets are
publicly available6, which are already processed and used for experiments in prior work [45, 46]. The state-of-the-art
works need richer traffic information which cannot be gathered with Computer Vision methods, so to be fair with
them we too use their advertised datasets [45, 46] in our experiments, and validate/present the performance of our
input-constrained efficient control for global scenarios as well. We also use self-curated developing region datasets7

which are 1 to 6 hours long and extracted from larger duration of traffic flows available in the original density data8 for
weekdays (8AM - 2PM).

6.3 Simulator:

We use the CityFlow traffic simulator [52] in our experiments. It takes the road network structure, traffic phase
information and incoming traffic details through files. We create these files based on the real road datsets described.
CityFlow allows us to set the desired phase using API calls. For every phase switch, a 5-second combined yellow and
all-red interval exists to clear the intersection. CityFlow also provides the traffic information i.e. what happened on
applying the phase switch/hold advised by a particular traffic light control algorithm. This output list of vehicles, along
with their locations, is processed to compute our throughput, travel time and total time metrics, to compare across the
traffic light control algorithms.

6.4 DRL Efficiency:

Given our primary goal is to have more efficient DRL models for resource constrained settings in developing countries,
we first quantify how efficient our optimizations are, compared to the baselines. In Table 5, our solution FrugalLight is
denoted as FL, with Lane(L), Approach(A), Group(G) and Relative(R) indicating increasing optimizations. The DNN
parameters are a range of values, as they depend on the control choice of Switch to Next with binary output vs.
Switch to Any with multinomial outputs. The DRL state size and DNN parameters indicate the significant lower
FrugalLight overhead. Such a small DRL model can be deployed on a moderate cost embedded system for roadside
deployment, as currently being piloted with our industry partner. Other properties of the underlying DNN are given in
Table 4 and properties of Non RL baselines are given in Table 6.

6https://www1.nyc.gov/ site/ tlc/about/ tlc-trip-record-data.page
7https://github.com/sachin-iitd/FrugalLight
8https://delhi-trafficdensity-dataset.github.io

15

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/sachin-iitd/FrugalLight
https://delhi-trafficdensity-dataset.github.io


JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

Table 4. DNN properties

State Reward Weight Loss Fn Optimizer LearnRate Discount

Queue Density Stop Density -0.25 MSE RMSprop 0.001 0.8

Table 5. Model property for 4approach x 3lane intersection

Model RL State Size DNN Arch DNN Params

Presslight 80 - 2082-2124
Colight 1600-12480 - 6018-6084
FL-Lane 12 20x20 722-764

FL-Approach 4 15x15 347-379
FL-Group 2 10x10 162-184
FL-Relative 1 5x5 52-64

Table 6. Properties for Baseline NonRL Algorithms

Algorithm Properties

MaxPressure 5s Min Green
SOTL 2/4 veh, 5s Min Green

6.5 FL performance on existing open-source datasets

The critical question to evaluate is whether FrugalLight’s efficiency comes at a trade-off for throughput or travel time
metric values. We present these results next, evaluated on Nvidia DGX Workstation (with 4X Tesla V100 GPUs). As
shown in Figure 12, the FrugalLight models converge faster both in terms of number of episodes, and time taken
per episode. The FL models converge fairly well by 30 episodes whereas it takes 60+ episodes for the PL model to
converge. Also, FL models take 71% to 74% time per episode as compared to the time taken by PL (i.e. saving 26%
compute resources per episode).

Fig. 12. Training Convergence over RL models. For time taken per episode, PL takes N seconds and FL-L variant takes 0.71N seconds.

As the DRL models converge well within 200 episodes as, we perform training for 250 simulation episodes and the
performance is measured and averaged over next 50 (i.e. 251-300) unseen episodes, to vouch for stable experimental
results. Figure 13 show the throughput, travel time and total time metrics when the DRL and NonRL based traffic light
control algorithms are evaluated for the New York datasets. Two control choices of Switch to Next (denoted by Next)
and Switch to Any (denoted by Any) are shown. We use stop-density as the DRL reward in these plots. For NonRL
algorithms, the metrics are consistent for each round, and hence a single round metrics are shown. Higher throughput
and lower travel and total times indicate better performance.

16



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

Fig. 13. Evaluation metrics for various algorithms on different Switch Policy and Dataset

Among the two DRL baselines, PL with de-centralized control for multiple intersections, works poorly for the larger
16x3 road network (seems due to incompatible MaxPressure reward for 2D grids), while CL with centralized control
does well. Both CL and PL perform well for the smaller 16x1 network. The NonRL baselines (MP and SOTL) show lower
performance than the DRL baselines. The two control choices do not show significant performance differences. Switch to
Any with more freedom to choose outputs and therefore with potential to perform better, is less usable in a developing
country, where to avoid more unruliness than already is on the road, Switch to Next is mandated at intersections to
have fixed precedence among waiting drivers. Thus the lack of performance difference between the two control choices
is encouraging.

More encouraging, however, is FrugalLight’s performance. Our algorithms FL-L, FL-A and FL-G do as well as
CL for all road settings. The most optimized version FL-R degrades for the 16x3 network (and slightly for 16x1
too), possibly due to the incapacity in capturing absolute traffic density. But even the second most optimized
version FL-G (showing a slight under-performance for Any 16x3), with only 2-sized DRL states and 184 DNN
parameters, can match the performance of CL with upto 12480 sized DRL states and 6084 DNN parameters!

FL-G is also de-centralized, not requiring network communication across multiple intersections to have centralized
control as in CL. The 2-sized DRL states and the stop density reward can all be computed with simple background
subtraction [6] based computer vision methods. This is a tremendous result for developing regions, that a de-centralized
DRL algorithmwith constrained computer vision inputs and very efficient model parameters, can match the performance
of a centralized, more computation intensive, much larger state-of-the-art DRL model.

Different Phase Schemes (Y,X,XY): We next analyze the FrugalLight performance over different phase schemes,
such as Double-approach-green (X) pattern and a mix of both (XY), as depicted in Figure 14(Left). Colight(CL) is
centralized and alongside local information, it seeks neighbouring intersections’ information to decide policy for any
given intersection. This creates network-dependency and data-latency, alongside complicating the model by increasing
state space significantly larger than other models (refer Table 5. While gathering the real data for single intersection,
we also observed issues related to power line failures, camera faults, and broken communication. Any fault requires a
manual repair, which is a costly and time consuming effort. Hence, network-dependent solution (Colight) is less feasible
for deployment in developing countries and single intersections. As shown in Figure 14(Right), we see that FL performs
better than baseline PL for all phase schemes.

17



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

Fig. 14. (Left) Allowed phases at intersections (Right) Performance over different phase schemes, numbers at bottom of bars denote

throughput, darker bars denote travel time and lighter bars (at the top) denote total time.

Scaled Road Lengths: Real roads have varying lengths, causing different capacity of waiting-traffic at the approaches.
The longer the length of the road, the more traffic it can hold, which may require one lengthy green phase or multiple
green phases to pass through the intersection. To see the scaling of FrugalLight on various road lengths, we experiment
with different road lengths in the simulator (for 16x1 network) in Figure 15. Compared to state-of-the-art Presslight (PL),
FL shows improvements in all metrics, which enhances further as we scale-up the road lengths. Thus, FrugalLight can
potentially scale to any road dimensions with similar benefits in average metric values.

Fig. 15. Performance over scaled road lengths, numbers at bottom of bars denote throughput, darker bars denote travel time and

lighter bars (at the top) denote total time.

6.6 FL performance on our New Delhi dataset

We finally analyzed FrugalLight’s performance on our collected data for different datasets of increasing duration. As
cityflow simulator has a proprietary format for accepting traffic information via input json files, we utilize the density-
to-simulator 9 conversion script to convert the real datasets for use with the simulator. In case of real deployments,
the density from our Background Subtraction algorithm can be directly fed to FrugalLight models. Along with
StopDensity, we did experiments over other rewards (MaxPressure, CrossCount and QueueDensity) to gauge their
suitability with our method. The weight for CrossCount is 1 and -0.25 for others. The experiments are shown in Table 7.

We can see that FrugalLight gives good performance, over the developing region data processed with methods
different than NY data, for different state sizes and different rewards, except QueueDensity. QueueDensity is the least
9https://github.com/sachin-iitd/TrafficDensity/density.py

18

https://github.com/sachin-iitd/TrafficDensity/density.py


FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

Table 7. Performance on different duration 1x1 developing region data (total time @ throughput)

Model Reward 1 (1Hour) 2 (1Hour) 3 (2Hour) 4 (4Hour) 5 (6Hour)

PL MaxPressure 273.3 @ 92.3 254.6 @ 92.8 187.9 @ 97.2 174.0 @ 98.7 112.7 @ 99.4

FL-L

StopDensity

246.7 @ 93.0 243.7 @ 93.1 178.4 @ 97.3 170.8 @ 98.7 98.6 @ 99.5
FL-A 260.6 @ 92.6 253.2 @ 92.8 205.1 @ 96.9 189.5 @ 98.5 95.2 @ 99.5
FL-G 246.0 @ 93.0 246.4 @ 93.0 199.2 @ 96.9 191.0 @ 98.4 103.2 @ 99.5
FL-R 242.8 @ 93.2 254.5 @ 92.8 225.8 @ 96.7 363.7 @ 97.3 273.8 @ 98.6

FL-L MaxPressure 261.6 @ 92.6 244.7 @ 93.0 181.8 @ 97.3 170.7 @ 98.7 111.7 @ 99.4
FL-L CrossCount 238.5 @ 93.2 231.2 @ 93.4 169.2 @ 97.4 140.4 @ 98.9 96.2 @ 99.5
FL-L QueueDensity 446.6 @ 87.4 446.1 @ 87.4 458.6 @ 93.3 437.6 @ 96.3 343.4 @ 98.3

computationally intensive reward, but it is not as performant as the other rewards. As computer vision constraints
make some rewards harder to compute in developing region, more compute intensive rewards CrossCount (needs
vehicle identification and counting) or MaxPressure (needs camera and computing on successive intersections) are
not suitable for efficient deployments despite good/comparable performance. However, StopDensity, which is easily
computable using background subtraction [6] and performs similar to other rewards, gives a good trade-off between
computability and DRL performance, and therefore has been used as the default DRL reward in all our experiments.

7 ENHANCED FRUGALLIGHT

We next explore the inclusion of state-of-the-art techniques and focused optimizations to further enhance Frugal-
Light for training and deployment scenarios.

7.1 Student-teacher knowledge distillation, with FrugalLight’s domain knowledge

Knowledge distillation is the standard method of compressing large machine learning models (teacher) into smaller
more efficient models (student) [18, 27]. We analyze two methods of student-teacher learning in this paper - Blind and
Explored.

Fig. 16. Blind and Explored learning methods. Fig. 17. Convergence of Teaching Strategies, Dotted Lines denote Through-

put, and Solid Lines denote Total Time.

In Blind learning (Figure 16 without dotted line), student model learns the environment by blindly following teacher’s
steps for every state, hence teacher controls the learning. In Explored learning (Figure 16 with dotted line), student

19



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

model learns the environment with self exploitation, asking teacher only during exploration phase, hence student
controls the learning. For both scenarios, the teacher provides the Q-values for every experience tuple, and local rewards
are ignored, thus student tries to fit to teacher’s understanding of the environment.
We use the following loss function -

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝐸𝑟𝑟𝑜𝑟𝐿𝑜𝑠𝑠 ← 1
𝑁

∑𝑁
𝑖=1 (𝑄𝑡𝑖 − 𝑄𝑠𝑖 )2

where, 𝑄𝑠𝑎 denotes the Q-values predicted by the student network and 𝑄𝑡𝑎 denotes the target Q-values given by the
teacher/peer network, for N training samples.

We hence consider a combination of domain knowledge based DRL state compression along-with knowledge
distillation, where we use distillation between models of similar dimensions (peers). These experiments are performed
on a 300x300 length 16x1 NY road network, for switch to the next phase signal policy. We train for 250 epochs, then
average metrics (total time @ throughput) for next 50 epochs are reported in Table 8 and Figure 17.

Table 8. Knowledge distillation (total time @ throughput). Peers (same row in bold) teach better than PL (in italics).

Self Blind Learning Explored Learning

Learn PL FL-L FL-A FL-G PL FL-L FL-A FL-G

Teacher 316@89.7 286@90.7 279@91.0 340@88.4 316@89.7 286@90.7 279@91.0 340@88.4
PL 345@87.7 1005@59.3 1051@59.1 988@58.5 905@63.6 335@87.7 301@90.1 291@89.8 371@86.8
FL-L 328@88.4 1179@52.3 433@84.5 310@89.7 394@85.4 1118@56.0 309@89.7 331@87.9 355@87.7
FL-A 332@88.3 1173@54.0 496@78.9 267@91.6 365@86.9 1126@55.4 342@87.9 310@89.6 357@87.6
FL-G 385@86.5 1145@54.2 421@85.6 359@85.9 375@85.8 880@64.6 376@85.9 343@88.2 360@87.7

The values against the "Teacher" row at the top, depicts the performance of the single Teacher model, selected based
on best metric values from the epochs towards the end. The "Self Learn" column on the left, gives the average metric
values without knowledge distillation. Self-learning converges slower than distillation, as expected (Figure 17). Explored
learning gives better results than blind learning (right side of Table 8 has better values than left), and also gives faster
convergence and better stability (Figure 17) than blind.

As seen in Table 8, Explored Learning gives better average metric values than Self Learn, when models of same size
and architecture (called peers) are used for teaching. This improvement in average metric through peer learning, is
evident if we compare the bold values in the same rows. The values in Teacher row show the best metric, not the
average, and hence are not suitable for comparison with the bold values. Using the state-of-the-art large PL model [45]
as teacher, however, greatly degrades average metrics (indicated in italics in each row). Thus knowledge distillation
from a significantly larger model to a significantly smaller student model is more tricky, while similar model as teacher
boosts utility 10

So, large teacher models (e.g. the DRL model in [45]) cannot efficiently train smaller student models. However,
peer based knowledge distillation among comparable small models, boosts the optimization metrics for all
peers. While recent literature uses collaborative peer learning in an online setting [18, 27], we use this offline,
where peers use knowledge distillation to boost optimization metrics before deployment. Using carefully
crafted small DRL models with domain knowledge, along with peer learning, therefore further boosts the
application utility in our scenario.

10Similar results have been independently obtained in a recent research [31].

20



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

7.2 FrugalLight’s Transferability and Adaptability

Figure 18 shows the transferability (how well a DRL model trained on one dataset performs on a new unseen dataset)
and adaptability (how quickly a DRL model fits to the new dataset) of FL vs. baseline PL. The first leg in Figure 18
shows the regular training on the 16x1 NY dataset, depicting improved training convergence for our FL compared to
PL. For the next two legs, we utilize two different 1 hour datasets from the 16x1 NY network. We train each model
for 300 epochs using the default dataset, then switch the traffic pattern to second dataset and allow training for next
300 epochs, and finally do the same for third dataset. FL is significantly more transferable and adaptable than PL, over
different unseen traffic patterns. This can be explained by the large size of the PL model, that tends to overfit to a given
training dataset and generalizes poorly to new data.

Fig. 18. Transferability/Adaptability of the methods.

Self PL FL-L FL-A FL-G

PL 1096@58 1074@60 1018@60 1091@59 1218@54
FL-L 730@73 1187@53 934@61 793@68 642@75
FL-A 599@76 1142@56 708@66 661@75 598@78
FL-G 568@80 922@65 618@77 481@85 588@78
FL-R 921@67 999@62 1120@59 1125@58 844@69

Fig. 19. Transfer to other dataset for ExploredLearn models.

We further take an ensemble of 50 models from epochs 251-300 for each training experiment, and use them to train
50 peer models using the Explored Learn method. We then evaluate these peer trained models on an unseen dataset and
present the average performance of these models in the table in Figure 19.

FL-G is the best generalizable model, both self-learnt and peer-teacher guided, for transferring an ensemble of
models to unseen dataset.

7.3 Enhanced Adaptability using Gradient based Meta Learning (MAML)

Meta Learning enables a Machine Learning system to learn fast. Model-Agnostic Meta-Learning (MAML) is a general
optimization algorithm suitable for models employing gradient descent. Given multiple tasks, the parameters of a
model are trained such that few iterations of gradient descent with few training data from a new task will lead to good
generalization performance on that task. MAML trains the model to be easy to fine-tune [1]. MAML gradient can be
shown by the standard expression [17]:

𝑔𝑀𝐴𝑀𝐿 = ∇𝜃𝑘L
(1) (𝜃𝑘 ) · Π𝑘

𝑖=1 (𝐼 − 𝛼∇𝜃𝑖−1 (∇𝜃L
(0) (𝜃𝑖−1)))

where 𝜃 are model parameters, 𝛼 is the step-size, and L is the Loss Function to-be-minimized evaluated over 𝑘
training samples.

FirstOrder MAML (FOMAML) ignores the 2𝑛𝑑 derivative, resulting in a simplified and efficient implementation.

𝑔𝐹𝑂𝑀𝐴𝑀𝐿 = ∇𝜃𝑘L
(1) (𝜃𝑘 )

21



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

Fig. 20. MAML based Enhanced Adaptability.

So, we consider the first-order gradient based MAML in our experiments. The FOMAML algorithm provides a good
improvement without much computational hindrance, making the overall training/optimization process computationally
efficient. For the NY dataset of 16x1 intersections, we randomly select a group of 5 nodes and train the networks for
these 5 nodes as usual. We train another network using first-order MAML approach with data samples from these 5
nodes. Now this pre-trained model is utilized to train the remaining 11 nodes. For the purpose of metrics calculation,
we train all 16 nodes with the pre-trained MAML model. The results for the same are depicted in Figure 20 (for 100
rounds, averaged over 5 runs).

We take a subset of total intersection nodes, the data for which act as meta-data to train the meta-network.
This meta-network acts as pre-trained model for other nodes, enabling faster convergence. We also combine
MAML with our Explored Learning technique and train the student model from pre-trained MAML model and
non-MAML teacher model. We observe a more stable training with added benefits of the two.

7.4 Doing Away with Runtime DRL: Lookup Table based Intersection Control (Goodness EcoLight)

We also seek to do away with running the DRL at runtime at the deployment site. The first reason is efficiency: on low
cost embedded systems, compute power is limited. The inputs for the control algorithms anyway needs to be computed
on the embedded devices, using computer vision algorithms on the real time video data from all approaches. Using
these inputs, if the control algorithm can be made more efficient than running a neural network for DRL, it becomes
more practical to meet the low computational budget. The second reason to do away with runtime DRL, is the lack of
confidence on the DRL black box. Based on anecdotal evidence through discussions with our deployment partners,
adaptive intersection control that can be visualized and verified by human experts before deployment, is much more
preferred than algorithms which are free to choose actions at runtime without any human supervision/comprehension,
as a runtime DRL would do.

We therefore seek to use static Lookup Tables (LUT) at deployment, where each cell in the table will represent a
state in our DRL. The value contained in that cell will represent a boolean action: stay in the current phase vs. switch to
the next phase, referred to as keep-change actions henceforth. The actions are learnt using offline DRL training. This
training can be compute heavy and high latency, as it is run on powerful GPU servers before deployment for real time
intersection control. During training, computer vision based processed video datasets are collected from the road, and
fed in traffic simulator to create all possible DRL states (cells in the LUT). Actions corresponding to each state are then
learnt by training the DRL algorithm.

22



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

Fig. 21. DRL training and LUT structure

The first graph in Figure 21 shows how metrics Total time and Travel time improve over many epochs of offline DRL
training. The other three images show how many times different DRL states are seen by the DRL training algorithm
as training progresses. The lighter the color, the more a DRL state is seen. These three images also describe the LUT
structure, where the two axes represent quantized values of 𝑥1 and 𝑥2 for the 2-dimensional state DRL (FL-G). Instead
of "how many times a DRL state is seen" presented in these images, the LUT contains a boolean action value in each
cell, learnt by DRL training. Verified by developing country traffic control experts for sanity and safety checks, the LUT
is eventually deployed on road. At runtime, the current state is computed using computer vision methods on incoming
video, and the action corresponding to that state in the stored LUT is taken by the traffic signal controller.

While storing DRL decisions for different states in LUT is efficient and verifiable, we need to ensure that the learnt
decisions are good for subsequent use at runtime. It is important to choose good DRL models to populate the static
LUT, as unlike running DRL at runtime, the LUT will not be able to dynamically update these decisions.

As measure of DRL model goodness, we define two metrics:
(a) FairShare:We hypothesize that a good RL tries to achieve FairShare of traffic densities among approaches i.e. fit
the traffic among at the intersection such that each approach maintains equal/similar density of traffic. To quantify this
FairShare property of a given DRL model, we project all instances of observed states (factored by the distance) onto the
equal density segments of LUT (corresponding to the diagonal starting at 0,0) in Figure 21. We sum this vector of the
projections to get a single scalar, which will be high for models with most states with equal density (like Epoch 90-99 in
Figure 21), and low otherwise. This scalar quantifies how balanced traffic is among the approaches for a particular DRL
model.
(b) DecisionConsistency: If a model predicts to hold/keep the signal for a state, we hypothesize that a good or
stable model should continue to predict the same for all states having higher traffic in the green approach (or low
traffic in the red approaches). We name this model property of sticking to the same decision under similar traffic
scenarios as DecisionConsistency. To quantify DecisionConsistency, for each green density level (𝑥1) we take the ratio
of two numbers, the large range of red density (𝑥2) over which the keep decision is maintained vs the range followed
with opposite decision. The sum of all such ratios gives rise to a scalar which will be larger for models with better
DecisionConsistency.

23



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

In addition to hypothesizing what properties good DRL models might have, and defining scalar metrics to quantify
those goodness properties, we also need mechanisms to use these goodness metrics. We do this in the following two
ways:

❶ DRL training using model goodness metrics:We use the FairShare and DecisionConsistency scalars during the
DRL training process to identify and favour better RL models. We maintain a threshold 𝜃 for these scalars, as training
progresses. As presented in Figure 22, at each epoch we hold a model if its goodness metric is below 𝜃 , lower 𝜃 by a
factor, and start the training for a fresh model in that epoch. We approve the best model so far (new or on hold), if its
goodness metric exceeds 𝜃 , or after fixed number (𝜂=5) of retries in that epoch, and move on with the metric value of
this model as new 𝜃 .

Fig. 22. Goodness metrics based DRL training

❷ DRL selection usingmodel goodnessmetrics: Figure 23 shows the correlation between Total Time performance
metric and DRL model’s goodness metric values. We discard models with goodness metric values lower than the average
of all the models, to remove outliers (see Perspective 1 of Figure 23). In order to select the good models among the
remaining ones, we pick the best model (again based on the goodness metric values) among a set of (𝜓=20) models,
and restart the process from the model next to the selected one (see Perspective 2 of Figure 23). This final set of high
performing models can be effectively used to generate the LUT to be deployed at the intersection.

Fig. 23. Goodness metrics based DRL selection

We need to evaluate this LUT based signal control, compared to the FL-G that we designed in § 5, and also the
state-of-art DRL methods Presslight [45] and CoLight [46]. Static LUTs lose performance due to quantization of the
traffic density values, while runtime DRL can use continuous values of traffic density. But the quantization is unavoidable,
as the table needs to be of finite dimensions. Whether our training and training+selection with goodness metrics can
overcome the quantization related performance loss, needs to be quantified.

24



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

Table 9 shows the average case performance metric values ❶ nOut (number of vehicles cleared by the intersection),
❷ Travel (time spent by cleared vehicles) and ❸ Total (time spent by all vehicles). The T in model names denotes
Goodness based Training only experiments, whereas TS includes Goodness based Selection as well. We continue the
training for 200 epochs, allowing all methods to converge and then average the next 50 epochs for performance metrics
calculation for T, and the selected few out of these for TS. As can be seen from the table, performance loss compared
to FL-G due to quantization, is gracefully recovered by both our goodness metrics. DecisionConsistency performs
significantly better than FairShare for all datasets.

Table 9. Performance of Goodness EcoLight for average case metrics

1x1 16x1 16x3

Model nOut Travel Total nOut Travel Total nOut Travel Total

PressLight 1246 254.4 252.0 4866 219.6 362.8 1355 560.3 930.3
CoLight 1248 222.3 250.9 4986 259.5 374.8 2589 318.9 311.3
FL-G 1282 237.9 243.4 5010 252.4 376.3 2574 328.1 322.6

FairShare(T) 1287 251.3 243.4 4976 244.0 377.0 2561 331.2 330.1
Decision(T) 1292 224.6 239.7 5081 251.3 359.1 2586 327.6 318.6
FairShare(TS) 1285 251.6 243.7 5137 239.9 343.8 2583 327.3 318.1
Decision(TS) 1298 186.4 234.5 5186 277.4 357.8 2586 325.5 316.2

Table 10. Performance of Goodness EcoLight for worst case (fairness) metrics for 16x3

Model WrstTime WrstWait MaxWait Stuck75 Stuck50 Stuck25 Stuck0

Presslight 3516.4 2481.5 255.6 99.2 338.5 843.9 1405.9
Colight 834.4 900.8 45.9 0.0 0.4 2.7 234.7
FL-G 985.3 1396.5 47.6 0.9 2.4 6.0 250.1

FairShare(T) 1207.1 1524.2 48.7 2.1 6.2 14.1 261.3
Decision(T) 924.7 1352.2 47.7 0.0 0.0 1.4 238.3
FairShare(TS) 929.0 1320.0 48.5 0.0 0.0 0.5 241.0
Decision(TS) 675.2 1007.0 46.8 0.0 0.0 0.0 237.6

We further show the value of worst case or fairness metrics for 16x3 benchmark dataset in Table 10. Our fairness
metrics are: (a) WrstTime (maximum time spent in the network by any stuck vehicle), (b) WrstWait (maximum wait time
at any intersection by any vehicle), (c) MaxWait (maximum of average wait times at any intersection) and (d) StuckX
(vehicles stuck in network at X% time from simulation end). Fairness loss due to quantization is not only gracefully
recovered by our goodness metrics, but we significantly outperform all baselines as well.

Using a finite sized LUT with (a) quantized traffic density values as rows and columns, and (b) cells containing
binary decisions learnt using DRL model training, and model selection based on some goodness metrics, gives
us performance and fairness comparable to the state-of-the-art DRL algorithms. This is extremely encouraging
in terms of practical deployment in developing countries.

25



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

7.5 Doing Away With Look-up Tables: Threshold based Intersection Control (Threshold EcoLight)

Based on anecdotal discussions with intersection control companies, while most intersections in developing regions will
be able to support LUTs, some intersections might be budget constrained to such an extent that the controller’s RAM
will not be enough to even store LUTs. In this section, we therefore consider how to design such a stateless controller,
with better performance and fairness metrics compared to other widely deployed stateless controllers. We start by
examining the FL-R tried in § 5, and gradually build performant and fair stateless control.

1-dimensional state RL (FL-R) did poorly on the Throughput and TotalTime metrics in Figure 13, especially for the
16x3 road network. Wondering what is being learnt by the RL for the case of 1-dimensional state (in FL-R), we checked
the model behaviour for the whole range of this state variable < 𝑥3 = 𝑥1/(𝑥1 + 𝑥2) > from 0.0 to 1.0. We calculate
the expected value of signal change for all 16 intersections (of 16x1 NY road network) for continuous 50 rounds after
training for 500 rounds.

Fig. 24. Density vs action

Figure 24 plots the expected signal change along y-axis, with relative density along x-axis. The signal change
expectation is high when relative density is low (top left) and vice-versa (red line given for reference for exact negative
correlation between signal change expectation and relative density). The blue curve shows a near-linear response
following the red line, but is still non-linear. Thus 1-dimensional state FL-R with ratio 𝑥1/(𝑥1 + 𝑥2) is not enough
to capture the necessary non-linearity and overall traffic concentration - empty vs. moderate vs. saturation. It only
captures relative density among approaches, while absolute values retained in 2-dimensional state of FL-G are clearly
important.

We explore the options of both 1-dimensional relative density (FL-R) < 𝑥1/(𝑥1 + 𝑥2) > and 2-dimensional absolute
densities (FL-G) < 𝑥1, 𝑥2 > in the simple algorithm next. The algorithm does not use any LUT to store the signal
switching decisions learnt by RL for all possible states. It only uses few empirically learned thresholds. This is to
support embedded hardware, that cannot use LUTs due to RAM constraints and would need the control algorithm to be
completely stateless, possibly using only a few thresholding parameters.

The intuition behind the algorithm is ❶ to take the CycleTime (i.e. the cumulative duration of all phases), and divide
it among phases in proportion to their relative densities and ❷ to increase CycleTime based on increasing absolute
densities. At each decision making point, the agent allows the green signal to continue until the relative density for
that approach has not fallen below a threshold 𝛼 . Below 𝛼 , signal can be switched. When CycleTime is defined (we call
this variant Timed), the agent uses it in proportion to the relative density (Timed (1dim)), with optionally increasing
the given CycleTime in response to absolute densities (Timed (2dim)). When CycleTime is undefined (we call this variant
Random), it would switch randomly, but still proportional to the relative density. The various hyper parameters are
listed in Table 11.

26



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

GetNextAction (𝑐𝑢𝑟_𝑝ℎ𝑎𝑠𝑒, 𝑝ℎ𝑎𝑠𝑒_𝑡𝑖𝑚𝑒, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑙𝑖𝑠𝑡):

𝑎𝑐𝑡𝑖𝑜𝑛 ← 0
𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ← 𝑠𝑢𝑚(𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑙𝑖𝑠𝑡)
if 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 0 and 𝑝ℎ𝑎𝑠𝑒_𝑡𝑖𝑚𝑒 ≥ 𝐶𝑂𝑁𝐹𝐼𝐺 [𝑀𝑖𝑛𝐺𝑟𝑒𝑒𝑛] then
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ← 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 [𝑐𝑢𝑟_𝑝ℎ𝑎𝑠𝑒]/𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑛𝑠𝑖𝑡𝑦
if 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 < 𝐶𝑂𝑁𝐹𝐼𝐺 [𝛼] then

if 𝐶𝑂𝑁𝐹𝐼𝐺 [𝑀𝑜𝑑𝑒] 𝑖𝑠 𝑅𝑎𝑛𝑑𝑜𝑚 then
𝑟𝑎𝑡𝑖𝑜 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0.0, 1.0)

else
𝑐𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒 ← 𝐶𝑂𝑁𝐹𝐼𝐺 [𝐶𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒]
if 𝐶𝑂𝑁𝐹𝐼𝐺 [𝑀𝑜𝑑𝑒] 𝑖𝑠 𝑇𝑖𝑚𝑒𝑑 (2𝑑𝑖𝑚) then
𝑐𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒 ← 𝑐𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 2/𝐶𝑂𝑁𝐹𝐼𝐺 [𝑀𝑎𝑥𝐷𝑒𝑛𝑠𝑖𝑡𝑦]
𝑐𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒 ← 𝑀𝐴𝑋 (𝐶𝑂𝑁𝐹𝐼𝐺 [𝑀𝑖𝑛𝐺𝑟𝑒𝑒𝑛], 𝑐𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒)

end if
𝑟𝑎𝑡𝑖𝑜 ← 𝑝ℎ𝑎𝑠𝑒_𝑡𝑖𝑚𝑒/𝑐𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒

end if
if 𝑟𝑎𝑡𝑖𝑜 > 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 then
𝑎𝑐𝑡𝑖𝑜𝑛 ← 1

end if
end if

end if
return 𝑎𝑐𝑡𝑖𝑜𝑛

Table 11. Algorithm Hyper Parameters

Param Description

𝛼 Hold green above this threshold
MinGreen Minimum green per phase
CycleTime Total green time over phases
MaxDensity Maximum density at intersection

Mode Random / Timed(1dim or 2dim)

Table 12. Empirically Learnt Values

Algorithm Properties

FixedTiming 20s Min/Max Green
MaxPressure 5s Min Green

SOTL 2/4 veh, 5s Min Green
Random 𝛼=0.17, 5s Min Green
Timed 𝛼=0.17, 150s Cycle

We compare the performance of our stateless algorithms against below baselines. These baselines also do not use any
state, but work with few parameters as listed in Table 12. State-of-the-art research based RL methods like Presslight and
CoLight are still in literature and not adopted in the real world. So these simpler baselines are the widely deployed
intersection control algorithms across the world. Developing countries, typically, still use Fixed Timing signals.
❶ Fixed Timing: Signal switches in cyclic order to the next approach after fixed time intervals.
❷ Max Pressure: Pressure is calculated by the difference of vehicles on the incoming and outgoing lanes for the
possible movements in each phase [42]. Signal is switched to the phase with maximum pressure. If current phase
pressure is not the maximum, we switch to the next phase.

27



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

❸ Self-Organizing Traffic Light (SOTL): This is a vehicle actuated mechanism [12]. There is a minimum phase
duration. Once the minimum phase duration is over, the switch signal is generated if the traffic in green approach is
less than a threshold and traffic in any other approach is more than another threshold.

Table 13. Performance of EcoLight Thresholding Algorithms for average case metrics

1x1 16x1 16x3

Algo nOut Travel Total nOut Travel Total nOut Travel Total

FixedTiming 1249 260.6 252.0 3743 193.0 583.5 1489 723.2 985.7
MaxPressure 1160 280.8 272.8 4106 214.4 504.2 1840 649.7 768.8
SOTL 1305 246.7 239.0 4640 264.7 436.3 2462 485.9 465.1

Random 1361 231.6 224.8 5076 354.9 427.8 2540 378.5 364.9
Timed(1dim) 1358 231.7 255.4 5104 355.3 428.9 2516 380.6 368.3
Timed(2dim) 1358 231.7 255.4 5268 346.6 406.3 2553 375.2 361.7

Table 13 shows the average case metric values (a) nOut (number of vehicles cleared by the intersection), (b) Travel
(time spent by cleared vehicles) and (c) Total (time spent by all vehicles). Our algorithms Random, Timed (1dim) and
Timed (2dim), clear many more vehicles at lower Travel and Total times than the baselines, for all benchmark datasets.
The Travel times for 16x1 network is higher (italicized in Table 13) for our algorithms, though other metrics improved.
This is due to the fact that it is a linear network of 16 intersections and the traffic pattern is such that a good part of the
traffic enters around one end and exits around the other (and vice-versa), making the vehicles cross many intersections
in a sequence. Supported by increased nOut, our algorithms make more vehicles to exit the network. The extra vehicles
which exit are mostly the ones with larger travel times, thus pushing the average travel time for all cleared vehicles
higher. Similar behaviour is observed for the baselines as well, where SOTL Travel time (with more nOut) is higher
than other baselines (with less nOut).

Table 14. Performance of EcoLight Thresholding Algo for worst case (fairness) metrics for 16x3

Algo WrstTime WrstWait MaxWait Stuck75 Stuck50 Stuck25 Stuck0

FixedTiming 3443 2671 255.6 82 348 741 1203
MaxPressure 3100 2347 261.6 11 154 449 942
SOTL 1229 2188 79.8 0 0 11 362

Random 841 526 56.1 0 0 0 284
Timed(1dim) 839 524 56.5 0 0 0 308
Timed(2dim) 719 516 54.2 0 0 0 271

We further show the value of worst case or fairness metrics for 16x3 benchmark dataset in Table 14. For our Random
variant, we take average of 5 rounds of simulation. For all others, the results are consistent for every round. Our algo-
rithms significantly outperform the baselines for all fairness metrics for 16x3 network, and also for other benchmarks
(omitted here for space constraints).

28



FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

Table 15 shows performance of EcoLight Algorithms on two addition datasets collected at different times on the
same intersection in New Delhi (India).

Table 15. Performance on other 1x1 datasets

2 3

Algo nOut Travel Total nOut Travel Total

PressLight 225 30.0 29.4 529 163.1 177.6
Colight 221 31.2 49.1 514 163.2 181.7
FL-G 225 30.4 29.9 540 182.3 178.6

FairShare(T) 225 31.3 30.9 517 194.5 189.5
Decision(T) 225 30.3 29.8 538 185.2 180.2
FairShare(TS) 225 32.2 31.7 538 181.7 178.4
Decision(TS) 225 30.4 29.9 564 172.8 167.8

Timed(2dim) 225 31.9 31.3 566 168.9 162.5
Timed(1dim) 225 31.9 31.3 563 174.8 166.9
Random 225 31.9 31.3 562 172.8 166.3

SOTL 223 50.7 53.8 539 196.0 186.7
MaxPressure 224 48.4 47.3 487 205.5 202.0
FixedTiming 224 70.9 69.0 512 198.4 188.8

Based on these results, in situations where running RL based control or maintaining LUTs are not feasible due
to RAM constraints, our stateless algorithms can be deployed, vastly improving both performance and fairness
metrics, compared to the currently deployed intersection control baselines.

8 INPUT TO CONTROL ALGORITHMS: COMPUTER VISION FOR END-TO-END SYSTEM

All intersection control algorithms designed in this paper – ❶ FrugalLight DRLs (§ 5), ❷ Explored Learn Frugal-
Light DRLs (§ 7.1), ❸ MAML based FrugalLight DRLs (§ 7.3), ❹ LUTs built from offline DRL training using quantized
states (§ 7.4) and ❺ Stateless threshold based FrugalLight algorithms (§ 7.5), use traffic density as input. More specifi-
cally, the algorithms need density of standing traffic (also called stop density), discarding vehicles which have started
moving.

Given the hardware constraints, we need to make sure that this input is available to our control algorithms at an
acceptable latency, with limited computation and no communication to a back-end server. As efficient computer vision
candidates, we use background subtraction and optical flow techniques as discussed in § 3.2. Background subtraction
based density estimates comprise both standing and moving traffic, whereas the control algorithms need to discard
density contributed by the moving vehicles. So we additionally use optical flow algorithm, to detect moving pixels
between frames, and compute standing traffic density from the stationary parts of the frames.

29



JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

Fig. 25. Developing Region Traffic Density Estimation

Figure 25 on the left shows a high traffic density frame, from one approach of a developing region intersection we are
working at. The graph on the right shows for this location: (a) background subtraction based density (Queue Density
in blue curve) and (b) optical flow based density (Dynamic Density in orange curve), over a span of over 15 minutes.
Queue density starts to rise when signal turns red (indicated by vertical red lines), and starts to fall when signal turns
green (indicated by vertical green lines). Dynamic density is zero when red signal is on (between red and green vertical
lines) and rises when signal turns green and vehicles start moving. The difference between these two curves gives the
density of standing vehicles, the input required by our control algorithms.

The density estimation code runs at 5 FPS on low cost embedded platform (1.8 GHz Intel(R) Atom(TM) CPU
D525 with 4 logical cores and 8GB RAM) budgeted by our deployment partners. With signal keep-change
decisions taken every 5-10 seconds using LUT or threshold based control algorithms, this FPS is good enough
to get inputs for all approaches.

9 CONCLUSION AND FUTUREWORK

This paper shows the feasibility of deployable intelligent traffic light control methods for developing regions, using
efficient and optimized computations on low-cost edge devices. Our shared dataset is peculiar in terms of its traffic
representation properties despite the various functional challenges. Our proposed traffic control method FrugalLight,
which supports using the simplified traffic data, is evaluated on many hours of real world data, both existing open-source
from New York, USA11 and now open-source from New Delhi, India12. Though our problem statement comes from
developing country, our data and models are useful everywhere empowered by their efficiency and simplicity. We
do equally well in both orderly and chaotic situations. FrugalLight also demonstrates that control can be made
computationally efficient resulting in less carbon footprint, without losing utility in terms of metric optimization. We
will continue to explore how such deployable systems will actually benefit the sustainability goals like air pollution
reduction.

11https://www1.nyc.gov/ site/ tlc/about/ tlc-trip-record-data.page
12https://delhi-trafficdensity-dataset.github.io

30

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://delhi-trafficdensity-dataset.github.io


FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

REFERENCES
[1] 2021. Meta learning (computer science). https://en.wikipedia.org/wiki/Meta_learning_(computer_science).
[2] Mohammad Aslani, Mohammad Saadi Mesgari, and Marco Wiering. 2017. Adaptive traffic signal control with actor-critic methods in a real-

world traffic network with different traffic disruption events. Transportation Research Part C: Emerging Technologies 85 (2017), 732–752. https:
//doi.org/10.1016/j.trc.2017.09.020

[3] Mohammad Aslani, Stefan Seipel, Mohammad Saadi Mesgari, and Marco Wiering. 2018. Traffic Signal Optimization through Discrete and
Continuous Reinforcement Learning with Robustness Analysis in Downtown Tehran. Adv. Eng. Inform. 38, C (oct 2018), 639–655. https:
//doi.org/10.1016/j.aei.2018.08.002

[4] UK Bewiser. 2016. Traffic lights cause traffic jams, new research suggests. https://www.bewiser.co.uk/news/car-insurance/traffic-lights-cause-
traffic-jams-new-research-suggests.

[5] Ankit Bhardwaj, Shiva R. Iyer, Sriram Ramesh, Jerome White, and Lakshminarayanan Subramanian. 2023. Understanding sudden traffic jams: From
emergence to impact. Development Engineering 8 (2023), 100105. https://doi.org/10.1016/j.deveng.2022.100105

[6] Thierry Bouwmans. 2014. Background modeling and Foreground Detection for video surveillance: Traditional and Recent Approaches, Benchmarking
and Evaluation. http://www.crcpress.com/product/isbn/9781482205374.

[7] CC-by4. 2013. Attribution 4.0 International (CC BY 4.0). Retrieved June 7, 2023 from https://creativecommons.org/licenses/by/4.0
[8] Mayank Singh Chauhan, Arshdeep Singh, Mansi Khemka, Arneish Prateek, and Rijurekha Sen. 2019. Embedded CNN Based Vehicle Classification

and Counting in Non-Laned Road Traffic. In Proceedings of the Tenth International Conference on Information and Communication Technologies and
Development.

[9] Sachin Chauhan, Kashish Bansal, and Rijurekha Sen. 2020. EcoLight: Intersection Control in Developing Regions Under Extreme Budget and
Network Constraints. 34th Conference on Neural Information Processing Systems (NeurIPS 2020). https://proceedings.neurips.cc/paper/2020/file/
97e49161287e7a4f9b745366e4f9431b-Paper.pdf

[10] Sachin Chauhan, Sayan Ranu, Rijurekha Sen, Zeel B Patel, and Nipun Batra. 2023. AirDelhi: Fine-Grained Spatio-Temporal Particulate Matter Dataset
From Delhi For ML based Modeling. 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.
https://openreview.net/pdf?id=n2wW7goGky

[11] Sachin Chauhan and Rijurekha Sen. 2023. RealLight: DRL based Intersection Control in Developing Countries without Traffic Simulators. In NeurIPS
2023 Computational Sustainability: Promises and Pitfalls from Theory to Deployment. https://openreview.net/pdf?id=dmjT841VuV

[12] Seung-Bae Cools, Carlos Gershenson, and Bart D’Hooghe. 2006. Self-Organizing Traffic Lights: A Realistic Simulation. Advances in Applied
Self-Organizing Systems (10 2006). https://doi.org/10.1007/978-1-84628-982-8_3

[13] Anthony Davis. 2019. Inductive loops or wireless magnetometers for traffic signal control. https://highways.today/2019/03/22/inductive-loops-
wireless-magnetometers).

[14] Samah El-Tantawy and Baher Abdulhai. 2010. An agent-based learning towards decentralized and coordinated traffic signal control. In 13th
International IEEE Conference on Intelligent Transportation Systems. 665–670. https://doi.org/10.1109/ITSC.2010.5625066

[15] Samah El-Tantawy, Baher Abdulhai, and Hossam Abdelgawad. 2013. Multiagent Reinforcement Learning for Integrated Network of Adaptive
Traffic Signal Controllers (MARLIN-ATSC): Methodology and Large-Scale Application on Downtown Toronto. IEEE Transactions on Intelligent
Transportation Systems 14, 3 (2013), 1140–1150. https://doi.org/10.1109/TITS.2013.2255286

[16] FHWA. 2006. Traffic Detector Handbook: Chapter 4. In-Roadway Sensor Design. https://www.fhwa.dot.gov/publications/research/operations/its/
06108/04.cfm).

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th
International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML’17). JMLR.org, 1126–1135.

[18] Qiushan Guo, Xinjiang Wang, Yichao Wu, Zhipeng Yu, Ding Liang, Xiaolin Hu, and Ping Luo. 2020. Online Knowledge Distillation via Collaborative
Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19] Philipp Gysel, Jon Pimentel, Mohammad Motamedi, and Soheil Ghiasi. 2018. Ristretto: A Framework for Empirical Study of Resource-Efficient
Inference in Convolutional Neural Networks. IEEE Transactions on Neural Networks and Learning Systems 29, 11 (2018), 5784–5789. https:
//doi.org/10.1109/TNNLS.2018.2808319

[20] Jiang Han, John W. Polak, Javier Barria, and Rajesh Krishnan. 2010. On the estimation of space-mean-speed from inductive loop detector data. Trans-
portation Planning and Technology 33, 1 (2010), 91–104. https://doi.org/10.1080/03081060903429421 arXiv:https://doi.org/10.1080/03081060903429421

[21] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning both weights and connections for efficient neural networks. In Proceedings of
the 28th International Conference on Neural Information Processing Systems - Volume 1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA,
1135–1143.

[22] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. 2012. Neural networks for machine learning lecture 6a overview of mini-batch gradient
descent. Cited on 14, 8 (2012), 2.

[23] Shiva R Iyer, Ulzee An, and Lakshminarayanan Subramanian. 2020. Forecasting sparse traffic congestion patterns using message-passing rnns. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3772–3776.

[24] Vipin Jain, Ashlesh Sharma, and Lakshminarayanan Subramanian. 2012. Road traffic congestion in the developing world. In Proceedings of the 2nd
ACM Symposium on Computing for Development. 1–10.

31

https://en.wikipedia.org/wiki/Meta_learning_(computer_science)
https://doi.org/10.1016/j.trc.2017.09.020
https://doi.org/10.1016/j.trc.2017.09.020
https://doi.org/10.1016/j.aei.2018.08.002
https://doi.org/10.1016/j.aei.2018.08.002
https://www.bewiser.co.uk/news/car-insurance/traffic-lights-cause-traffic-jams-new-research-suggests
https://www.bewiser.co.uk/news/car-insurance/traffic-lights-cause-traffic-jams-new-research-suggests
https://doi.org/10.1016/j.deveng.2022.100105
http://www.crcpress.com/product/isbn/9781482205374
https://creativecommons.org/licenses/by/4.0
https://proceedings.neurips.cc/paper/2020/file/97e49161287e7a4f9b745366e4f9431b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/97e49161287e7a4f9b745366e4f9431b-Paper.pdf
https://openreview.net/pdf?id=n2wW7goGky
https://openreview.net/pdf?id=dmjT841VuV
https://doi.org/10.1007/978-1-84628-982-8_3
https://highways.today/2019/03/22/inductive-loops-wireless-magnetometers)
https://highways.today/2019/03/22/inductive-loops-wireless-magnetometers)
https://doi.org/10.1109/ITSC.2010.5625066
https://doi.org/10.1109/TITS.2013.2255286
https://www.fhwa.dot.gov/publications/research/operations/its/06108/04.cfm)
https://www.fhwa.dot.gov/publications/research/operations/its/06108/04.cfm)
https://doi.org/10.1109/TNNLS.2018.2808319
https://doi.org/10.1109/TNNLS.2018.2808319
https://doi.org/10.1080/03081060903429421
https://arxiv.org/abs/https://doi.org/10.1080/03081060903429421


JCSS ’24, 2024, Sachin Kumar Chauhan & Rijurekha Sen

[25] Nicole Kobie. 2018. London is hacking its traffic lights to slash waiting times. https://www.wired.co.uk/article/traffic-lights-uk-london).
[26] Daniel Krajzewicz, Georg Hertkorn, Christian Feld, and PeterWagner. 2002. SUMO (Simulation of Urban MObility); An open-source traffic simulation.

4th Middle East Symposium on Simulation and Modelling (MESM2002), 183–187.
[27] xu lan, Xiatian Zhu, and Shaogang Gong. 2018. Knowledge Distillation by On-the-Fly Native Ensemble. In Advances in Neural Information

Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 7517–7527.
http://papers.nips.cc/paper/7980-knowledge-distillation-by-on-the-fly-native-ensemble.pdf

[28] John DC Little, Mark D Kelson, and Nathan H Gartner. 1981. MAXBAND: A versatile program for setting signals on arteries and triangular networks.
(1981).

[29] PR Lowrie. 1990. SCATS: Sydney Co-Ordinated Adaptive Traffic System: a traffic responsive method of controlling urban traffic.
[30] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J. Dally. 2017. Exploring the Granularity of Sparsity in Convolutional

Neural Networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1927–1934. https://doi.org/10.1109/
CVPRW.2017.241

[31] Vaishnavh Nagarajan, Aditya Krishna Menon, Srinadh Bhojanapalli, Hossein Mobahi, and Sanjiv Kumar. 2023. On student-teacher deviations in
distillation: does it pay to disobey. 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

[32] Tomoki Nishi, Keisuke Otaki, Keiichiro Hayakawa, and Takayoshi Yoshimura. 2018. Traffic Signal Control Based on Reinforcement Learning with
Graph Convolutional Neural Nets. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC). 877–883. https://doi.org/10.
1109/ITSC.2018.8569301

[33] OpenCV. 2021. Optical Flow. Retrieved Oct 29, 2023 from https://docs.opencv.org/3.4.15/d4/dee/tutorial_optical_flow.html
[34] Srinivas Peeta and Pengchang Zhang. 2002. Counting Device Selection and Reliability: Synthesis Study. Joint Transportation Research Program

(2002).
[35] L A Prashanth and Shalabh Bhatnagar. 2011. Reinforcement learning with average cost for adaptive control of traffic lights at intersections. In 2011

14th International IEEE Conference on Intelligent Transportation Systems (ITSC). 1640–1645. https://doi.org/10.1109/ITSC.2011.6082823
[36] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You Only Look Once: Unified, Real-Time Object Detection. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 779–788. https://doi.org/10.1109/CVPR.2016.91
[37] Stefano Giovanni Rizzo, Giovanna Vantini, and Sanjay Chawla. 2019. Time Critic Policy Gradient Methods for Traffic Signal Control in Complex

and Congested Scenarios. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery amp; Data Mining (Anchorage,
AK, USA) (KDD ’19). Association for Computing Machinery, New York, NY, USA, 1654–1664. https://doi.org/10.1145/3292500.3330988

[38] Roger P Roess, Elena S Prassas, and William R McShane. 2004. Traffic Engineering. Pearson/Prentice Hall. Retrieved Jan 3, 2024 from https:
//books.google.co.in/books?id=OYNPAAAAMAAJ

[39] Andrea Sassella, Francesco Abbr., Simone Formentin, Andrea G. Bianchessi, and Sergio M. Savaresi. 2023. On queue length estimation in urban
traffic intersections via inductive loops. In 2023 American Control Conference (ACC). 1135–1140. https://doi.org/10.23919/ACC55779.2023.10156258

[40] Omais Shafi, Sachin Chauhan, Gayathri Ananthanarayanan, and Rijurekha Sen. 2022. DynCNN: Application Dynamism and Ambient Temperature
Aware Neural Network Scheduler in Edge Devices for Traffic Control. In ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies
(COMPASS) (Seattle, WA, USA) (COMPASS ’22). Association for Computing Machinery, New York, NY, USA, 513–528. https://doi.org/10.1145/
3530190.3534823

[41] Elise van der Pol and Frans A. Oliehoek. 2016. Coordinated Deep Reinforcement Learners for Traffic Light Control. Retrieved Jan 3, 2024 from
https://api.semanticscholar.org/CorpusID:198950131

[42] Pravin Varaiya. 2013. Max pressure control of a network of signalized intersections. Transportation Research Part C: Emerging Technologies 36 (2013),
177–195. https://doi.org/10.1016/j.trc.2013.08.014

[43] Shiva Verma. 2019. Understanding different Loss Functions for Neural Networks. https://towardsdatascience.com/loss-functions-neural-networks-
dd1ed0274718.

[44] Y. Wang, T. Xu, X. Niu, C. Tan, E. Chen, and H. Xiong. 2022. STMARL: A Spatio-Temporal Multi-Agent Reinforcement Learning Approach for
Cooperative Traffic Light Control. IEEE Transactions on Mobile Computing 21, 06 (2022), 2228–2242.

[45] Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li. 2019. PressLight: Learning Max Pressure Control to
Coordinate Traffic Signals in Arterial Network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (Anchorage, AK, USA) (KDD ’19). 1290–1298.

[46] Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang, Yamin Zhu, Kai Xu, and Zhenhui Li. 2019. CoLight:
Learning Network-level Cooperation for Traffic Signal Control. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management (Beijing, China) (CIKM ’19).

[47] Hua Wei, Guanjie Zheng, Vikash V. Gayah, and Zhenhui Jessie Li. 2019. A Survey on Traffic Signal Control Methods. ArXiv abs/1904.08117 (2019).
https://api.semanticscholar.org/CorpusID:119116017

[48] David Williams. 2012. Too many traffic lights make congestion worse. https://www.standard.co.uk/hp/front/too-many-traffic-lights-make-
congestion-worse-6676646.html).

[49] T. Yang, Y. Chen, and V. Sze. 2017. Designing Energy-Efficient Convolutional Neural Networks Using Energy-Aware Pruning. (jul 2017), 6071–6079.
https://doi.org/10.1109/CVPR.2017.643

32

https://www.wired.co.uk/article/traffic-lights-uk-london)
http://papers.nips.cc/paper/7980-knowledge-distillation-by-on-the-fly-native-ensemble.pdf
https://doi.org/10.1109/CVPRW.2017.241
https://doi.org/10.1109/CVPRW.2017.241
https://doi.org/10.1109/ITSC.2018.8569301
https://doi.org/10.1109/ITSC.2018.8569301
https://docs.opencv.org/3.4.15/d4/dee/tutorial_optical_flow.html
https://doi.org/10.1109/ITSC.2011.6082823
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1145/3292500.3330988
https://books.google.co.in/books?id=OYNPAAAAMAAJ
https://books.google.co.in/books?id=OYNPAAAAMAAJ
https://doi.org/10.23919/ACC55779.2023.10156258
https://doi.org/10.1145/3530190.3534823
https://doi.org/10.1145/3530190.3534823
https://api.semanticscholar.org/CorpusID:198950131
https://doi.org/10.1016/j.trc.2013.08.014
https://towardsdatascience.com/loss-functions-neural-networks-dd1ed0274718
https://towardsdatascience.com/loss-functions-neural-networks-dd1ed0274718
https://api.semanticscholar.org/CorpusID:119116017
https://www.standard.co.uk/hp/front/too-many-traffic-lights-make-congestion-worse-6676646.html)
https://www.standard.co.uk/hp/front/too-many-traffic-lights-make-congestion-worse-6676646.html)
https://doi.org/10.1109/CVPR.2017.643


FrugalLight : Efficient Intersection Control using Deep Reinforcement Learning JCSS ’24, 2024,

[50] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das, and Scott Mahlke. 2017. Scalpel: Customizing DNN Pruning to the
Underlying Hardware Parallelism. SIGARCH Comput. Archit. News 45, 2 (June 2017), 548–560. https://doi.org/10.1145/3140659.3080215

[51] Xinshi Zang, Huaxiu Yao, Guanjie Zheng, Nan Xu, Kai Xu, and Zhenhui Li. 2020. MetaLight: Value-Based Meta-Reinforcement Learning for Traffic
Signal Control. Proceedings of the AAAI Conference on Artificial Intelligence 34, 01 (Apr. 2020), 1153–1160. https://doi.org/10.1609/aaai.v34i01.5467

[52] Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong Yu, Haiming Jin, and Zhenhui Li. 2019. CityFlow:
AMulti-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario. (2019), 3620–3624. https://doi.org/10.1145/3308558.3314139

33

https://doi.org/10.1145/3140659.3080215
https://doi.org/10.1609/aaai.v34i01.5467
https://doi.org/10.1145/3308558.3314139

	Abstract
	1 Introduction
	2 Related work
	3 Real Data Description
	3.1 Data Collection Challenges
	3.2 Dataset Processing
	3.3 Dataset Quality
	3.4 Dataset Uniqueness

	4 Need for Intelligent Traffic Light Control
	4.1 Problem Definition

	5 FrugalLight 
	5.1 Design Prerequisites
	5.2 FrugalLight DRL Architecture
	5.3 FrugalLight Rewards
	5.4 DRL compression using domain knowledge

	6 FrugalLight Evaluation
	6.1 Baselines:
	6.2 Benchmarks:
	6.3 Simulator:
	6.4 DRL Efficiency:
	6.5 FL performance on existing open-source datasets
	6.6 FL performance on our New Delhi dataset

	7 Enhanced FrugalLight 
	7.1 Student-teacher knowledge distillation, with FrugalLight's domain knowledge
	7.2 FrugalLight's Transferability and Adaptability
	7.3 Enhanced Adaptability using Gradient based Meta Learning (MAML)
	7.4 Doing Away with Runtime DRL: Lookup Table based Intersection Control (Goodness EcoLight)
	7.5 Doing Away With Look-up Tables: Threshold based Intersection Control (Threshold EcoLight)

	8 Input to Control Algorithms: Computer Vision for End-To-End System
	9 Conclusion and Future Work
	References

