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ABSTRACT
Classifying and counting vehicles in road traffic has numerous
applications in the transportation engineering domain. However,
the wide variety of vehicles (two-wheelers, three-wheelers, cars,
buses, trucks etc.) plying on roads of developing regions without
any lane discipline, makes vehicle classification and counting a
hard problem to automate. In this paper, we use state of the art Con-
volutional Neural Network (CNN) based object detection models
and train them for multiple vehicle classes using data from Delhi
roads. We get upto 75% MAP on an 80-20 train-test split using
5562 video frames from four different locations. As robust network
connectivity is scarce in developing regions for continuous video
transmissions from the road to cloud servers, we also evaluate the
latency, energy and hardware cost of embedded implementations
of our CNN model based inferences.
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1 INTRODUCTION
Traffic congestion and air pollution levels are becoming life threat-
ening in developing region cities like Delhi and the National Capital
Region (NCR). The local government is being forced to take con-
crete steps to make public transport better by gradually adding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICTD ’19, January 4–7, 2019, Ahmedabad, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6122-4/19/01. . . $15.00
https://doi.org/10.1145/3287098.3287118

subway and bus infrastructure [15], albeit under budget constraints.
Policy decisions like odd-even rules (vehicles with odd and even
numbered plates are allowed on alternate days) are being tried to
curb the number of private cars [8, 12, 22]. A lot of times such policy
decisions are met with angry protests from citizens in news and
social media. In absence of data driven empirical analysis of the po-
tential and actual impact of such urban transport policies, debates
surrounding the policies often become political rhetoric. Building
systems to gather and analyze transport, air quality and similar
datasets is therefore necessary, for data driven policy debates.

This paper focuses on a particular kind of empirical measure-
ment, namely counting and classification of vehicles and pedestri-
ans from roadside cameras installed at intersections in Delhi-NCR.
These numbers can be used in road infrastructure planning, e.g.
in construction of signalized intersections, fly-overs, foot-bridges,
underpasses, footpaths and bike lanes. Classified counts can also
help in evaluating the effect of policies like odd-even, to see if pri-
vate transport numbers go down during the policy enforcement
period as expected. We discuss these and more motivational use
cases of automated vehicle counting and classification in Section 2.
We show how some of these use cases can benefit from empirical
data, based on our dataset, in Section 7.

Non-laned driving in developing regions with high heterogeneity
of vehicles and pedestrians, make automated counting and classifi-
cation a hard problem. This paper explores state of the art computer
vision methods of CNN based object detection, to handle this task.
CNN models need annotated datasets from the target domain for
supervised learning. Annotated video frames from in-vehicle and
roadside cameras are available for western traffic, and have re-
cently been in high demand to train computer vision models for
self-driving cars etc.

We started our explorations with CNN models, available with
weights trained on the Imagenet dataset [21], which has many
classes of objects including vehicles. We further fine-tuned the
model with existing annotated datasets of developed country traffic
from PASCAL VOC [23] and KITTI [24]. However, the accura-
cies obtained with models trained with developed country traffic
datasets, on test videos and images collected in Delhi-NCR, was
very low (Mean Average Precision or MAP value in object detection
was 0.01% using fine-tuning with KITTI dataset and 0.58% using
fine-tuning with Pascal VOC).

We identified several differences between the annotated video
and image datasets of western traffic and our traffic videos, that
might cause the accuracy difference of training models on one
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dataset and testing on the other. Four-wheelers and motorbikes
look similar across countries, but there are many vehicles in Delhi-
NCR which look completely different from the western world (e.g.
auto-rickshaws, e-rickshaws, cycle-rickshaws, trucks and buses).
Secondly, our lack of lane discipline causes higher levels of occlu-
sion, where a large vehicle like a bus is occluded by many smaller
vehicles. Thirdly, our roads are not rectangular grid shaped as seen
in developed country videos, but have different adhoc intersection
designs, creating different views of the captured traffic flows. Fi-
nally, since self-driving cars is one of the main application focus in
developed countries, many images and videos are captured from
the view point of the driver. This view significantly differs from the
view of traffic a road-side camera gets. On obtaining low accuracies
with annotated datasets from developed regions as a combined
effect of all these differences, we tried to find annotated datasets of
non-laned developing region traffic to fine-tune our CNN models.
Unfortunately, we could not find such datasets.

We therefore create such annotated datasets ourselves, as part
of this paper. We collect videos from three different intersections
and a highway in Delhi-NCR, in collaboration with Vehant Tech-
nologies [18] and Delhi Integrated Multimodal Transit System
(DIMTS) [9]. We split the video into frames, manually annotate
the different objects with bounding boxes and use this annotated
dataset to train and test CNN based object detectors. Our annotated
dataset comprises 5562 frames with 32088 total annotations, aver-
age number of annotations per frame being 6. In an 80-20 split of
train and test data, our trained model achieves MAP values of upto
75%. We describe our dataset in Section 4 and CNN based object
detector model training and testing in Section 5.

The cameras from which we obtain data have either a fish-eye or
a normal lens, and get a frontal, back or side view of the road traffic.
These different kind of camera installations and lens configurations
help us in evaluating how models trained on one annotated dataset
perform on test set from the same camera vs. other installations.
Our observations should empirically motivate the standardization
of such hardware installation in future, to reduce the overhead of
manual annotation of video frames and retraining of CNN model
for each non-standard camera installation. Already fine-tuning of
computer vision models, trained with videos and images of devel-
oped world traffic is needed. This is because we cannot change
the kind of vehicles that ply on our roads, nor can we change our
non-laned driving increasing occlusion, and also not the irregu-
lar intersection design different from regular grids in developed
regions. But at least if differences due to camera positioning and
angles can be minimized, some manual annotation and fine-tuning
efforts can be reduced.

Vehicle counting and classification can be useful in two kind of
applications. The first kind is delay tolerant, where processing can
be done at any arbitrary latency after video capture. The compu-
tations in this case will affect long term policy like infrastructure
planning or help in evaluating policy impact like that of odd-even
rule. The second kind of applications require low latency real time
processing. Here the computations can be used in catching speed vi-
olations based on vehicle class, or illegal use of roadways by heavy
vehicles outside their allotted time slots. Low latency is needed to
catch the violators and penalize them in real time. In this paper, we

therefore also explore the prospect of real time inferences using our
trained CNN models, especially using on-road embedded platforms.

Why is embedded processing interesting to explore in this con-
text? Since broadband network connectivity across different road
intersections and highways is not reliable in developing countries,
transfer of video frames from the road to cloud servers for run-
ning computer vision models on them can become a bottleneck.
We therefore evaluate embedded platforms on their ability to run
inference tasks i.e. given a pre-trained CNN based object detection
model and a video frame, whether the embedded platform can pro-
cess the frame to give classified counts. We measure the latency
incurred and energy drawn per inference task on three off-the-shelf
embedded platforms (Nvidia Jetson TX2, Raspberry PI Model 3B
and Intel Movidius Neural Compute Stick). Our evaluations in Sec-
tion 6 show the feasibility of embedded processing and also shows
the cost-latency-energy trade-offs of particular hardware-software
combinations.

Our trained models are available at1 The annotated datasets will
potentially be of interest to computer vision researchers, for design-
ing and testing better CNN models for developing region traffic.
The trained models and technical know-how of training the CNN
models and running inferences on embedded platforms will poten-
tially aid government organizations in data driven policy design
and evaluation on road traffic measurement and management.

2 MOTIVATION
Why is vehicle classification and counting useful? One use case
for such classified counts is data driven infrastructure planning.
Each vehicle class can carry a certain number of passengers, which
is called Passenger Count Unit (PCU) [13]. PCU/hour is used to
compute capacity of roads and if this capacity needs to be increased,
flyovers, underpasses and road widening projects have to be un-
dertaken after proper assessment. While this is the norm in de-
veloped countries, in developing countries infrastructure enhance-
ment projects are often ridden in political rhetoric and contro-
versy. A notable example has been civil society’s vehement protests
against local government’s decision to build the Bengaluru steel
flyover [16, 19]. Such decisions and associated debates should be
backed with empirical data of PCU measurements from the road,
for which vehicle classification and counting as done in this paper
is necessary. Other infrastructure like footbridges, footpaths and
bike-lanes can also be planned based on counting actual numbers
of pedestrians and cycles on the road.

A second use case is empirically evaluating the effect of urban
transport policies. An example is the odd even policy piloted twice
by the local government in Delhi-NCR in 2017 [8, 12, 22] to reduce
number of vehicles, and subsequently fuel emissions to improve air
quality index in the city. Again the policy was highly debated in
news and social media. As shown by the researchers in [32], most of
these debates were driven by political leanings of the social media

1https://github.com/mansikhemka/Embedded-CNN-based-vehicle-classification-
and-counting-in-non-laned-road-traffic/ for use by both computer vision and
transportation researchers, and potentially also by government organizations working
on road traffic measurement and management. Our annotated datasets will be
available on request from academic and research institutions. This restriction is
needed to control data privacy, as the videos have been captured on real roads and
contain personally identifiable information (PII) like people’s faces and vehicle number
plates.
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```````````Description
Installation front_fisheye back_nobus side_highway back_busroute total

Total Number of Annotated Images 620 1189 2754 999 5562
Total Number of Annotations in all Images 9053 12588 4786 5661 32088
Average Number of annotations per Image 15 11 2 6 6
Number of Train Images(80%) 496 988 2248 800 4532
Number of Test Images(20%) 124 201 506 199 1030

Table 1: Image dataset and annotation description

users, instead of empirical data. There were also controversial news
reports of citizens resorting to renting cars with suitable license
plates, and even opting to buy two cars with one odd and one even
licence plate, to bypass the restrictions [10, 11, 14]. Actual numbers
from the roads are necessary to quantify whether the government
provided more public transport to ease commute during the pilot
period, or whether the number of privately owned two-wheelers
and four-wheelers actually went down in presence of people trying
to fool the system. Automated vehicle counting and classification
can directly provide these numbers of public and private vehicles
for data driven policy audits. Also in connection to air quality
improvement, different vehicle types are known to have different
fuel emission properties [37]. Hence classified counts of vehicles
will also be useful to correlate with air quality measurements.

Two other use cases were provided to us by DIMTS, who also
shared their camera dataset. One was to detect buses so that DIMTS
can see the arrival rates of buses at the point of monitoring. This
can quantify the unpredictability of public transport arrival (do
buses come every t minutes or is there a large variance in arrival
times?). DIMTS is also instrumenting buses with GPS to get this
information, but since some traffic cameras are already in place,
they are interested to leverage that infrastructure for tracking buses
till the GPS system comes up. The second use case is to detect
heavy vehicles like trucks to penalize them if they drive outside
their allowed hours. On the penalization side, different vehicles
also have different speed limits2, so vehicle classification is needed
for speed violation detection as well (just detecting vehicle speed
is not enough as each type has a different limit).

Finally, trafficmanagementmight benefit frommore fine-grained
information on vehicle types. Traffic density or queue length might
be enough to better schedule the signals at intersections. But since
there is significant heterogeneity in speeds of different vehicle
types which take different times to clear the signals, whether signal
scheduling should take into account more fine-grained information
like classified vehicle counts, needs to be investigated.

3 RELATEDWORK
Using CNN based accurate computer vision methods, advanced
forms of road and traffic related automation, e.g. self driving cars, is
being investigated. Annotated image datasets to train the intelligent
agent in self driving cars are being created as a result [7, 17, 24].
Computer vision researchers across the world are designing and
testing their CNNmodels on these datasets. These datasets are avail-
able for laned traffic of developed countries, where some vehicles
like auto-rickshaw, e-rickshaw and cycle-rickshaws are absent, and

2 https://en.wikipedia.org/wiki/Speed_limits_in_India

some vehicles like trucks, buses and commercial vans look very dif-
ferent from those in developing region traffic. Also non-laned traffic
leads to higher levels of occlusion. These differences led to very
poor accuracy when we tried CNN models trained with annotated
datasets of lane-based traffic, on test images from Delhi-NCR. We
used an available CNNmodel with weights trained on the Imagenet
dataset [21], which has many classes of objects including vehicles.
We further fine-tuned the model with existing annotated datasets of
developed country traffic from PASCAL VOC [23] and KITTI [24].
However, Mean Average Precision or MAP value in object detection
was 0.01% using fine-tuning with KITTI dataset and 0.58% using
fine-tuning with Pascal VOC dataset, on test video frames from
Delhi-NCR. As this accuracy was not useful for any application,
we build a parallel dataset in this paper annotating videos from
roadside cameras in Delhi-NCR, to evaluate state of the art CNN
methods in the developing region context. This dataset and our
trained models have been made available, so that vision researchers
can test their methods on this new dataset for developing countries,
in addition to existing ones [7, 17, 24] for developed countries.

Non-laned heterogeneous traffic in developing regions has ex-
cited the research community to design automated traffic mon-
itoring systems using a wide variety of embedded sensors like
cameras [27, 35, 36], microphones [28, 31] and RF [29, 30]. All these
works are on congestion estimation, that outputs the level of traffic
density or the length of vehicle queue on a given road stretch. Our
work gives a superset of these outputs. We give classified vehicle
counts for a given road stretch, which in summation can give the
traffic density on the roads. In dense traffic, the furthest vehicle
object that we detect in a video frame will give the length of the
traffic queue. Thus all the prior works’ results can be derived from
the results we present in this paper. We additionally report vehicle
type, which as discussed in Section 2, has numerous applications
of its own. The main technical gap compared to the related work
has been in using the recent dramatic improvements in computer
vision accuracy based on CNNs, not explored in prior literature.
Vehicle classification was done using in-vehicle smartphone sensors
in [34]. This dependency on participation from on-road vehicles
for vehicle classification has been removed in this paper, using data
from roadside camera deployments.

There have been some very recent works on evaluating CNN
inference performance on mobile and embedded systems [20, 25].
These works discuss the image classification task, where a given
image has a single object that needs to be classified into one of the
pre-defined ground truth classes. We evaluate the more challenging
multi-class object detection task, necessary to handle different appli-
cations on crowded traffic scenes from roadside cameras. Another
point of distinction with the prior CNN evaluations on embedded
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platforms is their evaluations have been on high end platforms like
Jetson TX2, which cost in the the order of 1000 USD. As we show
by empirical evaluations, embedded platforms within 50-100 USD
price ranges are also suitable for the use cases described in this
paper,a promising observation to reduce deployment cost.

4 DATASET
We collected video frames from four roadside camera installations
in collaboration with Vehant Technologies [18] and DIMTS [9]. As
automated vehicle counting and classification is a new technol-
ogy being tried in few areas of Delhi-NCR, the positioning and
hardware specifications of the camera installations have not yet
been standardized. Thus we have cameras showing frontal, back
and side view of vehicles, and one camera even has a fish-eye lens.
Sample images from the four installations are shown in Figure 1.
The difference between the two back view installations is in the
type of vehicles that ply the monitored roads, one is a bus route
where the other do not see buses. The datasets will be referred
to as front_fisheye, back_nobus, side_highway and back_busroute
henceforth.

The first three rows in Table 1 show the total number of anno-
tated frames, the total and average number of annotations. We edit
the open source BBox tool [6] to annotate images with rectangular
bounding boxes and a label among one of the following 6 classes:
0-bus, 1-car, 2-autorickshaw, 3-twowheeler, 4-truck, 5-pedestrian,
6-cycles and e-rickshaws. Three of the authors annotated one-third
of the images each. Then each annotator went through the annota-
tions of the other two, and made small fixes. The annotations were
thus by mutual agreement of three of the authors. The size of the
annotated dataset is comparable to some of the existing datasets3,
and hence will be sufficiently big to be a useful benchmark for the
computer vision community.

This annotated dataset is split into 80-20% training and test sets
respectively (last two rows in Table 1), in the next section where we
train and evaluate our CNN models for the object detection task.

5 CNN BASED OBJECT DETECTION
For object detection and classification into our 7 annotation classes,
we fine-tune the YOLO [26] CNN model, which has been known
to give high object detection accuracy at low inference latency. In
YOLO, a single Neural Network is applied to the whole image. The
network divides the image into rectangular grid regions and pre-
dicts bounding boxes and probabilities for each region. Detections
are thresholded by some probability value to only see high scoring
detections (this process is known as non-maximum suppression in
the computer vision community).

We use a model of YOLO pre-trained on the MS-COCO dataset.
We fine-tune it on the PASCAL VOC 2007 and the KITTI datasets.
This is followed by fine-tuning on our own custom annotated
datasets (Table 1 row 4). We fine-tune 5 different YOLO models,
one model using exclusively the training data from a single camera
installation. For four installations, this gives us four YOLO models.
We fine-tune a fifth model, combining the training data from all
installations. These models will be referred to as YOLO1, YOLO2,

3The Trancos [17] dataset consists of 1244 images with a total of 46796 vehicles
annotated

YOLO3, YOLO4 and YOLO5 in subsequent sections. Since each in-
stallation gives video frames of different resolutions, these frames
are resized to 416 X 416 before being fed into the model for both
fine-tuning and inference.

For the fine-tuning process, we use a Dell Precision Tower 5810
work-station, custom-fitted with an NVIDIAQuadro P5000 graphics
card. For each model (except YOLO5), the weights from the 10600th
fine-tuning epoch is used to evaluate inference accuracy on the test
data (Table 1 row 5). For YOLO5, after fine-tuning for more than
80200 iterations, the best accuracies are obtained using weights
from the 720006th iteration. Each training epoch takes about a
second on this work-station, and therefore the fine-tuning process
for the first four models take 3 hours and that for YOLO5 takes 20
hours.

5.1 Object detection output visual examples
Figure 2 shows the outputs of our detection models on a small
set of example images. Each class is represented with a different
colored box in the output. Before examining the accuracy of the
object detection models rigorously using precision-recall numbers
on the entire test dataset, these images give an idea of the excellent
performance of the trained models for all four camera installation
locations.

5.2 Installation specific fine-tuning
As discussed above, we fine-tune five models (four fine-tuned using
training data from each of the four camera installations and the
fifth model trained with the combined training dataset). Evaluation
is done individually with the five test sets (one from each of the
four camera installations and a fifth combined test set). Then we
run each of the five models on each of the five test sets, performing
25 evaluations in all.

Mean Average Precision (MAP) values for these are plotted as
bars along y-axis in Figure 3. The first two locations front_fisheye
and back_nobus perform best with the combined model YOLO5,
closely followed by YOLO1 and YOLO2 respectively, which are the
models fine-tuned with training data from these two specific loca-
tions. Thus installation specific fine-tuning performs well in these
locations, as well as combined model from all locations’ training
data. Similar pattern is seen for the fourth location back_busroute,
where the combined model YOLO5 again gives best results. YOLO4
(trained with this specific location’s data) and YOLO2 give com-
parable accuracies in this location, the possible reason being both
these models using back facing frames for training.

The third location side_highway shows a distinct pattern. Here
YOLO3, the model fine-tuned with this specific location performs
well, but unlike in other locations, the combined model YOLO5 does
poorly. The possible reason is this location having very distinct
frames (side view with camera at the same level as the vehicles),
as well as different kind of vehicles (mostly trucks as this is on
a highway). Combining data from other locations with frontal or
back views of different vehicle types reduce model accuracy in this
location. YOLO5 however does well on the combined test set, that
has test frames from all locations.
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(a) Frontal view, fish eye lens (b) Back view, non-bus route

(c) Side view, highway (d) Back view, bus route

Figure 1: Four camera installations across Delhi-NCR

The main take-away from these evaluations is the necessity of
standardizing camera hardware and its mounting for traffic applica-
tions. Manually annotating video frames for each distinct installa-
tion has a huge overhead. Installation specific models or combined
models trained with annotated data from all installations will incur
that overhead. However, if standardized, the trained models show
promise of performing well on these vision tasks (as seen from the
above 65-75% MAP values using installation specific or combined
models).

5.3 Vehicle class specific accuracy
Figure 4(a) shows the vehicle class specific accuracies using YOLO5.
On close examination, high intra-class variance and small number
of training samples are found to reduce accuracy for some classes.
Bicycles and e-rickshaws have huge intra-class variation. Similarly
all kinds of lorries, trucks and smaller commercial vans have been
labeled as trucks in our ground truth dataset, inducing large intra-
class variance. In terms of small number of training samples, our
videos being from busy intersections and highways, the number of
pedestrians have been few in the dataset. Thus the class specific
accuracy values for these classes of cycles/e-rickshaws, trucks and
pedestrians have been low.

To increase accuracy for each object class, careful choice of labels
(to reduce intra-class variations by having separate labels for very
different looking objects in the same class) and enough training
data per class, are recommended.

5.4 Recall vs. object distance from camera
In addition to class specific inference accuracy, we also explore the
dependency of accuracy on distance from the camera. Figure 4(b)
shows the distance of a ground truth object from the camera along
x-axis, as y-pixel values in the video frame. With the top left corner
of the frame as co-ordinate (0,0), smaller values indicate larger
distance from the camera. Thus objects near the camera are very
accurately detected, while accuracy drops further away from the
camera. In each camera installation (front, back or side view), the
same vehicles are in near and far field of the camera at different
times. Thus application results (percentage of public vs. private
transport or catching trucks if they ply outside their allotted hour)
will not change if computations are restricted to the near field of the
camera where object detection accuracy is high. This will reduce
annotation overhead (not mark anything away by a certain distance
from the camera) during training and increase accuracy (focused
only in the near field of the camera) during inference.
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Figure 2: Sample images with object detection bounding box and class label outputs

In summary, multi-class object detection for non-laned hetero-
geneous traffic on Delhi-NCR roads is fairly accurate (65-75% MAP
according to Figure 3. This inference accuracy can be improved

by better choice of labels to reduce intra-class variations, increas-
ing training samples for each class and restricting computations
within the near field of the camera (this last step increases recall
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Platform Cost (INR) Processor RAM
NVIDIA Jetson TX2 70K ARM Cortex-A57 (quad-core CPU) @ 2GHz + 8 GB

NVIDIA Denver2 (dual-core CPU) @ 2GHz
256-core Pascal GPU @ 1300MHz

Raspberry PI 3B 2.7K Quad Core 1.2GHz Broadcom BCM2837 64bit CPU 1 GB
Raspberry PI 3B + 7.8K Quad Core 1.2GHz Broadcom BCM2837 64bit CPU 1 GB

Intel Movidius Neural Compute Stick Intel Movidius Vision Processing Unit
Table 2: Embedded Hardware Platforms
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to above 95% as seen in Figure 4(b)). Focusing computations to the
near field of the camera also reduces object annotation overhead
of far-away objects. Manual annotation overhead can be further
reduced if camera hardware and installation directions and angles
are standardized across all deployments, to remove the need of
installation specific CNN model fine-tuning.

6 EMBEDDED CNN INFERENCE
The training and evaluation of the CNN based object detection
models in Section 5 were done on a GPU server. For an on-road
deployment of such a system, relying on fiber for transferring
video from the road to the remote GPU server will be difficult in
developing regions, as broadband connectivity across different road
intersections might vary. Also, good cellular connectivity will incur
recurring costs.

This motivates us to explore the possibility of in-situ computer
vision on embedded platforms. If using pre-trained CNN models
(trained on GPU servers), state of the art CNN based object detectors
can run their inference stage on embedded platforms co-located
with the camera infrastructure on the roads, then only the counts
per object class can be sent to the remote server for further analysis.
The raw video streams need not be transmitted. We evaluate the
cost, support for CNN software framework, latency and energy
of multiple off-the-shelf embedded platforms in this section, for
different CNN based object detection inference tasks.

6.1 Embedded Platforms
Table 2 lists the embedded platforms used in our evaluations. The
first platform, NVIDIA Jetson TX2 is the most powerful embedded
platform available in the market with impressive CPU and GPU
support, and significant memory size. Its cost however is 10-24
times that of the other two platforms evaluated. The second plat-
form, Raspberry PI has powerful CPU cores and moderate memory
size, at a very affordable price. The third platform, Intel Movid-
ius Neural Compute Stick is an USB stick offered by Intel, which
has specialized hardware called the Vision Processing Unit (VPU).
Different computations necessary in vision tasks, like convolution
operations in CNN, are implemented in hardware in this VPU. This
hardware accelerator stick can be plugged into the USB port of a
Raspberry PI, to create an embedded platform with boosted com-
puter vision performance. Both Jetson TX2 and Raspberry PI run
Linux based operating system like Ubuntu, on which different CNN
software frameworks can be installed to run the object detection
inferences given a trainedmodel.Wewill refer to these three embed-
ded platforms as jetson, raspi and movi respectively in subsequent
discussion.

We also evaluated two Android smartphones from Motorola and
Samsung, but their cost-latency trade-offs in running the inference
tasks were not comparable to these three platforms. Smartphones
are more generic platforms targeted towards personal use, where
cost increases due to the presence of different sensors, radios, dis-
play and also to support rich application software. The additional
hardware/software are not necessary for dedicated tasks like on
road traffic monitoring, hence embedded platforms with less fea-
tures as listed in Table 2 are more suitable. We therefore omit the
evaluation numbers of smartphones from this discussion.

6.2 CNN Software
The explorations in Section 5 used the YOLO object detector. Here
we evaluate YOLO inference latency and energy on the embedded
platforms. Additionally, we also evaluate the Mobilenet-SSD ob-
ject detector, which has been reported to have similar accuracy
and latency as YOLO. Just as we fine-tuned the YOLO object de-
tection model using annotated video frames from our cameras,
Mobilenet-SSD models can also be fine-tuned. To reduce the com-
plexity of implementing every CNN from scratch, software frame-
works like Tensorflow, Caffe, Pytorch are available, where functions
for basic computational units like convolution, RELU, pooling etc.
are already implemented. CNNs can be created calling these base
functions as required. We use Mobilenet-SSD implementations on
Caffe and Tensorflow. Thus we evaluate three CNN object detec-
tion software frameworks: YOLO, Tensorflow Mobilenet-SSD and
Caffe Mobilenet-SSD. We will refer to these as yolo, tf and caffe
respectively in subsequent discussions. We download open source
pre-trained models for these three softwares and only run the in-
ference task on the three embedded platforms to measure latency
and energy.

6.3 Evaluation
Figure 5 shows the average current drawn with standard deviation
as error bars on the left y-axis. Inference latency is shown on the
right y-axis. The x-axis denotes different object detection software
and embedded hardware combinations. The Movidius stick does
not support running Tensorflow models, so the combination tf-
raspi-movi is missing from the x-axis.

For a given CNN software (yolo, caffe or tf), there is a trend
across the hardware platforms. Jetson uses high energy at low
latency, raspi uses low energy with high latency and raspi-movi
strikes an optimal balance using low energy comparable to raspi and
incurring low latency comparable to jetson. For a given hardware
platform (jetson, raspi or movi), there is again a trend among the
CNN softwares. Yolo and caffe incur similar latency, while caffe
incurs slightly less energy than yolo. Tf uses similar energy as caffe,
but incurs higher latency than both yolo and caffe, especially on
raspi.

Given these trends, raspi-movi strikes a good balance of energy
and latency in terms of hardware platform choice, at amoderate cost
of 7.8K INR. This is significantly cheaper than the 70K INR jetson,
while the jetson incurs similar latency and higher energy. In terms
of software, both yolo and caffe Mobilenet-SSD are comparable in
terms of latency and energy, while tf has higher latency especially
on raspi and is currently not supported on raspi-movi.

While we evaluate and compare the different hardware plat-
forms and software frameworks on the basis of latency and energy,
depending on the application scenarios, one or both of these perfor-
mance metrics might not be crucial. E.g. for an on road deployment,
power is generally available from the lamp-posts or the traffic sig-
nals where the embedded computing units are deployed. For short
term pilot deployments, not interfering with the road infrastruc-
ture and using battery supported units make sense, and energy
efficiency will be important only in such scenarios. Similarly, if the
goal of counting and classifying vehicles is to plan infrastructure
or evaluate a transport policy like odd-even, low latency is not a
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Figure 5: Inference latency and energy of object detection DNN software on embedded hardware platforms

necessity. Processing can be done at a slower rate, as no real time
decisions will be taken based on the computer vision outputs. On
the other hand, if the outputs are needed for real-time traffic rule
violation detections and giving challans, then low latency becomes
important. Thus the cost-latency-energy trade-offs of hardware-
software combinations should always be considered in conjunction
with the envisioned application requirements. Thus more impor-
tant than the actual latency-energy values in our evaluation is the
take-away, that state of the art CNN based object detectors can run
on embedded platforms, thereby making in-situ processing of video
frames feasible without depending on broadband connectivity.

7 POTENTIAL APPLICATIONS
We discussed many applications of classified vehicle counts in Sec-
tion 2. Here we give a small example of how these applications
can actually benefit from our system output. Table 3 shows the
percentages of different object classes in our dataset (excluding
the highway dataset from side_highway). The numbers show a
high dependency on private vehicles like cars and two-wheelers.
This is the primary reason of increased traffic congestion and one
of the potential factors in air quality degradation in Delhi-NCR.
These values should be monitored when policies like odd-even are
enforced to reduce congestion and air pollution, to check if public
to private vehicle ratios improve, and whether absolute numbers
of public vehicles like buses increase and cars come down.

The absolute counts of different vehicles is useful also to es-
timate the Passenger Count Unit (PCU) [13], by multiplying the
number of vehicles with the number of passengers each can carry.
The PCU numbers will make infrastructure (signalized intersec-
tions, fly-overs, underpasses etc.) planning data-driven. Number
of pedestrians can help in further planning of infrastructure like
foot-bridges and side-walks. We will collaborate closely with the
urban transport authorities to share our models for more extensive
analyses across roads.

Object class Percentage on Percentage on
back_busroute front_fisheye and

back_nobus
Bus 3.03151 2.77197
Car 52.3472 61.6214

Auto-rickshaw 10.3994 8.42592
Two-wheeler 26.5118 18.3368

Truck 3.66009 4.47696
Pedestrian 1.5993 2.23298

Cycle/E-rickshaw 2.45067 2.13398
Table 3: Percentages of different vehicle classes in our

dataset

8 CONCLUSION AND FUTUREWORK
In this paper, we collect and annotate an extensive image dataset
across four roads in Delhi-NCR. In future, we will enhance this
labeled dataset with video frames from other Indian cities like
Bengaluru and Mumbai and share these datasets and models with
computer vision researchers and urban transport authorities. We
achieve significant accuracy in classified object count using state
of the art CNN models on non-laned heterogeneous traffic images.
Performance on embedded platforms have also been shown to be
practical in terms of latency and energy. Together, these form a
very promising step towards building stronger collaborations with
the traffic authorities, for scalable deployments of smart cameras
and application design using our classified counts.

Such close collaboration is very important to understand the
gap between Information and Communication Technology (ICT)
and Development (D). Considering D, its clear that traffic conges-
tion or road accidents have huge economic impact on developing
economies. There is no paucity of such analysis highlighting the
economic costs [1–5]. On the ICT side, papers like this and others
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show the promise that traffic measurement, management and rule
violation detection can be automated. How to bridge the gap be-
tween ICT and D, designing appropriate business models for such
automation infrastructure, needs to be explored. In this context, the
tension between better efficiency through automation and liveli-
hood loss, is a burning question in developing regions. Whether
manual data annotation to train automation models as used in this
paper, manufacturing and packaging of embedded sensors, and oc-
casional human supervision of the automated systems can balance
the job requirements of the current traffic police force – needs to
be investigated. The authors’ anecdotal discussions with the Delhi
Traffic Police Commissioner suggests that they acknowledge the
impossibility of manual management of continuously growing ur-
ban systems. The administration is actively looking for augmenting
manual monitoring systems with automation, but high accuracy
at low deployment and maintenance cost is needed. As immediate
future work using the models trained in this paper, the authors are
deploying a pilot network of connected intersection control cam-
eras in Noida. The findings of installation and maintenance costs
and effectiveness of the system in traffic measurement, manage-
ment and rule violation detection and penalization will be shared
with the traffic authorities.

As another follow-up work that will use the vehicle counting and
classification models, built in this paper, is a project of the authors
with the Delhi Integrated Multi Modal Transit System Limited
(DIMTS). In this project, up to 300 DIMTS buses in Delhi-NCR will
be instrumented with embedded sensors. GPS will measure the
location of the bus, Particulate Matter sensors will measure PM
2.5 and PM 10 values, accelerometer will measure motion state of
the bus as PM values captured in motion are noisy, temperature
and humidity sensor values will be used to correct the PM readings
and finally camera will be used to take pictures of road traffic and
count and classify vehicles. These values will be collected across the
city as the buses travel along their daily routes, stored locally and
communicated via cellular radio to a central server. The classified
vehicle counts will be correlated with PM values, to empirically
measure potential and actual impact of policies like odd-even rules
on air pollution. This project has been recommended under the
DST-SERB IMPRINT II grant scheme, and will be undertaken as a
joint project by IIT and IIIT Delhi and IIT Kanpur.

Finally, advocating for less cars to reduce congestion and air
pollution is easy, but navigating the city might be difficult for the
citizens if public transport facilities are not enhanced to match
demand. Using Google Maps and Uber API, and also DIMTS bus
mobile apps, the authors are trying to quantify the quality of public
transport in Delhi-NCR using different metrics. Availability is the
time to reach a public transport facility. Affordability is the cost of
travel. Convenience captures different aspects of travel like number
of breaks and total travel time in a trip, level of unpredictability in
getting transport options etc. An automated set of tools to evaluate
these metrics of public transport at city scale is being developed.
While on-road camera based vehicle counting and classification
gives one picture of road usage, web API based analyses give com-
plementary information that together can give a coherent picture
of the transport situation in the city.

Thus this paper is an intermediate point among a solid body
of prior work [27–31, 33, 34] and an active line of future work by

the authors to understand, quantify and hopefully better manage
transportation in developing regions, with Delhi-NCR as a use case.
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